

WG14 N3454

Author: José Miguel Sánchez García (soy.jmi2k@gmail.com)

Date: 2025-01-21

Project: ISO/IEC JTC1/SC22/WG14 9899: Programming Language — C

Proposal category: Change Request, Feature Request

Target: General Developers, Compiler Developers

typeof(return)

Summary

Change the definition of the typeof operator, allowing the return keyword to be used when

the operator is used inside the parameter list of a function declaration/definition, or inside the

body of a function definition, to obtain its return type; and emitting an error message if used in

any other situation.

1

mailto:soy.jmi2k@gmail.com

WG14 N3454 - typeof(return)

Rationale

C23 introduces both the auto keyword and the typeof operator. These can be combined to

facilitate using structs or unions without a tag as the return type. This has the potential to

improve the ergonomics of multiple return values in situations where both output parameters

and named struct/unions are not a good fit.

struct {

 int x;

 char c;

}

auxiliary_function(int n)

{

 return (typeof(auxiliary_function(n))){ n / 5, 'V' };

}

int

main(int argc, char **argv)

{

 auto result = auxiliary_function(42);

 return result.x == result.c;

}

This approach is superior to both alternatives (which are currently common practice):

1. Output parameters can be undesirable due to the need to rely on pointers to memory, or

even not permitted due to ABI requirements for that particular function.

2. Structs and unions with a tag pollute the namespace with definitions that may not be

useful beyond that particular caller/callee boundary. While it is technically feasible to use

named structs/unions in this case, it remains an annoyance where a dummy definition

with a meaningless name must be chosen to appease the language.

However, it faces one final hurdle: getting the return value of a function inside the function itself

remains too cumbersome. In particular, the fact that the entire function name and arguments

have to be typed is enough to deter anyone from choosing this approach.

2

WG14 N3454 - typeof(return)

Also, according to the current specification, it remains impossible to refer to such a return type

from the parameter list of the function declaration (as it is not yet declared, typeof cannot refer

to it).

While an extra type identifier could be introduced to refer to such type, any such suggestion

risks conflicting with existing code. Hence, a safer approach is proposed: extending the

definition of the existing typeof operator, allowing the return keyword to refer to the type of

the enclosing function. This causes no conflict outside said operator (as no new keyword is

introduced) nor inside it (as return is currently not allowed in that position), and is immediately

recognizable for what it represents (the type of the return value). Also, this choice of reusing

existing keywords in a different context aligns with other existing features, like those repurposing

static and * in array parameter declarations.

3

WG14 N3454 - typeof(return)

Proposed changes

This shows proposed additions and removals relative to WG14 N3435:

■ (6.7.3.6, #1) add the new return keyword to the typeof-specifier-argument definition:

 typeof-specifier-argument:

 expression

 type-name

 return

■ (6.7.3.6, #3) add an additional constraint on the usage of typeof(return):

 The typeof operators shall not be applied to an expression that designates a

bit-field member. The return keyword shall only be used inside the typeof operator
if that operator appears inside the parameter list of a function declaration, inside
the parameter list of a function definition, or inside the body of a function
definition.

■ (6.7.3.6, #4) extend the semantics of the typeof to accommodate this proposal:

 The typeof specifier applies the typeof operators to an expression (6.5.1) or, a

type name or the return keyword. If the typeof operators are applied to an expression,

they yield the type of their operand.148) If the typeof operators are applied to the
return keyword inside a function parameter list or inside a function body, they
yield the return type of that function. Otherwise, they designate the same type as the

type name with any nested typeof specifier evaluated.149) If the type of the operand is a

variably modified type, the operand is evaluated; otherwise, the operand is not

evaluated.

4

WG14 N3454 - typeof(return)

■ (6.7.3.6) add an example that showcases the added functionality (paragraph #13):

 EXAMPLE 8 Return type of the current function.

 int main(typeof(return), char **);

 int main(typeof(return) argc, char **argv) {

 typeof(return) result = argc & 0xF;

 return result;

 }

 is equivalent to this program:

 int main(int, char **);

 int main(int argc, char **argv) {

 int result = argc & 0xF;

 return result;

 }

5

	typeof(return)
	Summary
	Rationale
	Proposed changes

