z./c’,-’é///\/J 7Y

Xavi//gy- 077

How to Use the Plan 9 C Compiler

Rob Pike

Introduction

The C compiler on Plan 9 is a wholly new program; in fact it was the first piece of software written
for what would eventually become Plan 9 from Bell Labs. Programmers familiar with existing C compilers
will find a number of differences in both the language the Plan 9 compiler accepts and in how the compiler
is used.

The compiler is really a set of compilers, one for each architecture — MIPS, SPARC, Motorola
68020, Intel 386, etc. — that accept a dialect of ANSI C and efficiently produce fairly good code for the
target machine. There is a packaging of the compiler that accepts strict ANSI C for a POSIX environment,
but this document instead focuses on the native Plan 9 environment, that in which all the system source and
almost all the utilities are written.

Source

The language accepted by the compilers is the core ANSI C language with some modest extensions, a
greatly simplified preprocessor, a smaller library that includes system calls and related facilities, and a com-
pletely different structure for include files.

Official ANSI C accepts the old (K&R) style of declarations for functions; the Plan 9 compilers are
more demanding. Without an explicit run-time flag (-B) whose use is discouraged, the compilers insist on
new-style function declarations, that is, prototypes for function arguments. The function declarations in the
libraries’ include files are all in the new style so the interfaces are checked at compile time. For C pro-
grammers who have not yet switched to function prototypes the clumsy syntax may seem repellent but the
payoff in stronger typing is substantial. Those who wish to import existing software to Plan 9 are urged to
use the opportunity to update their code.

The compilers include an integrated preprocessor that accepts the familiar #include, #define for
macros both with and without arguments, #undef, #line, #ifdef, #ifndef, and #endif. It sup-
ports neither #i £ nor ## and honors a single #pragma. The #if directive was omitted because it greatly
complicates the preprocessor, is never necessary, and is usually abused. Conditional compilation in general
makes code hard to understand; the Plan 9 source uses it very sparingly. Also, because the compilers
remove dead code, regular if statements with constant conditions are more readable equivalents to many
#ifs. To compile imported code ineluctably fouled by #if there is a separate command, /bin/cpp,
that implements the complete ANSI C preprocessor specification.

Include files fall into two groups: machine-dependent and machine-independent. The machine-
independent files occupy the directory /sys/include; the others are placed in a directory appropriate to
the machine, such as /mips/include. The compiler searches for include files first in the machine-
dependent directory and then in the machine-independent directory. At the time of writing there are eigh-
teen machine-independent include files and three (per machine) machine-dependent ones: <ureg.h>,
<stdarg.h>, and <u.h>. The first describes the layout of registers on the system stack, for use by the
debugger; the second, as in ANSI C, defines a portable way to declare variadic functions. The third defines
some architecture-dependent types such as jmp_buf for setjmp and also a set of typedef abbrevia-
tions for unsigned short and so on.

Here is an excerpt from /68020/include/u.h:

177

typedef unsigned short ushort;
typedef unsigned char uchar;
typedef unsigned long ulong;
typedef unsigned int uint;

typedef signed char schar;
typedef long vlong;

typedef long jmp_buf[2];

#define JMPBUFSP 0
#define JMPBUFPC 1
#define JMPBUFDPC 0

The type vlong is the largest integer type available; on some architectures it is a 64-bit value. The
#define constants permit an architecture-independent (but compiler-dependent) implementation of
stack-switching using set jmp and longjmp.

Every Plan 9 C program begins
#include <u.h>

because all the other installed header files use the typedefs declared in <u.h>.

In strict ANSI C, include files are grouped to collect related functions in a single file: one for string
functions, one for memory functions, one for /O, and none for system calls. Each include file is protected
by an #ifdef to guarantee its contents are seen by the compiler only once. Plan 9 takes a completely dif-
ferent approach. Other than a few include files that define external formats such as archives, the files in
/sys/include correspond to libraries. If a program is using a library, it includes the corresponding
header. The default C library comprises string functions, memory functions, and so on, largely as in ANSI
C, some formatted I/O routines, plus all the system calls and related functions. To use these functions, one
must #include the file <1ibc.h>, which in turn must follow <u.h>, to define their prototypes for the
compiler. Here is the complete source to the traditional first C program:

#include <u.h>
#include <libc.h>

void

main(void)

{
print (*hello world\n");
exits(0);

}

The print routine and its relatives fprint and sprint resemble the similarly-named functions in
Standard I/O but are not attached to a specific I/O library. In Plan 9 main is not integer-valued; it should
call exits, which takes a string (or null; here ANSI C promotes the 0 to a char*) argument. All these
functions are, of course, documented in the Programmer’s Manual.

To use printf, <stdio.h> must be included to define the function prototype for print £:

#include <u.h>
#include <libc.h>
#include <stdio.h>

void

main(int argc, char *argv([])

{
printf("%$s: hello world with %d arguments\n®", argv([0], argc-1);
exits(0);

}

In fact Standard I/O is not used much in Plan 9. I/O libraries are discussed in a later section of this docu-
ment.

I9&

o

There are libraries for handling regular expressions, bitmap graphics, windows, and so on, and each
has an associated include file. The manual for each library states which include files are needed. The files
are not protected against multiple inclusion and themselves contain no nested #includes. Instead the
programmer is expected to sort out the requirements and to #include the necessary files once at the top
of each source file. In practice this is trivial: this way of handling include files is so straightforward that it
is rare for a source file to contain more than half a dozen #includes.

The compilers do their own register allocation so the register keyword is ignored. For different
reasons, volatile and const are also ignored.

To make it easier to share code with other systems, Plan 9 has a version of the compiler, pcc, that
provides the standard ANSI C preprocessor, headers, and libraries with POSIX extensions. Pcc is recom-
mended only when broad external portability is mandated. It compiles slower, produces slower code (it
takes extra work to simulate POSIX on Plan 9), eliminates those parts of the Plan 9 interface not related to
POSIX, and illustrates the clumsiness of an environment designed by committee. Pcc is described in more
detail in ““APE—The ANSI/POSIX Environment’’, by Howard Trickey.

Process

Each CPU architecture supported by Plan 9 is identified by a single, arbitrary, alphanumeric charac-
ter: v for MIPS, k for SPARC, z for Hobbit, 2 for Motorola 68020 and 68040, 8 for Intel 386, and 6 for
Intel 960. (This list is sure to grow.) The character labels the support tools and files for that architecture.
For instance, for the 68020 the compiler is 2c, the assembler is 2a, the link editor/loader is 21, the object
files are suffixed . 2, and the default name for an executable file is 2. out. Before we can use the compiler
we therefore need to know which machine we are compiling for. The next section explains how this deci-
sion is made; for the moment assume we are building 68020 binaries and make the mental substitution for
2 appropriate to the machine you are actually using.

To convert source to an executable binary is a two-step process. First run the compiler, 2c, on the
source, say file.c, to generate an object file file.2. Then run the loader, 21, to generate an exe-
cutable 2 . out that may be run (on a 680X0 machine):

2c file.c
21 file.2
2.out

The loader automatically links with whatever libraries the program needs, usually including the standard C
library as defined by <l1ibc.h>. Of course the compiler and loader have lots of options, both familiar and
new; see the manual for details. The compiler does not generate an executable automatically; the output of
the compiler must be given to the loader. Since most compilation is done under the control of mk (see
below), this is rarely an inconvenience.

The distribution of work between the compiler and loader is unusual. The compiler integrates pre-
processing, parsing, register allocation, code generation and some assembly. Combining these tasks in a
single program is part of the reason for the compiler’s efficiency. The loader does instruction selection,
branch folding, instruction scheduling, and writes the final executable. There is no separate C preprocessor
and no assembler in the usual pipeline. Instead the intermediate object file (here . 2 file) is a type of binary
assembly language, similar to very regular assembly language but in binary form for quick I/O. The
instructions in the intermediate format are not exactly those in the machine. For example, on the 68020 the
object file may specify a MOVE instruction but the loader will decide just which variant of the MOVE
instruction — MOVE immediate, MOVE quick, MOVE address, etc. — is most efficient.

The assembler, 2a, is just a translator between the textual and binary representations of the object file
format. It is not an assembler in the traditional sense. It has limited macro capabilities (the same as the
integral C preprocessor in the compiler), clumsy syntax, and minimal error checking. For instance, the
assembler will accept an instruction (such as memory-to-memory MOVE on the MIPS) that the machine
does not actually support; only when the output of the assembler is passed to the loader will the error be
discovered. The assembler is intended only for writing things, such as the machine-dependent part of an
operating system, that need access to instructions invisible from C; very little code in Plan 9 is in assembly
language.

479

-4-

The compilers take an option -S that causes them to print on their standard output the generated code
in a format acceptable as input to the assemblers. This is of course merely a formatting of the data in th'e
object file; therefore the assembler is just an ASCII-to-binary converter for this format. Near the end of this
document is a brief introduction to the format of the assembly language. Other than the specific instruc-
tions, the input to the assemblers is largely architecture-independent. ;

The loader is an integral part of the compilation process. Each library header file contains a
#pragma that tells the loader the name of the associated archive; it is not necessary to tell the loader which
libraries a program uses. The C run-time startup is found, by default, in the C library. The loader starts
with an undefined symbol, _main, that is resolved by pulling in the run-time startup code from the library.
(The loader undefines _mainp when profiling is enabled, to force loading of the profiling start-up instead.)

Unlike its counterpart on other systems, the Plan 9 loader rearranges data to optimize access. This
means the order of variables in the loaded program is unrelated to its order in the source. Most programs
don’t care, but some assume that, for example, the variables declared by

int a;
int b;

will appear at adjacent addresses in memory. On Plan 9, they won’t.

Heterogeneity

When the system starts or a user logs in the environment is configured so the appropriate binaries are
available in /bin. The configuration process is controlled by an environment variable, $cputype, with
value such as mips, 68020, or sparc. For each architecture there is a directory in root, with the appro-
priate name, that holds the binary and library files for that architecture. Thus /mips/1lib contains the
object code libraries for MIPS programs, /mips/include holds MIPS-specific include files, and
/mips/bin has the MIPS binaries. These binaries are attached to /bin at boot time by binding
/$cputype/bin to /bin, so /bin always contains the correct files.

The MIPS compiler, vc, by definition produces object files for the MIPS architecture, regardless of
the architecture of the machine on which the compiler is running. There is a version of vc compiled for
each architecture: /mips/bin/vc, /68020/bin/vc, /sparc/bin/vc, and so on, each capable of
producing MIPS object files regardless of the native instruction set. If one is running on a SPARC,
/sparc/bin/vc will compile programs for the MIPS; if one is running on machine Scputype,
/$cputype/bin/vc will compile programs for the MIPS.

In Plan 9 the directory /$cputype/bin is bound to /bin so that the appropriate version of com-
mands such as date are found by the shell: the shell looks for date in /bin/date and automatically
finds the file /$cputype/bin/date. Therefore the MIPS compiler is known as just vc; the shell will
invoke /bin/vc and that is guaranteed to be the version of the MIPS compiler appropriate for the
machine running the command. Regardless of the architecture of the compiling machine, /bin/vc is
always the MIPS compiler.

Also, the output of vc and v1 is completely independent of $cputype: .v files compiled (with
vc) on a SPARC may be linked (with v1) on a 386. (The resulting v.out will run, of course, only on a
MIPS.) Similarly, the MIPS libraries in /mips/1ib are suitable for loading with v1 on any machine;
there is only one set of MIPS libraries, not one set for each architecture that supports the MIPS compiler.
(In other systems it is common for the intermediate format to be compiling-machine-dependent.)

Heterogeneity and mk

Most software on Plan 9 is compiled under the control of mk, a descendant of make that is docu-
mented in the Programmer’s Manual. A convention used throughout the mkfiles makes it easy to com-
pile the source into binary suitable for any architecture.

The variable $cputype is advisory: it reports the architecture of the current environment, and
should not be modified. A second variable, $objtype, is used to set which architecture is being compiled
for. The value of $objtype can be used by amk£ile to configure the compilation environment.

In each machine’s root directory there is a short mkfile that just defines a set of macros for the

360

compiler, loader, etc. Here is / mips/mkfile:

CC=vc

LD=v1

O=v

RL=rl

AS=va

0S=2kovz86

CPUS=mips 68020 sparc 386 hobbit
CFLAGS=

CC is obviously the compiler, AS the assembler, and LD the loader. O is the suffix for the object files and
RL is the program that inserts a table of contents into a library file (a dreg, really; the program r1 works for
all supported architectures). CPUS and OS are used in special rules described below.

Here is amk£ile to build the installed source for sam:

</$objtype/mkfile
OBJ=sam.$0 address.$0 buffer.$0 cmd.$0 disc.$0 error.S$O file.$0 \

i0.$0 list.$0 mesg.$0 moveto.$0 multi.$0 plan9.$0 rasp.S$O regexp.$0 \

string.$0 sys.$0 xec.$0

$0.out: $OBJ
SLD $OBJ

install: $0.out
cp $0.out /$objtype/bin/sam

installall:
for(objtype in $CPUS) mk install

%.$0: %$.c
$CC $CFLAGS $stem.c

$SOBJ: sam.h errors.h mesg.h
address.$0 cmd.$0 parse.$0 xec.$0 unix.$0: parse.h
clean:V:

rm -f [$0S].out *.[$OS] y.tab.?

(The actual mk£ile imports most of its rules from other secondary files, but this example works and is not
misleading.) The first line causes mk to include the contents of /$objtype/mkfile in the current
mkfile. If $objtype is mips, this inserts the macro definitions above into the mkfile. In this case
the rule for $0.out will therefore use the MIPS tools to build v.out. The %.$0 rule in the file uses
mk’s pattern matching facilities to connect the source files to the object files through a run of the compiler.
(The text of the rules is passed directly to the shell, rc, without further translation. See the mk manual if
any of this is unfamiliar.) Because the default rule builds $O. out rather than sam, it is possible to main-
tain binaries for multiple machines in the same source directory without conflict. This is also, of course,
why the output files from the various compilers and loaders has distinct names.

The rest of the mkfile should be easy to follow; notice how the rules for clean and
installall (that is, install versions for all architectures) use other macros defined in
/$objtype/mkfile. In Plan 9, mkfiles for commands conventionally contain rules to install
(compile and install the version for $objtype), installall (compile and install for all $objtypes),
and clean (remove all object files, binaries, etc.).

The mkfile is easy to use. To build a MIPS binary, v.out:

$ objtype=mips
$ mk

To build and install a MIPS binary :

Wi i

% objtype=mips
% mk install

To build and install all versions:
% mk installall

These conventions make cross-compilation as easy to manage as traditional native compilation. Plan 9 pro-
grams compile and run without change on machines from large mulitprocessors to laptops.

Portability

Within Plan 9, it is painless to write portable programs, programs whose source is independent of the
machine on which they execute. The operating system is fixed and the compiler, headers and libraries are
constant so most of the stumbling blocks to portability are removed. Attention to a few details can avoid
those that remain.

Plan 9 is a heterogeneous environment, S0 programs must expect that external files will be written by
programs on machines of different architectures. The compilers, for instance, must handle without confu-
sion object files written by other machines. The traditional approach to this problem is to pepper the source
with #1ifdefs to turn byte-swapping on and off. Plan 9 takes a different approach; there are no machine-
dependent #ifdefs in any of the source. Instead the programs read and write files in a defined format,
either (for low volume applications) as formatted text, or (for high volume applications) as binary in a
known byte order. If the external data was written with the most significant byte first, the following code
will read a 4-byte integer correctly regardless of the architecture of the executing machine (assuming an
unsigned long will hold 4 bytes):

ulong
getlong (void)
{
ulong 1;

(getchar () &0XFF) <<24;
= (getchar()&0xFF)<<16;
= (getchar()&0xFF)<<8;
= (getchar ()&0xFF)<<0;

Note that this code does not ‘swap’ the bytes; instead it just reads them in the correct order. Variations of
this code will handle any binary format and also avoid problems involving how structures are padded, how
words are aligned, and other impediments to portability. Be aware, though, that extra care is needed to han-
dle floating point data.

Efficiency hounds will argue that this method is unnecessarily slow and clumsy when the executing
machine has the same byte order (and padding and alignment) as the data. I/O speed is rarely the bottle-
neck for an application, however, and the gain in simplicity of porting and maintaining the code greatly out-
weighs the minor speed loss from handling data in this general way. This method is how the Plan 9 com-
pilers, the window system, and even the file servers transmit data between programs.

To port programs beyond Plan 9, where the system interface is more variable, it is probably necessary
to use pcc and hope that the target machine supports ANSI C and POSIX.

o

The default C library, defined by the include file <1ibc.h>, contains no buffered I/O package. It
does have several entry points for printing formatted text: print outputs text to the standard output,
fprint outputs text to a specified integer file descriptor, and sprint places text in a character array.
But to access library routines for buffered I/O, a program must explicitly mention an appropriate library.

The recommended I/O library, used by most Plan 9 utilities, is bio (buffered 1/0), defined by
<bio.h> and accessed by appending -1bio to the command line for the loader. There also exists an

implementation of ANSI Standard /O, stdio.

Bio is small and very efficient, particularly for buffer-at-a-time or line-at-a-time I/O. Even for
character-at-a-time 1/O, however, it is significantly faster than the Standard I/O library, stdio. Its inter-
face is compact and regular, although it lacks a couple of conveniences. The most noticeable is that one
must explicitly define buffers for standard input and output; bio does not predefine them. Here is a pro-
gram to copy input to output a character at a time using bio:

#include <u.h>
#include <libc.h>
#include <bio.h>

Biobuf bin;
Biobuf bout;

main (void)
{

int c;

Binit (&bin, 0, OREAD);
Binit (&bout, 1, OWRITE);

while((c=Bgetc (&bin)) != Beof)
Bputc (&bout, c);
exits(0);
}

For peak performance, we could replace Bgetc and Bputc by their equivalent in-line macros BGETC and
BPUTC but the performance gain would be modest. For more information on bio, see the Programmer’s
Manual.

Perhaps the most dramatic difference in the I/O interface of Plan 9 from other systems’ is that text is
not ASCIL. The format for text in Plan 9 is a byte-stream encoding of 16-bit characters. The character set is
based on Unicode and is backward compatible with ASCII: characters with value O through 127 are the same
in both sets. The 16-bit characters, called runes in Plan 9, are encoded using a representation called UTF, a
encoding we proposed and expect to be accepted by X-Open. UTF defines multibyte sequences to represent
character values from 0 to 65535. In UTF, character values up to 127 decimal, 7F hexadecimal, represent
themselves, so straight ASCII files are also valid UTF. Also, UTF guarantees that bytes with values 0 to 127
(NUL to DEL, inclusive) will appear only when they represent themselves, so programs that read bytes
looking for plain ASCII characters will continue to work. Any program that expects a one-to-one corre-
spondence between bytes and characters will, however, need to be modified. An example is parsing file
names. File names, like all text, are in UTF, so it is incorrect to search for a character in a string by
strchr (filename, c) because the character might have a multi-byte encoding. The correct method
is to call ut frune (filename, c), defined in rune(2), which interprets the file name as a sequence of
encoded characters rather than bytes. In fact, even when you know the character is a single byte that can
represent only itself, it is safer to use ut frune because that assumes nothing about the character set and
its representation. The representation may change—Plan 9 has already changed it several times.

The library defines several symbols relevant to the representation of characters. Any byte with
unsigned value less than Runesync will not appear in any multi-byte encoding of a character. Ut frune
compares the character being searched against Runesync to see if it is sufficient to call strchr or if the
byte stream must be interpreted. Any byte with unsigned value less than Runesel £ is represnted by a sin-
gle byte with the same value. Finally, when errors are encoutered converting to runes from a byte stream,
the library returns the rune value Runeerror and advances a single byte. This permits programs to find
runes embedded in binary data.

Bio includes routines Bgetrune and Bputrune to transform the external byte stream UTF format
to and from internal 16-bit runes. Also, the $s format to print accepts UTF; %c prints a character after
narrowing it to 8 bits. The %S format prints a null-terminated sequence of runes; ¥C prints a character after
narrowing it to 16 bits. For more information, see the Programmer’s Manual, in particular u#f{(6) and

7§63

rune(2); there is not room for the full story here.

These issues affect the compiler in several ways. First, the C source is in UTF. Although C variables
are formed from ASCII alphanumerics, comments and literal strings may contain any characters encoded in
UTF. The declaration

char *cp = "abcy";
initializes the variable cp to point to an array of bytes holding the UTF representation of the characters

abcy . The type Rune is defined in <u.h> to be ushort, which is also the ‘wide character’ type in the
compiler. Therefore the declaration

Rune *rp = L"abcy";
initializes the variable rp to point to an array of unsigned short integers holding the 16-bit values of the
characters abcy. Note that in both these declarations the characters in the source that represent abcy are
the same; what changes is how those characters are represented in memory in the program. The following
two lines:

print ("$s\n", "abcy"):

print (*%S\n", L"abcy");
produce the same UTF string on their output, the first by copying the bytes, the second by converting from
runes to bytes.

In C, character constants are integers but narrowed through the char type. The Unicode character ¥

has value 255, so if the char type is signed, the constant ‘¥ has value — 1 (which is equal to EOF). On
the other hand, L’ 7’ narrows through the wide character type, ushort, and therefore has value 255.

Arguments

Defined in <1ibc.h> are some macros for parsing the arguments to main (). They are described
in ARG(2) but are fairly self-explanatory. There are four macros: ARGBEGIN and ARGEND are used to
bracket a hidden switch statement within which ARGC returns the current option character (rune) being
processed and ARGF returns the argument to the option, as in the loader option -o file. Here, for exam-
ple, is the beginning of main () in mount . c (see bind(1)) that cracks its arguments:

74y

void

main(int argc, char *argvl[])

{

Extensions

The compiler has several extensions to ANSI C, all of which are used extensively in the system
source. First, structure displays permit struct expressions to be formed dynamically. Given these decla-

rations:

char *spec, *srv;
ulong flag = 0;

srv = *";

ARGBEGIN({

case ‘a’:
flag |= MAFTER;
break;

case 'b’:
flag |= MBEFORE;
break;

case ‘c’:
flag |= MCREATE;
break;

case 't’:
srv = "any";
break;

case 's':
srv = ARGF();
if(sxrv == 0)

usage() ;

break;

default:
usage() ;

}ARGEND

if (argc == 2)

spec = "";
else if(argc == 3)

spec = argv([2];
else

usage() ;

typedef struct Point Point;
typedef struct Rectangle Rectangle;

struct Point

{

Y

int x, y;

struct Rectangle

{

}i

Point

Point min, max;

p, q, add(Point, Point);

Rectangle r;

int

this assignment may appear anywhere an assignment is legal:

X, Yi

2§58

-10-

r = (Rectangle){add(p, q), (Point){x, y+3}};

The syntax is the same as for initializing a structure but with a leading cast.

If an anonymous structure or union is declared within another structure or union, the members of the
internal structure or union are addressable without prefix in the outer structure. This feature eliminates the
clumsy naming of nested structures and, particularly, unions. For example, after these declarations,

struct Lock

{

int locked;
}:

struct Node
{
int type;
union{
double dval;
double fval;
long lval;
};
struct Lock; /* anonymous structure */
} *node;

void lock (struct Lock¥*);

one may refer to node->type, node->dval, node->fval, node->1lval, and node->1locked.
Moreover, the address of a struct Node may be used without a cast anywhere that the address of a
struct Lock is used, such as in argument lists. The compiler will automatically promote the type and
adjust the address. Thus one may invoke lock (node).

Anonymous structures and unions may be accessed by type name if (and only if) they are declared
using a typedef name. For example, using the above declaration for Point, one may declare

struct

{
int type;
Point;

Ip;:

and refer to p. Point.

In the initialization of arrays, a number in square brackets before an element sets the index for the ini-
tialization. For example, to initialize some elements in a table of function pointers indexed by ASCII charac-
ter,

void percent (void), slash(void):;
void (*func[128]) (void) =
{

[‘%’] percent,

[‘/°] slash,

}:

Finally, the declaration

extern register reg;

(this appearance of the register keyword is not ignored) allocates a global register to hold the variable reg.
External registers must be used carefully: they need to be declared in all source files and libraries in the
program to guarantee the register is not allocated temporarily for other purposes. Especially on machines
with few registers, such as the i386, it is easy to link accidentally with code that has already usurped the
global registers and there is no diagnostic when this happens. Used wisely, though, external registers are

346

) oW

powerful. The Plan 9 operating system uses them to access per-process and per-machine data structures on
a multiprocessor. The storage class they provide is hard to create in other ways.

The compile-time environment

The code generated by the compilers is ‘optimized’ by default: variables are placed in registers and
peephole optimizations are performed. The compiler flag -N disables these optimizations. Registerization
is done locally rather than throughout a function: whether a variable occupies a register or the memory
location identified in the symbol table depends on the activity of the variable and may change throughout
the life of the variable. The -N flag is rarely needed; its main use is to simplify debugging. There is no
information in the symbol table to identify the registerization of a variable, so -N guarantees the variable is
always where the symbol table says it is.

Another flag, -w, turns on warnings about portability and problems detected in flow analysis. Most
code in Plan 9 is compiled with warnings enabled; these warnings plus the type checking offered by func-
tion prototypes provide most of the support of the Unix tool 1int more accurately and with less chatter.
Two of the warnings, ‘used and not set’ and ‘set and not used’, are almost always accurate but may be trig-
gered spuriously by code with invisible control flow, such as in routines that call longjmp. The compiler
statements

SET(vl1);
USED(Vv2) ;

decorate the flow graph to silence the compiler. Either statement accepts a comma-separated list of vari-
ables. Use them carefully; they may silence real errors.

Debugging

The debugger on Plan 9 is db, a revision of Unix adb that supports multiple architectures in a single
program. There is room for a good source-level debugger but until the compiler emits a symbol table with
types db will have to serve.

Db has several improvements over adb. Most important is that it reports C source line numbers with
the z command. Breakpointing, and in particular conditional breakpointing, work well. Finally, it supports
cross-architecture debugging comfortably.

For simple debugging, however, db is fine. Imagine a program has crashed mysteriously:

% X11/X

Fatal server bug!

failed to create default stipple

X 106: suicide: sys: trap: fault read addr=0x0 pc=0x00060a82
%

When a process dies on Plan 9 it hangs in the ‘broken’ state for debugging. Db takes the process id of the
broken process and reports the type of the binary, the last trap it executed, and the failing instruction:

% db 106

68020 binary

bus error

abort.c:8 abort+#2? TSTL #0($0)

The $C (capital C) command to db reports the stack traceback:

3¢7

21122

$cC
abort () abort.c:4 called from FatalError+#de misc.c:421
FatalError (s9=#e02, s8=#4901d200, s7=#2, s6=#72701, s5=#1,
s4=#7270d, s3=#6, s2=#12, sl=#ff37flc, sO0=#6, £=#7270f)
misc.c:416 called from gnotscreeninit+#4ce gnot.c:792
gnotscreeninit.buf/ #4901b300
gnotscreeninit (snum=#0, sc=#80db0) gnot.c:766 called from
AddScreen+#16e main.c:610
AddScreen (argv=#£f£f37fec, argc=#1, pfnInit=#23bc) main.c:531
called from InitOutput+#16 gnot.c:924
AddScreen.i/ #0
AddScreen.pScreen/ #80db0
InitOutput (argv=#££37fec, argc=#1, si=#72cd4) gnot.c:920
called from main+#le2 main.c:227
main(argc=#1, argv=#ff37fec) main.c:137 called from _main+#le
plan968020/MAIN.s:8
main.alwaysCheckForInput/ #0
main.i/ #80 :
_main(inargv=#ff37£f£f6, inargc=#1) plan968020/MAIN.s:1 called from #1

The command $c (lower case c) omits the local variables.

The compiler does not place in the executable information describing the types of variables, but a
compile-time flag provides crude support for symbolic debugging. The -s flag to the compiler suppresses
code generation and identifies a structure or union in the program whose layout is to be printed on standard
output. The command dbfmt translates this output into b commands to display the data structure. The
easiest way to use this feature is to put a rule in the mkfile:

$.db: main.$0
$CC -s$stem main.c | dbfmt > $stem.db

Making Dir .db for example will produce a file by that name containing commands to print the contents
of a struct Dir (a type in <libc.h>). The $< command of db will read the file as commands. For
example, :

main.dirbuf$<Dir.db

will format the contents of main’s local variable dirbuf. These format files can of course be edited to
improve the output.

For more information, see the db manual page.

¥ d

