
Proposal for C2y

WG14 N3289

Title: Standardize strnlen and wcsnlen (v2)

Author, affiliation: Christopher Bazley, Arm. (WG14 member in individual capacity – GPU expert.)

Date: 2024-06-21

Proposal category: Feature

Target audience: General Developers, Library Developers

Abstract: This paper proposes that the POSIX functions strnlen and wcsnlen be incorporated into the

C standard.

Prior art: POSIX, GNU C library, Linux.

Standardize strnlen and wcsnlen (v2)
Reply-to: Christopher Bazley (chris.bazley@arm.com)

Document No: N3289

Date: 2024-06-21

Summary of Changes
N3252

• Initial proposal

N3289

• Added an alternative example implementation of strnlen that uses memchr.

• Revised the proposed wording changes for strnlen and wcsnlen and the associated

rationale.

• Added possible wording changes for wcsncat, strnlen_s and wcsnlen_s to align their

descriptions with the new wording proposed for strnlen and wcsnlen.

Rationale
The requirement to determine the bounded length of a string is a common one. Consequently, many

C libraries provide the following functions to calculate that result for ordinary and wide character

arrays:

#include <string.h>

size_t strnlen(const char s[.maxlen], size_t maxlen);

(strnlen(3) — Linux manual page [1])

#include <wchar.h>

size_t wcsnlen(const wchar_t s[.maxlen], size_t maxlen);

(wcsnlen(3) — Linux manual page [2])

These functions have been part of the GNU project’s C library since at least 2001 [3] and later

became part of the POSIX.1-2008 standard.

Instead of standardizing the strnlen and wcsnlen functions, WG14 chose to standardize similarly

named functions as part of Annex K of the C11 standard:

#define __STDC_WANT_LIB_EXT1__ 1

#include <string.h>

size_t strnlen_s(const char *s, size_t maxsize);

(K.3.7.4.4 The strnlen_s function, ISO/IEC 9899:2023)

#define __STDC_WANT_LIB_EXT1__ 1

#include <wchar.h>

size_t wcsnlen_s(const wchar_t *s, size_t maxsize);

(K.3.9.2.4.1 The wcsnlen_s function, ISO/IEC 9899:2023)

Like the rest of Annex K, strnlen_s and wcsnlen_s are an optional extension. Implementers are

under no obligation to provide them, and most (including Clang and GCC) do not. In turn, this is likely

to have hindered adoption, because programmers cannot rely on those functions being present.

The rationale given for adding these functions was:

The strnlen_s function is useful when dealing with strings that might lack their

terminating null character. That the function returns the number of elements in

the array when no terminating null character is found causes many calculations

to be more straightforward. The technical report itself uses strnlen_s extensively

in expressing the runtime-constraints of functions.

The strnlen_s function is identical [sic] the Linux function strnlen

(Rationale for TR 24731 — Extensions to the C Library — Part I: Bounds-checking interfaces [4])

Why standardize a function that “is identical” to an already established function with a different

name? (As a matter of fact, strnlen_s and strnlen are not quite identical: the latter has undefined

behaviour if passed a null pointer.)

https://man7.org/linux/man-pages/man3/strnlen.3.html
https://man7.org/linux/man-pages/man3/wcsnlen.3.html
https://github.com/lattera/glibc/blame/master/string/strnlen.c
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1173.pdf

In N1967, Sebor and O'Donell proposed that Annex K be either removed from the next revision of

the C standard or deprecated and then removed [5]. Periodically, the question of whether to follow

through on this idea arises in the committee.

However, strnlen_s and wcsnlen_s differ from other Annex K functions:

Except for strnlen_s and wcsnlen_s, functions in the technical report have a

“Runtime-constraints” section that lists a series of “shall” or “shall not”

statements that the program must satisfy when calling a library function.

(Rationale for TR 24731 — Extensions to the C Library — Part I: Bounds-checking interfaces)

This means that implementors could easily provide strnlen_s and wcsnlen_s without concerning

themselves with the thread-safety issues of runtime constraint handling which were described by

Seacord in N2809 [6].

strnlen_s and wcsnlen_s also differ from most other Annex K functions in that they do not fully or

partially duplicate the functionality of other standard functions. It would therefore be beneficial to

users for their functionality to be mandatory, not an optional extension.

According to Annex K itself:

This annex provides alternative library functions that promote safer, more secure

programming.

(K.1 Background, ISO/IEC 9899:2023)

In the opinion of this author, the inclusion of strnlen_s and wcsnlen_s in Annex K was a category

mistake. Those functions do not exist primarily to serve the needs of secure programming: they are

foundational to solving many problems.

For example, it is impossible to implement the strndup function efficiently without strnlen_s, or

code resembling it. The only alternative to iterating over the passed-in array to find the terminating

null character would be to always allocate enough storage for the specified maximum number of

characters. That will have a bad outcome if a caller passes SIZE_MAX (e.g., because strdup is

implemented in terms of strndup).

As noted by the authors of TR 24731, many operations cannot be economically described without

recourse to a function resembling strnlen. That is also what motivated this paper: It’s absurd to

describe behaviour in terms of strnlen_s and wcsnlen_s (because those are the standard

functions), only to have to search and replace those names with strnlen and wcsnlen to allow the

code to be translated by a real implementation.

It could be argued that wcsnlen is less commonly used than strnlen and therefore does not merit

inclusion. This author believes such irregularities (including the omission of wcsdup from C23) merely

serve to provoke surprise and irritation from users, without significantly reducing the burden on

implementers. It is also hard to reconcile omission of wcsnlen with continued inclusion of

wcsnlen_s in the C standard, since space is thereby used describing a function that usually does not

exist, instead of one which usually does.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2809.pdf

Implementation
The strnlen and wcsnlen functions can be implemented using only a few lines of code but are not

trivial to implement correctly. It is not beneficial to force strictly conforming programs to reinvent

this wheel.

For example, the following implementation is subtly broken because s[p] is evaluated before p < n:

#include <stddef.h>

size_t strnlen(const char *s, size_t n)

{

 size_t p = 0;

 while (s[p] && p < n)

 p++;

 return p;

}

It sometimes erroneously reads n+1 characters instead of no more than n characters. The effects of

this error would not be observable at runtime except when operating on an array that contains no

null character, and probably not even then.

The following implementation [7] is believed to be correct:

#include <stddef.h>

size_t strnlen(const char *s, size_t n)

{

 size_t p;

 for (p = 0; p < n && s[p]; p++) {}

 return p;

}

The correct implementation is reasonably efficient for most modern CPU architectures. For example,

the following translation is generated by Clang 18.1.0 for an Arm Cortex-M4 embedded processor:

strnlen:

 cmp r1, #0

 itt eq

 moveq r0, #0

 bxeq lr

 mov r2, r0

 movs r0, #0

.LBB0_2: @ =>This Inner Loop Header: Depth=1

 ldrb r3, [r2, r0]

 cmp r3, #0

 it eq

 bxeq lr

.LBB0_3: @ in Loop: Header=BB0_2 Depth=1

 adds r0, #1

 cmp r1, r0

 bne .LBB0_2

 mov r0, r1

 bx lr

https://godbolt.org/z/49qaPY4f5

It is alternatively possible to implement strnlen by using memchr to search for a null character in the

given array [8]. This may be more efficient than a standalone implementation of strnlen, depending

on how well memchr has been optimised:

#include <string.h>

size_t strnlen(const char *s, size_t n)

{

 const char *p = memchr(s, '\0', n);

 return p == NULL ? n : p - s;

}

The translation generated by Clang 18.1.0 for an Arm Cortex-M4 is also slightly shorter than that

generated for the standalone implementation of strnlen:

strnlen:

 push {r4, r5, r7, lr}

 mov r4, r1

 movs r1, #0

 mov r2, r4

 mov r5, r0

 bl memchr

 cmp r0, #0

 it ne

 subne r4, r0, r5

 mov r0, r4

 pop {r4, r5, r7, pc}

https://godbolt.org/z/bTKEv8dhq

Proposed wording changes
The wording proposed is a diff from the September 3, 2022 working draft [11]. Green text is new

text, while red text is deleted text.

7.26.6.5 The strnlen function

Synopsis
1

#include <string.h>

size_t strnlen(const char *s, size_t n);

Description
2 The strnlen function counts not more than n characters (a null character and characters that

follow it are not counted) in the array to which s points. At most the first n characters of s shall be

accessed by strnlen.

Returns
3 The strnlen function returns the number of characters that precede the terminating null

character. If there is no null character in the first n characters of s then strnlen returns n.

7.31.4.3.2 The wcsncat function

Synopsis
1

#include <wchar.h>

wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wcsncat function appends not more than n wide characters (a null wide character and those

wide characters that follow it are not appended) from the array pointed to by s2 to the end of the

wide string pointed to by s1. The initial wide character of s2 overwrites the null wide character at

the end of s1. A terminating null wide character is always appended to the result.423)

Returns
3 The wcsncat function returns the value of s1.

7.31.4.7.3 The wcsnlen function

Synopsis
1

#include <wchar.h>

size_t wcsnlen(const wchar_t *s, size_t n);

Description
2 The wcsnlen function counts not more than n wide characters (a null wide character and wide

characters that follow it are not counted) in the array to which s points. At most the first n wide

characters of s shall be accessed by wcsnlen.

Returns
3 The wcsnlen function returns the number of wide characters that precede the terminating null

wide character. If there is no null wide character in the first n wide characters of s then wcsnlen

returns n.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3054.pdf

B.25 String handling <string.h>

size_t strnlen(const char *s, size_t n);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines

__STDC_WANT_LIB_EXT1__ before any inclusion of <wchar.h>:

size_t strnlen_s(const char *s, size_t maxsize n);

B.30 Extended multibyte/wide character utilities <wchar.h>

size_t wcsnlen(const wchar_t *s, size_t n);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines

__STDC_WANT_LIB_EXT1__ before any inclusion of <wchar.h>:

size_t wcsnlen_s(const wchar_t *s, size_t maxsize n);

K.3.7.4.4 The strnlen_s function

Synopsis
1

#define __STDC_WANT_LIB_EXT1__ 1

#include <string.h>

size_t strnlen_s(const char *s, size_t maxsize n);

Description
2 The strnlen_s function computes the length of the string pointed to by s. counts not more than n

characters (a null character and characters that follow it are not counted) in the array to which s

points. At most the first n characters of s shall be accessed by strnlen_s.

Returns
3 If s is a null pointer,515) then the strnlen_s function returns zero.

4 Otherwise, the strnlen_s function returns the number of characters that precede the terminating

null character. If there is no null character in the first n maxsize characters of s then strnlen_s

returns n. maxsize. At most the first maxsize characters of s shall be accessed by strnlen_s.

K.3.9.2.4.1 The wcsnlen_s function

Synopsis
1

#define __STDC_WANT_LIB_EXT1__ 1

#include <wchar.h>

size_t wcsnlen_s(const wchar_t *s, size_t maxsize n);

Description
2 The wcsnlen_s function computes the length of the wide string pointed to by s. counts not more

than n wide characters (a null wide character and wide characters that follow it are not counted) in

the array to which s points. At most the first n wide characters of s shall be accessed by wcsnlen_s.

Returns
3 If s is a null pointer,539) then the wcsnlen_s function returns zero.

4 Otherwise, the wcsnlen_s function returns the number of wide characters that precede the

terminating null wide character. If there is no null wide character in the first n maxsize wide

characters of s then wcsnlen_s returns n. maxsize. At most the first maxsize wide characters of s

shall be accessed by wcsnlen_s.

Rationale for wording

The current wording for the strnlen_s and wcsnlen_s functions is consistent with that for strlen

and wcslen. In one respect it is too consistent: the descriptions of the bounded and unbounded

versions of each function are identical:

The strlen function computes the length of the string pointed to by s.

(7.26.6.4 The strlen function, ISO/IEC 9899:2023)

versus

The strnlen_s function computes the length of the string pointed to by s.

(K.3.7.4.4 The strnlen_s function, ISO/IEC 9899:2023)

The initial version of this paper therefore inserted the word ‘bounded’ into the description of

strnlen and wcsnlen (said to compute the length of a ‘bounded string’) to disambiguate them from

strlen and wcslen. However, that attempted remediation was insufficient.

The standard does not define the term ‘bounded string’, but defines ‘string’ as follows:

A string is a contiguous sequence of characters terminated by and including the

first null character.

(7.1.1 Definitions of terms, ISO/IEC 9899:2023)

Reading the descriptions of strnlen_s and wcsnlen_s with the above definition in mind, it appears

that the term ‘string’ has been misused. In particular:

At most the first maxsize characters of s shall be accessed by strnlen_s.

(K.3.7.4.4 The strnlen_s function, ISO/IEC 9899:2023)

Given that the number of characters accessed is limited by the value of maxsize, it follows that the

input sequence of characters need not be terminated by a null character1. In other words, the s

parameter of strnlen_s need not point to a string.

Instead, the s parameter of strnlen_s should be described as a pointer to an array, like the s2

parameter of strncat:

The strncat function appends not more than n characters (a null character and

characters that follow it are not appended) from the array pointed to by s2 to the

end of the string pointed to by s1.

(7.26.3.2 The strncat function, ISO/IEC 9899:2023)

1 Conversely, the fact that a null character might appear within the first maxsize characters of the input
sequence means that the number of elements in the array pointed to by s can be fewer than maxsize. It
would therefore be incorrect to declare s as a variably modified array parameter, s[maxsize].

The POSIX descriptions of strnlen [9] and wcsnlen do not fall into the same trap of describing the

input sequence of characters as a string, but do imply that the array might have a terminating

character:

The strnlen() function shall compute the smaller of the number of bytes in the

array to which s points, not including any terminating NUL character, or the value

of the maxlen argument. The strnlen() function shall never examine more than

maxlen bytes of the array pointed to by s.

This aspect of their descriptions has been the subject of a defect report [10].

For the above reasons, my proposed descriptions of the strnlen and wcsnlen functions are based

more on the descriptions of strncat and wcsncat than the descriptions of strnlen_s and

wcsnlen_s or the POSIX descriptions of strnlen and wcsnlen. I judged it more important for the C

standard to be internally consistent than for its wording to be identical to POSIX.

The wording proposed for wcsnlen diverges slightly from the existing description of wcsncat

because “a null wide character and those that follow it” seems open to misinterpretation, since

“those” is intended to mean “wide characters” but could be misunderstood as “null wide

characters”.

When compared to strnlen_s and wcsnlen_s, the guarantee about the maximum number of

characters accessed by strnlen and wcsnlen has been moved to the main description of those

functions because it does not appear to relate to their return value.

When compared to strnlen_s and wcsnlen_s, the following caveat was omitted from the

description of the return value of strnlen and wcsnlen:

If s is a null pointer, then the xxxnlen function returns zero.

(K.3.7.4.4 The strnlen_s function, ISO/IEC 9899:2023)

None of the implementations of strnlen that I examined implement special behaviour for a null

pointer; to do so would be inconsistent with the behaviour of functions such as strlen.

When compared to strnlen_s and wcsnlen_s, the maxsize parameter of strnlen and wcsnlen was

renamed as n. This conforms with the equivalent parameter of the strncpy and strncat functions

and avoids potential confusion between a result of the sizeof operator and a character count.

The section numbering assumes that describing strlen and strnlen consecutively is desirable, and

similarly that wcsnlen should be described as close as possible to wcslen. However, it also assumes

that renumbering 7.31.4.7.2 “The wmemset function” is undesirable. Alternatively, 7.31.4.7.2 and the

proposed 7.31.4.7.3 could be swapped so that the descriptions of wcslen and wcsnlen are

consecutive. This would be more intuitive for readers.

https://pubs.opengroup.org/onlinepubs/9699919799/functions/strlen.html
https://www.austingroupbugs.net/view.php?id=1834

References
[1] strnlen(3) — Linux manual page

https://man7.org/linux/man-pages/man3/strnlen.3.html

[2] wcsnlen(3) — Linux manual page

https://man7.org/linux/man-pages/man3/wcsnlen.3.html

[3] Blaming glibc/string/strnlen.c at master · lattera/glibc

https://github.com/lattera/glibc/blame/master/string/strnlen.c

[4] Rationale for TR 24731 — Extensions to the C Library — Part I: Bounds-checking interfaces

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1173.pdf

[5] Updated Field Experience With Annex K — Bounds Checking Interfaces

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm

[6] Annex K Repairs

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2809.pdf

[7] Compiler Explorer

https://godbolt.org/z/49qaPY4f5

[8] Compiler Explorer

https://godbolt.org/z/bTKEv8dhq

[9] strlen, strnlen - get length of fixed size string

https://pubs.opengroup.org/onlinepubs/9699919799/functions/strlen.html

[10] Austin Group Defect Tracker

https://www.austingroupbugs.net/view.php?id=1834

[11] N3054 working draft — September 3, 2022 ISO/IEC 9899:2023

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3054.pdf

https://man7.org/linux/man-pages/man3/strnlen.3.html
https://man7.org/linux/man-pages/man3/wcsnlen.3.html
https://github.com/lattera/glibc/blame/master/string/strnlen.c
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1173.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2809.pdf
https://godbolt.org/z/49qaPY4f5
https://godbolt.org/z/bTKEv8dhq
https://pubs.opengroup.org/onlinepubs/9699919799/functions/strlen.html
https://www.austingroupbugs.net/view.php?id=1834
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3054.pdf

