
Proposal for C2y
WG14 N3377

Title: Named Loops Should Name Their Loops: An Improved Syntax For N3355
Author, Affiliation: Erich Keane, NVIDIA
Author, Affiliation: Aaron Ballman, Intel
Proposal Category: Existing Feature
Target Audience: Compiler Implementers, users

Abstract: N3355 introduced a feature for ‘named loops’, which provides for a mechanism to
break/continue to an arbitrary loop or switch statement in the hierarchy of the current
context. This proposal suggests an alternative syntax that no longer inherits the issues with
traditional ‘label’ declarations.

Named Loops Should Name Their Loops: An Alternative Syntax
for N3355

Reply-to: Erich Keane (ekeane@nvidia.com) Aaron Ballman (aaron@aaronballman.com)
Document No: N3377
Date: 2024-11-05

Summary of Changes
N3377

● Original Proposal

Introduction and Rationale
At the Minneapolis 2024 meeting of WG14, the committee approved N3355 for C2y, which
proposes the useful feature of being able to continue/break to an arbitrary loop or switch
in the current hierarchy of scopes. During discussions of this paper the use of the traditional
label syntax, historically only used as targets for goto, was a contentious point of discussion.
While the use of traditional labels is convenient, these labels come with significant historical
baggage which forces semantics that don’t match other languages and are
awkward/cumbersome. The authors of this paper believe we can provide a syntax that
maintains the attractive nature of the original proposal with a less confusing syntax for the
naming of loops.

Labels are their own Declarations
The first issue with N3355’s syntax is that while labels have historically applied to the next
statement, this is a historical artifact of the implementation, and not because there is any
practical or implicit association between the two before this paper. In fact, the committee has
recently made such association no longer necessary in C23, as the null-statement is no longer
necessary after a label.

The proposal adds a level of association between the label and the statement that comes
immediately after it in a way that does not exist for the common mental model of a label. At
least one major implementation doesn’t bother to store any such relationship, as it is historically
irrelevant.

Doesn’t properly imply the target
Traditionally, labels are only targeted by a goto statement, and does an excellent job of being
clear where execution will resume textually: at the location immediately after the label. However,
the N3355 proposal requires that execution resumes in the middle of the next line in the case of

mailto:ekeane@nvidia.com
mailto:aaron@aaronballman.com

C/C++

continue and for loops (since the initializer isn’t re-executed), or at the end of the associated
statement of whatever construct it is associated with. This is a surprising deviation from its
historical use of jumping to the label.

Scoping Issues
As labels are declarations that are typically owned by the function in which they are declared.
As a result, there can only be one of each name in a function. This ends up being quite limiting
to the feature proposed in N3355 for a few patterns that are natural uses of N3355.

The first is the use in a macro. A common use of macros is for finding/altering a data structure
which heavily benefits from early-exit. Traditionally, this early-exit needs to be implemented with
some awkward machinations of loops, but with the feature proposed by N3355 these early exits
can be implemented in a much more natural and function-like manner. However, the use of
labels causes this use to be hamstrung, as a macro containing a naive use of N3355’s
break/continue statements cannot be called multiple times in the same function, as they
would use the same name. While there are difficult applications of __LINE__, __COUNTER__,
etc that could be used to get around this, it needlessly complicates the definition of what should
be a pretty simple macro. Additionally, while there are proposals for scoped/local labels this
does not improve the awkwardness in many cases. For example:

#define UPDATE_MAP(MAP, ELEM, NEWVAL)\

do { \

MapGroup *BucketItr = MAP.Lists;\

OUTER: while (BucketItr) {\

if (BucketItr->Hash == HASH(ELEM)) {\

MapNode *NodeItr = BucketItr->Nodes;\

while (NodeItr) {\

if (NodeItr->Key == ELEM) {\

NodeItr->Value = NEWVAL;\

break OUTER;\

}\

NodeItr = NodeItr->Next;\

}\

BucketItr = BucketItr->Next;\

}\

}\

} while(0)

That macro, intended to update a value of an element in a contrived hash map, very much
benefits from the named loops implementation, as it allows it to early-exit once the element is
completed. However, this macro cannot be called more than once in a function, as it would
declare OUTER twice. While unique names could potentially be generated using token-pasting
solutions and __COUNTER__ (__LINE__ is also sometimes mentioned here, but it alone
cannot solve this, as multiple invocations on the same line are possible), it is very much worth
making the ‘simple’ implementation the right way in this case. With this proposal, using the
same name for another loop that is perfectly acceptable (as long as it doesn’t shadow), as the
names are scoped inside the loop.

A second useful application of loop/switch names is to name and jump to a loop based on its
depth in the loop, such as outer or inner. For example, you may wish to use ROW_LOOP and
COL_LOOP when iterating over a 2 dimensional structure. However, without this proposal, the
programmer is forced to come up with new names for each loop in a function, despite there
being an obvious and natural hierarchy that the compiler needs to enforce for the purposes of
checking anyway. The original proposal uses outer and inner as the name of loops, but with
said proposal, those would not be particularly useful names, as they couldn’t be used more than
once in the same function.

Other Languages
One point the original proposal (N3355) makes is that its syntax for naming loops is used in
other languages. However, these languages all lack the historical common use of labels for the
purposes of goto, and thus can have different semantics for the label. In fact, all of the
languages in the original proposal work very much like the proposed syntax here: they are
associated directly with the loop or switch statement they apply to, and can be repeated in a
function. In Rust, the same name can even shadow a loop name of a previous loop in the
hierarchy (though this is diagnosed with a warning, and this is not proposed here).

It is clear that the semantics that the author of N3355 was trying to emulate from other
languages is not something that can be done with the current syntax, so the syntax proposed in
this paper is, though lexically different, semantically the same.

Proposal
This paper proposes to add to the grammar of for, while and switch, an optional identifier
to name the loop before the parens. For example: for OUTER (int i = 0; i < 5;

C/C++ C/C++

C/C++ C/C++

++i). We believe that this better associates the name of the loop with the loop, as it is directly
part of the statement for the loop or switch. This does provide for a mild implementation
consideration, as the check for the existence of a loop-label in a do loop needs to be deferred
until the end of the loop, however this is behavior that existsf or goto labels today. Additionally,
this allows us to provide for the semantics of Rust/Java/Javascript (the languages used as
examples in N3355). Namely:

The scope of a loop name is the loop itself. This means that the same name can be reused as
one would expect multiple times in the same function. Shadowing the name of a loop higher in
the current scope is to be ill-formed.

The scope is obviously lexically related to the loop itself. C historically doesn’t make this
association, and other declarations/statements in the way that may not have semantics or
effects (such as pragmas) don’t have to interfere.

These names cannot be used as a goto target. This reduces the cognitive burden on the
programmer to determine whether a label is a jump target from an arbitrary goto or is naming a
loop, thus providing for less programmer errors.

After N3355 After N3377 (this paper)

OUTER:
for(unsigned x = 0; x < DIM1;
++x){
INNER:
for (unsigned y = 0; y < DIM2;

++y) {
break OUTER;

}
}

for OUTER(unsigned x = 0; x <
DIM1; ++x){
for INNER(unsigned y = 0; y <

DIM2; ++y) {
break OUTER;

}
}

#define FIND_ELEM(ARRAY2D,
ARRAYDIM1, ARRAYDIM2, ELEMID,
OUTVAR) while(0) {\
OUTER:\
for (unsigned x = 0; x <
ARRAYDIM1;++x){\

#define FIND_ELEM(ARRAY2D,
ARRAYDIM1, ARRAYDIM2, ELEMID,
OUTVAR) while(0) {\
for OUTER (unsigned x = 0; x <
ARRAYDIM1;++x){\

INNER:\
for(unsigned y = 0; y <
ARRAYDIM2;++y){\
if (ARRAY2D[x][y].id == ELEMID){\
OUTVAR = &ARRAY2D[x][y];
break OUTER;

}}}}

...
struct MyType *First, *Second;
FIND_ELEM(MyArray, MyDim1, MyDim2,
FirstId, First);
FIND_ELEM(MyArray, MyDim1, MyDim2,
SecondId, Second);
// ABOVE IS AN ERROR without
__LINE__ & __COLUMN__ magic.

for INNER (unsigned y = 0; y <
ARRAYDIM2;++y){\
if (ARRAY2D[x][y].id == ELEMID){\
OUTVAR = &ARRAY2D[x][y];
break OUTER;

}}}}

...
struct MyType *First, *Second;
FIND_ELEM(MyArray, MyDim1, MyDim2,
FirstId, First);
FIND_ELEM(MyArray, MyDim1, MyDim2,
SecondId, Second);
// ABOVE perfectly fine.

Alternate Spellings
This paper is heavily influenced by a Zoom comment on the original discussion which proposed
the same lexical location, but with colons on each side of the name (such as while :OUTER:
(condition)). Additional tokens are perhaps preferential, as it could leave the design space
available for alternative tokens in this space, such as a type of for loop that provides for
automatic parallelism. In addition to the colon-based-delimiting mentioned above, an alternative
would be to require the names to start with a single quote, as it does in Rust. If the committee
deems it preferential, the below wording can be trivially modified to include a modified grammar
for an additional annotation.

Proposed Straw Polls
Preference Polls for any Alternate Spellings that include Token annotations.
Apply N3377 to the working draft for C2y, instructing the Project Editor to apply it after N3355.

Proposed Wording
The proposed changes are based on the latest public draft of C2y, N3301, with the addition of
the wording as applied by N3355.

Delete the two new paragraphs in 6.8.2 added by N3355

Delete the new paragraph in 6.8.3 added by N3355

Modify 6.8.5p1:

block-name:
identifier

selection-statement:
if (expression) secondary-block
if (expression) secondary-block else secondary-block
switch block-nameopt (expression) secondary-block

Insert new paragraph in Semantics before 6.8.5.3p4:
A switch statement with a block name is named by the block name identifier.

Modify 6.8.6p1:
iteration-statement:

while block-nameopt (expression) secondary-block
do secondary-block while block-nameopt (expression) ;
for block-nameopt (expressionopt ; expressionopt ; expressionopt) secondary-block
for block-nameopt (declaration expressionopt ; expressionopt) secondary-block

Insert new paragraph in Semantics before 6.8.6p3:
An iteration statement with a block name is named by the block name identifier.

Modify 6.8.7.3 (altering the new para from N3355):
A continue statement with an identifier operand shall appear within an iteration statement
named by the block namelabel with the corresponding identifier.

Modify 6.8.7.3 (altering the new para from N3355):
If the continue statement has an identifier operand, the jump is to the loop-continuation of the
iteration statement named by the block namelabel with the corresponding identifier. Otherwise,
the jump is to the loop-continuation of the innermost enclosing iteration statement.

Modify 6.8.7.3 (altering the new example from N3355):
outer:
for outer (int i = 0; i < IK; ++ i) {

for (int j = 0; j < JK; ++ j) {

continue; // jumps to CONT1

continue outer; // jumps to CONT2

// CONT1
}
// CONT2

}

Modify 6.8.7.4 (altering the new para from N3355):
A break statement with an identifier operand shall appear within a switch or iteration statement
named by the block namelabel with the corresponding identifier.

Modify 6.8.7.4 (altering the new para from N3355):
If the break statement has an identifier operand, the jump exits the switch or iteration statement
named by the block namelabel with the corresponding identifier. Otherwise, the jump exits the
innermost enclosing switch or iteration statement.

Modify 6.8.7.4 (altering the new example from N3355):
outer:
for outer (int i = 0; i < IK; ++ i) {

switch (i) {
case 1:
break; // jumps to CONT1
case 2:
break outer; // jumps to CONT2

}
// CONT1

}
// CONT2

Acknowledgements
We would like to recognize the following people for their help in this work: Niall Douglas.

References
[N3355]
Named Loops, v3: https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3355.htm
[N3301]
C2y Public Draft: https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3301.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3355.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3301.pdf

