: v/ L’/fl//:",/':

>J \T/// s

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)
Contents

1 BOOPE oo vvsssssssusennnnsnnanss R € 630 b o a4

2 Compliance . . . c oo ovveeevoon i v s s ehe Lah o e s gst S ey & B i e AR el g

3Language cccc e e s D o e et x5 7 B i o AL 5 rea e M ta 115 Taicatil

31 Operatorscco0000. S i 5 e e e Ta e Faligrutsr o oL e e S5iS W2

32 Punctuadtorsccc0000 000 L Snibeie P R 67 53 51 asia o e ciete ies Soie g 2

3.3 Versionmacro R ST B e e sihen el otk es w' e B a e Te T . Bive: (B a3 R B i

ALIDYATY o oisio oisiainie sisinio e sle s I R N S R P e LY el e e cale ool

4.1 Definitionsof terms . . « « « « v ¢« e s e s e oo e oo v s oo s o cs o wserie. 104 Yyl 1 shisid)

42 Standard headers . . « « « « c o o s s e v s oo s s s s s st s 0 s ot s s e s s e s e e eI

43 EITOTS <@TZZNO D> ¢ ¢ ¢« ¢ c s covoosovosassssosssocsscssssssssoscssssssed

4.4 Alternative spellings <iso646.h>cc .0 S84 o)t cecie. oitarys:se Uakiai e doibs it d

4.5 Wide-character classification and mapping utilities <wctype B L s 15 e e ey o a7 3

451 Introductionco0ceceeocscoccos it odeS fopim e e s o el s ala e 3

4.5.2 Wide-character classification utlhtm O a0 e e e e e ey e

4.5.2.1 Wide-character classificationfunctions« . ¢ e o et e et a oo o 4

4.5.2.2 Extensible wide-character classificationfunctionso 00 e v 6

4.53 Wide-character mapping utilities A s hw f- aiiete o e 18 7

4.5.3.1 Wide-character case-mapping functions cceeeeeoeeooosos 7

4.53.2 Extensible wide-character mapping functions o 91e o5t S vi k. 7

4.6 Extended multibyte and wide-character utilities <wchar.h> 5 adipte firars 8

46.1 Introductionc oo ceoeeoscscsosososcsescscacenas ..8

462 Input/outputcc000. s et du's . 43} 4 A ne R Tt o et et e T e 9

4621 Streamscc00000. T T IR A F T o R e T NP o 9

A R oy e e et Ot U st RS (g Lo 10

4.62.3 Formatted input/output functions . . . « « o ¢ ¢ ¢ o o 00 o s o soiarise aiaie anee i 200

4.62.4 Formatted wide-character input/output functions « « o ¢« o oo 0o 00 oo 13

4.6.2.5 Wide-character input/output functions« ¢ v v e et v vt ooooo s 21

4.6.3 General wide-string utilities RS R i E i A S AR 24

4.6.3.1 Wide-string numeric conversion functions P R s L LT 24

4.6.3.2 Wide-string copying functions . . . « « « « ¢« c 0 e 00000 R A LI 1 |

4.6.3.3 Wide-string concatenation functions . . . « « c « ¢ o c o e s v v s o v o oo oo oo 27

4.6.3.4 Wide-string comparison functionscc0ccoco0eee cesesees 28

4.6.3.5 Wide-stringsearchfunctionscc0eeeeeeceoocecccas 29

4.6.3.6 Wide-character arrayfunctions R e SR S 31

464 Thewcsttimefunctioncc000coeeeococoes sl e o o snerloraliet sitoliO

4.6.5 Extended multibyte and wide-character conversion utilities 5 ot

4.6.5.1 Single-byte wide-character conversion functions e

4,652 Thembsinit function. . . . v « e o e oo e oo oeeoeos St Jeuen oo 34

4.6.5.3 Restartable multibyte/wide-character conversion functions 34

4.6.5.4 Restartable multibyte/wide-string conversion functions cxnwenn I

4.7 Future library directions P Ly A PR Sl vers Sae gt e v 37

4.7.1 Wide-character classification and mapping utilities <wctype)« AN R W B ¥ 37

4.72 Extended multibyte and wide-character utilities <wchar.h>. 37

Annex A: Library summary (informative) R T I S ST 39

Annex B: Rationale (informative) . . « « « « o ¢« o s o s 00 o0t oo oeoccecscascscsssdl

Indexig it nes oo vk st o sl e, St e sl s sl b e S i e it e 53

SC22/WG14/N325 i

»_
P o

5

V4

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Foreword
[to be supplied by ISO Secretariat]

i SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Introduction

This document is the first amendment to the International Standard ISO/IEC 9899:1990, Programming
Language — C. Although its purpose is to modify the base standard, this first amendment has been written,
for the greater part, as a stand-alone document — one that need not be read side-by-side with the base standard.

This first amendment primarily consists of a set of library extensions that provide a complete and consistent
set of utilities for application programming using multibyte and wide characters. It also contains extensions
that provide alternate spellings for certain tokens.

The base standard deliberately chose not to include a complete multibyte and wide-character library. Instead,
it defined just enough support to provide a firm foundation, both in the library and language proper, on which
implementations and programming expertise could grow. Vendors did implement such extensions; this first
amendment reflects the studied and careful inclusion of the best of today’s existing art in this area.

The base standard also chose to provide only minimal support for writing C source code in character sets
that redefine some of the punctuation characters, such as national variants of ISO 646. The alternate spellings
provided here can be used to write many (but not all) tokens that are less readable when expressed in terms of

trigraphs.

This first amendment to ISO/IEC 9899:1990 is divided into three major subdivisions:

— those additions and changes that affect the preliminary subdivision of ISO/IEC 9899:1990 (clauses 1

through 4);

— those additions and changes that affect the language syntax, constraints, and semantics (ISO/IEC 9899:1990

clause 6);

— those additions and changes that affect library facilities (ISO/IEC 9899:1990 clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are provided
to emphasize consequences of the rules described in that subclause or elsewhere in this first amendment.
References are used to refer both to the base standard and to related subclauses within this document. These
two can be distinguished either by context or are labeled as referring to the base standard (as above). Annex A
summarizes the contents of this firstamendment. Annex B provides arationale. This introduction, the examples,
the footnotes, the background, the references, the annexes, and the index do not form part of this first
amendment.

SC22/WG14/N325 i

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

iv SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Information Processing — Programming Languages C —

AMENDMENT 1

1 Scope
This amendment defines extensions to ISO/IEC 9899:1990 that provide a more complete set of multibyte
and wide-character utilities, as well as alternative spellings for certain tokens. Use of these features can help
promote international portability of C programs.
This amendment specifies extensions that affect various clauses of ISO/IEC 9899:1990:
— To the compliance clause (clause 4), the additional header <is0646 .h> is provided by both freestanding
and hosted implementations.
— To the language clause (clause 6), six additional tokens are accepted.
— To the library clause (clause 7), new capabilities are specified for the existing formatted input/output
functions (7.9.6).
— To the library clause (clause 7), the additional header <wctype . h> is provided, which defines a macro,
several types, and many functions, including:
o wide-character testing functions, iswalnum for example;
o extensible wide-character classification functions, wetype and iswctype;
e wide-character case-mapping functions, towlower and towupper;
o extensible wide-character case-mapping functions, wet rans and towctrans.

— To the library clause (clause 7), the additional header <wchar.h> is provided, which defines several
macros, several types, and many functions, including:

e formatted wide-character input/output functions, fwprint £ for example;

o wide-character input/output functions, £getwc for example;

e wide-string numeric conversion functions, westod for example;

o wide-string general utility functions, wescpy for example;

¢ a wide-string time conversion function, wes £t ime;

o restartable multibyte/wide-character conversion functions, mbrtowe for example;

o restartable multibyte/wide-string conversion functions, mbsrtowcs and wesrtombs.

2 Compliance

— Extensions to clause 4 —
The description is adjusted so that the standard header <is0646 . h> is included in the list of headers that
must be provided by both freestanding and hosted implementations.

Forward References: alternate spellings <is0646 .h> (4.4).

3 Language

Subclauses 6.1.5 and 6.1.6 of ISO/IEC 9899:1990 are adjusted to include the following six additional tokens.
In all aspects of the language, these six tokens

&3 el <> el B
behave, respectively, the same as these existing six tokens
ol { }O# #4
except for their spelling.?

1) 'g:eu:dl [m‘;:d.« behave differently when “stringized” (see ISO/IEC 9899:1990 subclause 6.8.3.2), but can otherwise be freely

SC22/WG14/N325 : 1

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

3.1 Operators
— Extensions to 6.1.5 —
Syntax
operator: also one of
S . TR 7 H
Constraints 2 gl :

The operators [1, (), and ? : (independent of spelling) shall occur in pairs, possibly separated.by
expressions. The operators # and ## (also spelled % : and % : % :, respectively) shall occur in macro-defining
preprocessing directives only.

3.2 Punctuators

— Extensions to 6.1.6 —
Syntax
punctuator: also one of
<: D> <% D &

Constraints

The punctuators [], (), and { } (independent of spelling) shall occur (after translation phase 4) in pairs,
possibly separated by expressions, declarations, or statements. The punctuator # (also spelled % :) shall occur
in preprocessing directives only.
3.3 Version macro

Subclause 6.8.8 is adjusted to include the following macro name defined by the implementation:

__STDC_VERSION _

which expands to the decimal constant 1994 09L, intended to indicate an implementation conforming to this
amendment.

4 Library :
Various portions of clause 7 of ISO/IEC 9899:1990 are adjusted to include the following specifications.

Each subclause to be extended usually has a correspondingly titled subclause in this portion of this amendment.
The identifiers with external linkage declared in either <wetype . h>or <wchar . h> which are not already

reserved as identifiers with external linkage by ISO/IEC 9899:1990 are reserved for use as identifiers with

external linkage only if at least one inclusion of either <wetype . h> or <wchar . h> occurs in one or more
of the translation units that constitute the program.?

4.1 Definitions of terms

— Extensions to 7.1.1 —

A wide character is a code value (a binary encoded integer) of an object of type wchaz_t that corresponds
to a member of the extended character set.®

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including the first null wide
character. A pointer to a wide string is a pointer to its initial (lowest addressed) wide character. The length of
a wide string is the number of wide characters preceding the null wide character and the value of a wide string
is the sequence of code values of the contained wide characters, in order.

2) This behavior differs from those identifiers with external linkage associated with the headers listed in and referenced by ISO/IEC
9899:1990 subclauses 7.1.2 and 7.1.3, which are always reserved. Note that including either of these headers in a translation unit will
affect other translation units in the same program, even though they do not include either header.

3) An equivalent definition can be found in subclause 6.1.3.4 of ISO/IEC 9899:1990.

2 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

A shift sequence is a contiguous sequence of bytes within a multibyte string that causes a changg in sl}ift
state. (See ISO/IEC 9899:1990 subclause 5.2.1.2.) A shift sequences shall not have a corresponding wide
character; it is instead taken to be an adjunct to an adjacent multibyte character.®

4.2 Standard headers

— Extensions to 7.1.2 —
The list of standard headers is adjusted to include three new standard headers, <is0646.h>,
<wctype .h>, and <wchazr.h>.

4.3 Errors <errno.h>

— Extensions to 7.1.4 —
The list of macros defined in <erzrmno .h> is adjusted to include a new macro, EILSEQ.

4.4 Alternative spellings <iso646.h>
The header <iso 646 . h> defines the following eleven macros (on the left) that expand to the correspond-
ing tokens (on the right):
and &&
and _eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or I
or_eq |=
xor [
xor_eq ‘=

4.5 Wide-character classification and mapping utilities <wctype .h>

4.5.1 Introduction
The header <wctype . h> declares three data types, one macro, and many functions.®
The types declared are
wint_t
which is an integral type unchanged by integral promotions that can hold any value corresponding to members

of the-extended character set, as well as at least one value that does not correspond to any member of the
extended character set (See WEOF below).®

wctrans t
which is a scalar type that can hold values which represent locale-specific character mappings, and
wctype t
which is a scalar type that can hold values which represent locale-specific character classifications.
The macro defined is
WEOF

which expands to a constant expression of type wint_t whose value does not correspond to any member of
the extended character set.” It is accepted (and returned) by several functions in this subclause to indicate
end-of-file, thatis, no more input from a stream. It is also used as a wide-character value that does not correspond
to any member of the extended character set.

4) For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN MAX must thus be large enough to count all the bytes in
any complete multibyte character plus at least one adjacent shift sequence of maximum length. Whether these counts provide for more
than one shift sequence is the implementation’s choice.

5) See “future library directions” (4.7.1).

6) wchar_t and wint_t can be the same integral type.

7) The value of the macro WEOF may differ from that of EOF and need not be negative.

SC22/WG14/N325 3

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

The functions declared are grouped as follows:
— Functions that provide wide-character classification;
— Extensible functions that provide wide-character classification;
— Functions that provide wide-character case mapping;
— Extensible functions that provide wide-character mapping.

For all functions described in this subclause that accept an argument of type wint_t, the value shall be
representable as a wchax_t or shall equal the value of the macro WEOF'. If this argument has any other value,
the behavior is undefined.

The behavior of these functions is affected by the LC_CTYPE category of the current locale.

4.5.2 Wide-character classification utilities
The header <wetype . h> declares several functions useful for classifying wide characters.

The term printing wide character refers to a member of an implementation-defined set of wide characters,
each of which occupies at least one printing position on a display device. The term control wide character
refers to a member of an implementation-defined set of wide characters that are not printing wide characters.

4.5.2.1 Wide-character classification functions

The functions in this subclause return nonzero (true) if and only if the value of the argument we conforms
to that in the description of the function.

Except for the iswgraph and iswpunct functions with respect to printing white-space wide characters
other than L’ ‘, each of the following eleven functions returns true for each wide character that corresponds
(as if by a call to the wetob function) to a character (byte) for which the respectively matching character
testing function from ISO/IEC 9899:1990 subclause 7.3.1 returns true.®

Forward References: the wetob function (4.6.5.1.2).
4.5.2.1.1 The iswalnum function

Synopsis
#include <wctype.h>
int iswalnum(wint_t wc);
Description
The iswalnum function tests for any wide character for which iswalpha or iswdigit is true.

4.5.2.1.2 The iswalpha function

Synopsis
#include <wctype.h>
int iswalpha(wint_t wc);
Description
The iswalpha function tests for any wide character for which iswupper or iswlower is true, or any
wide character that is one of an implementation-defined set of wide characters for which none of iswentrl,
iswdigit, iswpunct, or iswspace is true.

4.5.2.1.3 The iswentrl function

Synopsis
#include <wctype.h>
int iswentrl(wint_t we):
Description
The iswentxl function tests for any control wide character.

8) For example, if the expression 1 salpha (wctob (we)) evaluates to true, then the call iswalpha (wc) must also retum true. But,
if the expression 1sgraph (wctob (wc)) evaluates to true (which cannot occur for we == L’ ’ of course), then either
iswgraph (wc) oriswprint (wc) && iswspace (wc) must be true, but not both. g

4 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

4.5.2.1.4 The iswdigit function

Synopsis
#include <wctype.h>
int iswdigit (wint_t wc);
Description
The iswdigit function tests for any wide character that corresponds to a decimal-digit character (as
defined in ISO/IEC 9899:1990 subclause 5.2.1). ¥

4.5.2.1.5 The iswgraph function

Synopsis
#include <wctype.h>
int iswgraph(wint_t wc):
Description
The iswgraph function tests for any wide character for which iswprint is true and iswspace is
false.

4.5.2.1.6 The iswlower function

Synopsis
#include <wctype.h>
int iswlower (wint_t wc);
Description
The iswlower function tests for any wide character that corresponds to a lowercase letter or is one of an
implementation-defined set of wide characters for which none of iswentrl, iswdigit, iswpunct, or
iswspace is true.

4.5.2.1.7 The iswprint function

Synopsis
#include <wctype.h>
int iswprint (wint_t wc);
Description
The iswpzrint function tests for any printing wide character.

4.5.2.1.8 The iswpunct function

Synopsis
#include <wctype.h>
int iswpunct (wint_t wc);
Description
The iswpunct function tests for any printing wide character that is one of an implementation-defined set
of wide characters for which neither iswspace nor iswalnum is true.

4.5.2.1.9 The iswspace function

Synopsis
#include <wctype.h>
int iswspace(wint_t wc);
Description
The iswspace function tests for any wide character that corresponds to an implementation-defined set of
wide characters for which iswalnum is false.

9) Note that the behavior of the 1 swgraph and 1 swpunct functions may differ from their matching functions in ISO/IEC 9899:1990
subclause 7.3.1 with respect to printing white space basic execution characters otherthan * ',

SC22/WG14/N325 5

2

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

4.5.2.1.10 The iswupper function

Synopsis
#include <wctype.h>
int iswupper (wint_t wc);
Description
The iswuppex function tests for any wide character that corresponds to an uppercase letter or is one of
an implementation-defined set of wide characters for which none of iswentrl, iswdigit, iswpunct,
or iswspace is true.

4.5.2.1.11 The iswxdigit function

Synopsis
#include <wctype.h>
int iswxdigit (wint_t wc);
Description
The iswxdigit function tests for any wide character that corresponds to a hexadecimal-digit character
(as defined in ISO/IEC 9899:1990 subclause 6.1.3.2).

4.5.2.2 Extensible wide-character classification functions

The functions wetype and iswctype provide extensible wide-character classification as well as testing
equivalent to that performed by the functions described in the previous subclause (4.5.2.1).

4.5.2.2.1 The wctype function

Synopsis
#include <wctype.h>
wctype t wctype(const char *property):
Description
The wetype function constructs a value with type wetype_t that describes a class of wide characters
identified by the string argument, property.
The eleven strings listed in the description of the iswctype function shall be valid in all locales as
property arguments to the wetype function.

Returns

If property identifies a valid class of wide characters according to the LC_ CTYPE category of the current
locale, the wetype function returns a nonzero value that is valid as the second argument to the iswctype
function; otherwise, it returns zero.

4.5.2.2.2 The iswctype function

Synopsis
#include <wctype.h>
int iswctype (wint_t wc, wctype t desc):;
Description
The iswctype function determines whether the wide character we has the property described by desc.
The current setting of the LC_CTYPE category shall be the same as during the call to wetype that returned
the value desc.
Each of the following eleven expressions has a truth-value equivalent to the call to the wide-character testing
function (4.5.2.1) in the comment that follows the expression:

iswctype (wc, wctype("alnum")) /* iswalnum(wc) */
iswctype (wc, wctype("alpha")) /* iswalpha(wc) */
iswctype (wc, wctype ("cntzrl")) /* iswentrl(we) */

iswctype (wc, wctype("digit")) /* iswdigit (wc) */
iswctype (wc, wctype ("graph")) /* iswgraph (wc) */

6 | SC22/WG14/N325

/2=

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

iswctype (wc, wctype ("lower")) /* iswlower (wc) */
iswctype (wc, wctype ("print")) /* iswprint (wec) */
iswctype (wc, wctype ("punct")) /* iswpunct (wc) */

iswctype (wc, wctype ("space")) /* iswspace(wc) */
iswctype (wc, wctype ("upper")) /* iswupper (wc) */
iswctype (wc, wctype ("xdigit")) /* iswxdigit(wc) */

Returns
The iswctype function returns nonzero (true) if and only if the value of the wide character we has the
property described by desc.

4.5.3 Wide-character mapping utilities
The header <wctype . h> declares several functions useful for mapping wide characters.

4.5.3.1 Wide-character case-mapping functions
4.5.3.1.1 The towlower function

Synopsis
#include <wctype.h>
wint_t towlower(wint_t wc)’
Description
The towlowexr function converts an uppercase letter to the corresponding lowercase letter.
Returns
If the argument is a wide character for which i swupper is true and there is a corresponding wide character
for which iswlower is true, the towlowex function returns the corresponding wide character; otherwise,
the argument is returned unchanged.

4.5.3.1.2 The towupper function

Synopsis
#include <wctype.h>
wint_t towupper(wint_t wc);
Description
- The towupper function converts a lowercase letter to the corresponding uppercase letter.

Returns

If the argument is a wide character for which i swlower is true and there is a corresponding wide character
for which iswupper is true, the towupper function returns the corresponding wide character; otherwise,
the argument is returned unchanged.

4.5.3.2 Extensible wide-character mapping functions

The functions wetrans and towctrans provide extensible wide-character mapping as well as case
mapping equivalent to that performed by the functions described in the previous subclause (4.5.3.1).

4.5.3.2.1 The wetrans function

Synopsis
#include <wctype.h>
wctrans_t wctrans(const char *property)
Description
The wet rans function constructs a value with type wct rans_t that describes a mapping between wide
characters identified by the string argument, property.
The two strings listed in the description of the towctrans function shall be valid in all locales as
property arguments to the wet rans function.

SC22/WG14/N325 7

/) J

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Returns

If property identifies a valid mapping of wide characters according to the LC_CTYPE category of the
current locale, the wetrans function returns a nonzero value that is valid as the second argument to the
towct rans function; otherwise, it returns zero.

4.5.3.2.2 The towctrans function

Synopsis
#include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

Description ’

The towct rans function maps the wide character we using the mapping described by desc. The current
setting of the LC_CTYPE category shall be the same as during the call to towct rans that returned the value
desc.

Each of the following two expressions behaves the same as the call to the wide-character case-mapping
function (4.5.3.1) in the comment that follows the expression:

towctrans (wc, wctrans ("tolower")) /* towlower (wc) */
towctrans (wc, wctrans ("toupper")) /* towupper (wc) */

Returns
The towctrans function returns the mapped value of we using the mapping described by desc.

4.6 Extended multibyte and wide-character utilities <wchar .h>

4.6.1 Introduction
The header <wchar . h> declares four data types, one tag, four macros, and many functions.!®
The types declared are wchar_t and size_t (both described in ISO/IEC 9899:1990 subclause 7.1.6),
mbstate_t

which is a nonarray object type that can hold the conversion state information necessary to convert between
sequences of multibyte characters and wide characters, and

wint_t
described in subclause 4.5.1.

The tag tm is declared as naming an incomplete structure type, the contents of which are described in
ISO/IEC 9899:1990 subclause 7.12.1.

The macros defined are NULL (described in ISO/IEC 9899:1990 subclause 7.1.6),
WCHAR MAX
which is the maximum value representable by an object of type wchar_t,!
WCHAR_MIN
which is the minimum value representable by an object of type wchar_t, and
WEOF
described in subclause 4.5.2.
The functions declared are grouped as follows:
— Functions that perform input and output of wide characters, or multibyte characters, or both;
— Functions that provide wide-string numeric conversion;
— Functions that perform general wide-string manipulation;
— A function for wide-string date and time conversion; and

10) See “future library directions” (4.7.1).
11) The values WCHAR MAX and WCHAR_MIN do not necessarily correspond to members of the extended character set.

8 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

— Functions that provide extended capabilities for conversion between multibyte and wide-character se-
quences.
Unless explicitly stated otherwise, if the execution of a function described in this subclause causes copying
to take place between objects that overlap, the behavior is undefined.

4.6.2 Input/output

— Extensions to 7.9.1 —

The header <wchar . h> declares a number of functions useful for wide-character input and output.

The wide-character input/output functions described in this subclause provide operations analogous to most
of those described in ISO/IEC 9899:1990 subclause 7.9, except that the fundamental units internal to the
program are wide characters. The external representation (in the file) is a sequence of “generalized” multibyte
characters, as described further in subclause 4.6.2.2, below.

The input/output functions described here and in ISO/IEC 9899:1990 are given the following collective
terms:

— The wide-character input functions — those functions described in this subclause that perform input into
wide characters and wide strings: £getwe, fgetws, getwc, getwchar, fwscanf£, and wscanf.

— The wide-character output functions — those functions described in this subclause that perform output
from wide characters and wide strings: £putwc, £putws, putwe, putwchar, fwprint £, wprintf,
viwprint£, and vwprint£.

— The wide-character input/output functions — the union of the ungetwc function, the wide-character input
functions, and the wide-character output functions.

— The byte inputioutput functions — the ungetc function and the input/output functions described in
ISO/IEC 9899:1990 subclause 7.9: £getc, £gets, fprintf, fputc, fputs, fread, £scanf,
fwrite, getc, getchar, gets, printf, putc, putchar, puts, scanf, vfprint£, and
vprintf.

4.6.2.1 Streams

— Extensions to 7.9.2 —

The definition of a stream is adjusted to include an orientation for both text and binary streams. After a
stream is associated with an external file, but before any operations are performed on it, the stream is without
orientation. Once a wide-character input/output function has been applied to a stream without orientation, the
stream becomes wide-oriented. Similarly, once a byte input/output function has been applied to a stream
without orientation, the stream becomes byte-oriented. Only a call to the £reopen function or the fwide
function can otherwise alter the orientation of a stream. (A successful call to £reopen removes any
orientation.)

Byte input/output functions shall not be applied to a wide-oriented stream; and wide-character input/output
functions shall not be applied to a byte-oriented stream. The remaining stream operations do not affect and are
not affected by a stream’s orientation, except for the following additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both text and binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that leaves the file position
indicator prior to the end-of-file, a wide-character output function can overwrite a partial multibyte
character; any file contents beyond the byte(s) written are henceforth undefined.

Each wide-oriented stream has an associated mbstate_t object that stores the current parse state of the
stream. A successful call to £getpos stores a representation of the value of this mbstate_t object as part
of the value of the £pos_t object. A later successful call to £setpos using the same stored fpos_t value
restores the value of the associated mbstate_t object as well as the position within the controlled stream.

'SC22/WG14/N325 9

)

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Returns

If property identifies a valid mapping of wide characters according to the LC_CTYPE category of the
current locale, the wetrans function returns a nonzero value that is valid as the second argument to the
towct rans function; otherwise, it returns zero.

4.5.3.2.2 The towctrans function

Synopsis
#include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

Description ’

The towct rans function maps the wide character we using the mapping described by desc. The current
setting of the LC_CTYPE category shall be the same as during the call to towct rans that returned the value
desc.

Each of the following two expressions behaves the same as the call to the wide-character case-mapping
function (4.5.3.1) in the comment that follows the expression:

towctrans (wc, wctrans ("tolower")) /* towlower (wc) */
towctrans (wc, wctrans ("toupper")) /* towupper (wc) */

Returns
The towctrans function returns the mapped value of we using the mapping described by desc.

4.6 Extended multibyte and wide-character utilities <wchar .h>

4.6.1 Introduction
The header <wchar . h> declares four data types, one tag, four macros, and many functions.!®
The types declared are wchar_t and size_t (both described in ISO/IEC 9899:1990 subclause 7.1.6),
mbstate_t

which is a nonarray object type that can hold the conversion state information necessary to convert between
sequences of multibyte characters and wide characters, and

wint_t
described in subclause 4.5.1.

The tag tm is declared as naming an incomplete structure type, the contents of which are described in
ISO/IEC 9899:1990 subclause 7.12.1.

The macros defined are NULL (described in ISO/IEC 9899:1990 subclause 7.1.6),
WCHAR MAX
which is the maximum value representable by an object of type wchar_t,!
WCHAR_MIN
which is the minimum value representable by an object of type wchar_t, and
WEOF
described in subclause 4.5.2.
The functions declared are grouped as follows:
— Functions that perform input and output of wide characters, or multibyte characters, or both;
— Functions that provide wide-string numeric conversion;
— Functions that perform general wide-string manipulation;
— A function for wide-string date and time conversion; and

10) See “future library directions” (4.7.1).
11) The values WCHAR MAX and WCHAR_MIN do not necessarily correspond to members of the extended character set.

8 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

If an 1 qualifier is present, the argument shall be a pointer to an array of wchar_t type. Wide characters
from the array are converted to multibyte characters (each as if by a call to the wexrtomb function, with
the conversion state described by anmbstate_t object initialized to zero before the first wide character
is converted) up to and including a terminating null wide character. The resulting multibyte characters
are written up to (but not including) the terminating null character (byte). If no precision is specified, the
array shall contain a null wide character. If a precision is specified, no more than that many characters
(bytes) are written (including shift sequences, if any), and the array shall contain a null wide character
if, to equal the multibyte character sequence length given by the precision, the function would need to
access a wide character one past the end of the array. In no case is a partial multibyte character written.!

The above extension is applicable to all the formatted output functions specified in ISO/IEC 9899:1990.

Examples

The examples are adjusted to include the following:

In this example, multibyte characters do not have a state-dependent encoding, and the multibyte members
of the extended character set each consist of two bytes, the first of which is denoted here by aDOand the second
by an uppercase letter.

Given the following wide string with length seven,

static wchar t wstr([] = L"OXOYabcO2[W";
the seven calls

fprintf (stdout, "|1234567890123|\n");
fprintf (stdout, "|%131ls|\n", wstr);
fprintf (stdout, "|%-13.91s|\n", wstr):;
fprintf(stdout, "|%$13.101s|\n", wstr);
fprintf (stdout, "|%$13.11s|\n", wstr):;
fprintf (stdout, "|%13.151s|\n", &wstr[2]);
fprintf (stdout, "|%13lc|\n", wstr[5]):

will print the following seven lines:

11234567890123|
| OXOYabcZOW|
|OXOYabcz |
| OXOyYabcZ |
| OXOYabcOzOW |
| abclZIW |
I Dz|

Forward References: conversion state (4.6.5), the wertomb function (4.6.5.3.3).

4.6.2.3.2 The £scanf function

— Extensions to 7.9.6.2 —
Adjust the description of the qualifiers h, 1, and L to include the additional sentences:
The conversion specifiers ¢, s, and [shall be preceded by 1 if the corresponding argument is a pointer
to wchar_t rather than a pointer to a character type.
Replace the definition of directive failure (page 135, lines 34-36, beginning with, “If the length of the input
item is zero...”) with:
If the length of the input item is zero, the execution of the directive fails; this condition is a matching
failure unless end-of-file, an encoding error, or a read error prevented input from the stream, in which
case it is an input failure.
Replace the description of the s conversion specifier with:
s Matches a sequence of non-white-space characters.') If no 1 qualifier is present, the corresponding
argument shall be a pointer to a character array large enough to accept the sequence and a terminating
null character, which will be added automatically.

13) Redundant shift sequences may result if multibyte characters have a state-dependent encoding.

SC22/WG14/N325 11

Iz

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

If an 1 qualifier is present, the input shall be a sequence of multibyte characters that begins in the initial
shift state. Each multibyte character is converted to a wide character as if by a call to the mbxrtowec
function, with the conversion state described by an mbstate_t object initialized to zero before the
first multibyte character is converted. The corresponding argument shall be a pointer to an array of
wchar_t large enough to accept the sequence and the terminating null wide character, which will be
added automatically.

Replace the first two sentences of the description of the [conversion specifier with:

[Matches a nonempty sequence of characters from a set of expected characters (the scanset). If no 1
qualifier is present, the corresponding argument shall be a pointer to a character array large enough to
accept the sequence and a terminating null character, which will be added automatically.

If an 1 qualifier is present, the input shall be a sequence of multibyte characters that begins in the initial
shift state. Each multibyte character is converted to a wide character as if by a call to the mbrtowc
function, with the conversion state described by an mbstate_t object initialized to zero before the
first multibyte character is converted. The corresponding argument shall be a pointer to an array of
wchar_t large enough to accept the sequence and the terminating null wide character, which will be
added automatically.

Replace the description of the ¢ conversion specifier with:

¢ Matches asequence of characters of the number specified by the field width (1 if no field width is present
in the directive). If no 1 qualifier is present, the corresponding argument shall be a pointer to a character
array large enough to accept the sequence. No null character is added.
If an 1 qualifier is present, the input shall be a sequence of multibyte characters that begins in the initial
shift state. Each multibyte character in the sequence is converted to a wide character as if by a call to the
mbrtowe function, with the conversion state described by an mbstate_t object initialized to zero
before the first multibyte character is converted. The corresponding argument shall be a pointer to the
initial element of an array of wehax_t large enough to accept the resulting sequence of wide characters.
No null wide character is added.

The above extension is applicable to all the formatted input functions specified in ISO/IEC 9899:1990.

Examples

The examples are adjusted to include the following:

In these examples, multibyte characters do have a state-dependent encoding, and multibyte members of the
extended character set consist of two bytes, the first of which is denoted here by a O and the second by an
uppercase letter, but are only recognized as such when in the alternate shift state. The shift sequences are
denoted by T and {, in which the first causes entry into the alternate shift state.

1. After the call:

#include <stdio.h>

/*...%/

char str[50];

fscanf (stdin, "a%$s", str):
with the input line:

aTmoy! be

str will contain ToxOI¥d \ 0 assuming that none of the bytes of the shift sequences (or of the multibyte
characters, in the more general case) appears to be a single-byte white-space character.

2. Incontrast, after the call:

#include <stdio.h>
#include <stddef.h>
/*...%/

14) No special provisions are made for multibyte characters in the matching rules used by any of the conversion specifiers s, [, or ¢ —

the extent of the input field is still determined on a byte-by-byte basis. The resulting field must i
e s i) i byte-by-by ting field must nevertheless be a sequence of multibyte

12 SC22/WG14/N325

)&

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

— An optional precision that gives the minimum number of digits to appear for the 4, i, o, u, x, and X
conversions, the number of digits to appear after the decimal-point character for e, E, and £ conversions,
the maximum number of significant digits for the g and G conversions, or the maximum number of wide
characters to be written from a string in s conversion. The precision takes the form of a period (.) followed
either by an asterisk * (described later) or by an optional decimal integer; if only the period is specified,
the precision is taken as zero. If a precision appears with any other conversion specifier, the behavior is
undefined.

— An optional 1 (ell) specifying that a following ¢ conversion specifier applies to a wint_t argument; an
optional 1 specifying that a following s conversion specifier applies to a pointer to a wchaxr_t argument;
an optional h specifying that a following d, i, o, u, x, or X conversion specifier applies to a short int
orunsigned short int argument (the argument is promoted according to the integral promotions,
and its value is converted to short int or unsigned short int before printing); an optional h
specifying that a following n conversion specifier applies to a pointer to a short int argument; an
optional 1 specifying that a following d, i, o, u, x, or X conversion specifier applies to a long int or
unsigned long int argument;anoptional 1 specifying that a following n conversion specifier applies
toapointertoa long int argument; or an optional L specifying that afollowing e, E, £, g, or G conversion
specifier appliestoa long double argument. If an h, 1, or L appears with any other conversion specifier,
the behavior is undefined.

— A wide character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an int
argument supplies the field width or precision. The arguments specifying field width, or precision, or both,
shall appear (in that order) before the argument (if any) to be converted. A negative field width argument is
taken as a - flag followed by a positive field width. A negative precision argument is taken as if the precision
were omitted.

The flag wide characters and their meanings are
= The result of the conversion is left-justified within the field. (It is right-justified if this flag is not

specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a sign only
when a negative value is converted if this flag is not specified.)

space If the first wide character of a signed conversion is not a sign, or if a signed conversion results in no
wide characters, a space is prefixed to the result. If the space and + flags both appear, the space flag is
ignored. .

Theresultis to be converted to an “alternate form.” For o conversion, it increases the precision to force
the first digit of the result to be a zero, if necessary. For x (or X) conversion, a nonzero result has 0x (or
0X) prefixed to it. For e, E, £, g, and G conversions, the result always contains a decimal-point wide
character, even if no digits follow it. (Normally, a decimal-point wide character appears in the result of
these conversions only if a digit follows it.) For g and G conversions, trailing zeros are not be removed
from the result. For other conversions, the behavior is undefined.

0 Ford, i, o,u,xX,e,E, £, g, and G conversions, leading zeros (following any indication of sign or
base) are used to pad to the field width; no space padding is performed. If the 0 and - flags both appear,
the 0 flag is ignored. Ford, i, o, u, x, and X conversions, if a precision is specified, the 0 flag is ignored.
For other conversions, the behavior is undefined.

The conversion specifiers and their meanings are
d,i The int argument is converted to signed decimal in the style /~]dddd. The precision specifies the

minimum number of digits to appear; if the value being converted can be represented in fewer digits, it
is expanded with leading zeros. The default precision is 1. The result of converting a zero value with a
precision of zero is no wide characters.

14 SC22/WG14/N325

>0

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

wchﬁr t wstx([50];

fscanf (stdin, "a%ls", wstr);
with the same input line, wst x will contain the two wide characters that correspond to [IX and O0Y and
a terminating null wide character.

3. However, the call:

#include <stdio.h>

#include <stddef.h>

/*...%/

wchar t wstr[50];

facnnf(std:.n, “aTE!xl«%ls", wstr);

with the same input line will return zero due to a matching failure against the | sequence in the format
string.
4. Assuming that the first byte of the multibyte character OOX is the same as the first byte of the multibyte

character O, after the call:

#include <stdio.h>

#include <stddef.h>

/%...%/

wchar t wstr[50];

£scanf (stdin, "alOvlsls", wstr);

with the same input line, zero will again be returned, but stdin will be left with a partially consumed
multibyte character.

Forward References: conversion state (4.6.5), the wertomb function (4.6.5.3.3).

4.6.2.4 Formatted wide-character input/output functions
4.6.2.4.1 The fwprintf function

Synopsis
#include <stdio.h>
#include <wchar.h>
int fwprintf (FILE *stream, const wchar_ t *format, .. 5 B

Description

The £wprint£ function writes output to the stream pointed to by stream, under control of the wide
string pointed to by format that specifies how subsequent arguments are converted for output. If there are
insufficient arguments for the format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated (as always) but are otherwise 1gnored The £wprint £ function
returns when the end of the format string is encountered.

The format is composed of zero or more directives: ordinary wide characters (not %), and conversion
specifications. The processing of conversion specifications is as if they were replaced in the format string by
wide-character strings that are each the result of fetching zero or more subsequent arguments and converting
them, if applicable, according to the corresponding conversion specifier. The expanded wide-character format
string is then written to the output stream.

Each conversion specification is introduced by the wide character %. After the %, the following appear in
sequence:

— Zero or more flags (in any order) that modxfy the meaning of the conversion specification.
— An optional minimum field width. If the converted value has fewer wide characters than the field width, it
is padded with spaces (by default) on the left (or right, if the left adjustment flag, described later, has been

given) to the field width. The field width takes the form of an asterisk * (described later) or a decimal
integer.!®

15) Note that 0 is taken as a flag, not as the beginning of a field width.

SC22/WG14/N325 13

49

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

o,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or

e,E

g.G

unsigned hexadecimal notation (x or X) in the style dddd; the letters abcde£ are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it is expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a precision of zero is no wide
characters.

The double argument is converted to decimal notation in the style / —]ddd.ddd, where the number of
digits after the decimal-point wide character is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is zero and the # flag is not specified, no decimal-point wide
character appears. If a decimal-point wide character appears, at least one digit appears before it. The
value is rounded to the appropriate number of digits.

The double argument is converted in the style []d.dddexdd, where there is one digit before the
decimal-point wide character (which is nonzero if the argument is nonzero) and the number of digits
after it is equal to the precision; if the precision is missing, it is taken as 6; if the precision is zero and
the # flag is not specified, no decimal-point wide character appears. The value is rounded to the
appropriate number of digits. The E conversion specifier produces a number with E instead of e
introducing the exponent. The exponent always contains at least two digits. If the value is zero, the
exponent is zero.

The double argument is converted in style £ or e (or in style E in the case of a G conversion specifier),
with the precision specifying the number of significant digits. If the precision is zero, it is taken as 1.
The style used depends on the value converted; style e (or E) is used only if the exponent resulting from
such a conversion is less than —4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional portion of the result; a decimal-point wide character appears only if it is followed by
a digit.

If no 1 qualifier is present, the int argument is converted to a wide character as if by calling btowc
and the resulting wide character is written. Otherwise, the wint_t argument is converted to wchar_t
and written.

If no 1 qualifier is present, the argument shall be a pointer to a character array containing a multibyte
sequence beginning in the initial shift state. Characters from the array are converted as if by repeated
calls to the mbrtowe function, with the conversion state described by anmbstate_t object initialized
to zero before the first multibyte character is converted, and written up to (but not including) the
terminating null wide character. If the precision is specified, no more than that many wide characters are
written. If the precision is not specified or is greater than the size of the converted array, the converted
array shall contain a null wide character.

If an 1 qualifier is present, the argument shall be a pointer to an array of wehaxr_t type. Wide characters
from the array are written up to (but not including) a terminating null wide character. If the precision is
specified, no more than that many wide characters are written. If the precision is not specified or is greater
than the size of the array, the array shall contain a null wide character.

The argument shall be a pointer to void. The value of the pointer is converted to a sequence of printable
wide characters, in an implementation-defined manner.

The argument shall be a pointer to an integer into which is written the number of wide characters written
to the output stream so far by this call to £wprint £. No argument is converted.

A % wide character is written. No argument is converted. The complete conversion specification shall
be $%.

If a conversion specification is invalid, the behavior is undefined.!®

If any argument is, or points to, a union.or an aggregate (except for an array of char type using s
conversion, an array of wchar_t type using $1s conversion, or a pointer using $p conversion), the behavior
is undefined.

16) See “future library directions” (4.7.1).

" SC22/WG14/N325 15

2/

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

In no case does a nonexistent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is expanded to contain the conversion result.

Returns
The £wpzrint £ function returns the number of wide characters transmitted, or a negative value if an output

error occurred.

Environmental limit
The minimum value for the maximum number of wide characters produced by any single conversion shall

be 509.

Example _
To print a date and time in the form “Sunday, July 3, 10:02” followed by = to five decimal places:

#include <math.h>
#include <stdio.h>
#include <wchar.h>
/*...%/
wchar t *weekday, *month; /* pointers to wide strings */
int day, hour, min;
fwprintf (stdout, L"%ls, %1ls %d, %.2d:%.2d\n",
weekday, month, day, hour, min);
fwprintf(stdout, L"pi = %.5£\n", 4 * atan(1.0));

Forward References: the bt owe function (4.6.5.1.1), the mbrtowe function (4.6.5.3.2).

4.6.2.4.2 The fwscanf function

Synopsis
#include <stdio.h>
#include <wchar.h>
int fwscanf (FILE *stream, const wchar t *format, ...);

Description

The £wscan£ function reads input from the stream pointed to by st ream, under control of the wide string
pointed to by format that specifies the admissible input sequences and how they are to be converted for
assignment, using subsequent arguments as pointers to the objects to receive the converted input. If there are
insufficient arguments for the format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated (as always) but are otherwise ignored.

The format is composed of zero or more directives: one or more white-space wide characters; an ordinary
wide character (neither % nor a white-space wide character); or a conversion specification. Each conversion
specification is introduced by a %. After the %, the following appear in sequence:

— An optional assignment-suppressing wide character *.

— An optional nonzero decimal integer that specifies the maximum field width (in wide characters).

— An optional h, 1 (ell), or L indicating the size of the receiving object. The conversion specifiers ¢, s, and
[shall be preceded by 1 if the corresponding argument is a pointer to wchar_t rather than a pointer to a
character type. The conversion specifiers d, i, and n shall be preceded by h if the corresponding argument
isa pointer to short int rather than a pointer to int, orby 1ifitisa pointer to long int. Similarly,
the conversion specifiers o, u, and x shall be preceded by h if the corresponding argument is a pointer to
unsigned short int ratherthanapointertounsigned int,orby 1ifitis apointer tounsigned
long int. Finally, the conversion specifiers e, £, and g shall be preceded by 1 if the corresponding
argument is a pointer to double rather than a pointer to £1oat, orby Lif itisa pointerto long double.

Ifan b, 1, or L appears with any other conversion specifier, the behavior is undefined.

— A wide character that specifies the type of conversion to be applied. The valid conversion specifiers are
described below.

16 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

The £wscanf£ function executes each directive of the format in turn. If a directive fails, as detailed below,
the fwscanf function returns. Failures are described as input failures (if an encoding error occurs or due to
the unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space wide character(s) is executed by reading input up to the first
non-white-space wide character (which remains unread), or until no more wide characters can be read.

A directive that is an ordinary wide character is executed by reading the next wide character of the stream.
If the wide character differs from the directive, the directive fails, and the differing and subsequent wide
characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as described below
for each specifier. A conversion specification is executed in the following steps:

Input white-space wide characters (as specified by the iswspace function) are skipped, unless the
specification includes a ¢ or n specifier.'”

An input item is read from the stream, unless the specification includes an n specifier. An input item is
defined as the longest sequence of input wide characters, not exceeding any specified field width, which is, or
is a prefix of, a matching sequence. The first wide character, if any, after the input item remains unread. If the
length of the input item is zero, the execution of the directive fails: this condition is a matching failure, unless
end-of-file, an encoding error, or a read error prevented input from the stream, in which case it is an input
failure.

Except in the case of a % specifier, the input item (or, in the case of a $n directive, the count of input wide
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a matching
sequence, the execution of the directive fails: this condition is a matching failure. Unless assignment
suppression was indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the format argument that has not already received a conversion result. If this object does
not have an appropriate type, or if the result of the conversion cannot be represented in the space provided, the
behavior is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the west o1 function with the value 10 for the base argument. The corresponding argument
shall be a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the subject sequence of
the westol function with the value 0 for the base argument. The corresponding argument shall be a
pointer to integer.

o Matches an optionally signed octal integer, whose format is the same as expected for the subject sequence
of the westoul function with the value 8 for the base argument. The corresponding argument shall
be a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the westoul function with the value 10 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected for the subject
sequence of the westoul function with the value 16 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

e, £, g Matches an optionally signed floating-point number, whose format is the same as expected for the
subject sequence of the westod function. The corresponding argument shall be a pointer to floating.

s Matches a sequence of non-white-space wide characters. If no 1 qualifier is present, characters from the
input field are converted as if by repeated calls to the wertomb function, with the conversion state
described by anmbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to a character array large enough to accept the sequence and
a terminating null character, which will be added automatically.

17) These white-space wide characters are not counted against a specified field width.

SC22/WG14/N325 17

23

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Otherwise, the corresponding argument shall be a pointer to the initial element of an array of wchar_t
type large enough to accept the sequence and a terminating null wide character, which will be added
automatically.

[Matches a nonempty sequence of wide characters from a set of expected characters (the scanset). If no
1 qualifier is present, characters from the input field are converted as if by repeated calls to the wertomb
function, with the conversion state described by an mbstate_t object initialized to zero before the
first wide character is converted. The corresponding argument shall be a pointer to a character array large
enough to accept the sequence and a terminating null character, which will be added automatically.

If an 1 qualifier is present, the corresponding argument shall be a pointer to the initial element of an
array of wchazr_t type large enough to accept the sequence and a terminating null wide character, which
will be added automatically.

The conversion specifier includes all subsequent wide characters in the format string, up to and
including the matching right bracket wide character (1). The wide characters between the brackets (the
scanlist) comprise the scanset, unless the wide character after the left bracket is a circumflex (), in
which case the scanset contains all wide characters that do not appear in the scanlist between the
circumflex and the right bracket. If the conversion specifier begins with [] or [“], the right bracket
wide character is in the scanlist and the next right bracket wide character is the matching right bracket
that ends the specification; otherwise the first right bracket wide character is the one that ends the
specification. If a - wide character is in the scanlist and is not the first, nor the second where the first
wide character is a 4, nor the last character, the behavior is implementation-defined.

¢ Matches a sequence of wide characters of the number specified by the field width (1 if no field width is
present in the directive). If no 1 qualifier is present, characters from the input field are converted as if
by repeated calls to the wertomb function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted. The corresponding argument shall
be a pointer to a character array large enough to accept the sequence. No null character is added.

If an 1 qualifier is present, the corresponding argument shall be a pointer to the initial element of an
array of wchar_t type large enough to accept the sequence. No null wide character is added.

p Matches an implementation-defined set of sequences, which should be the same as the set of sequences
that may be produced by the $p conversion of the fwprint £ function. The corresponding argument
shall be a pointer to a pointer to void. The interpretation of the input item is implementation-defined.
If the input item is a value converted earlier during the same program execution, the pointer that results
shall compare equal to that value; otherwise the behavior of the $p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to integer into which is to be
written the number of wide characters read from the input stream so far by this call to the fwscanf
function. Execution of a $n directive does not affect the assignment count returned at the completion of
execution of the £wscanf function.

% Matches a single %; no conversion or assignment occurs. The complete conversion specification shall
be $%

If a conversion specification is invalid, the behavior is undefined.!®

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e, g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any wide
characters matching the current directive have been read (other than leading white space, where permitted),
execution of the current directive terminates with an input failure; otherwise, unless execution of the current
directive is terminated with a matching failure, execution of the following directive (other than %n, if any) is
terminated with an input failure.

Trailing white space (including new-line wide characters) is left unread unless matched by a directive. The
success of literal matches and suppressed assignments is not directly determinable other than via the $n
directive.

18) See “future library directions” (4.7.1).

18 SC22/WG14/N325

24

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Returns
The £wscan£ function returns the value of the macro EOF if an input failure occurs before any conversion.

Otherwise, the £wscan£ function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

Examples
1. Thecall
#include <stdio.h>
#include <wchar.h>
/*...%/
int n, i; float x; wchar t name[50];
n = fwscanf (stdin, L"%d%f%ls", &i, &x, name);
with the input line:
25 54.32E-1 thompson
will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence
thompson\0.
2. Thecall
#include <stdio.h>
#include <wchar.h>
/%...%/
int i; float x; double y:
fwscanf (stdin, L"%2d%f%*d $1£f", &i, &x, &y):
with input:
56789 0123 56a72
will assign to i the value 56 and to x the value 789 . 0, will skip past 0123, and will assign to y the
value 56 . 0. The next wide character read from the input stream will be a.
Forward References: the westod function (4.6.3.1.1), the westol function (4.6.3.1.2), the westoul
function (4.6.3.1.3), the wertomb function (4.6.5.3.3).

4.6.2.4.3 The wprintf£ function

Synopsis
#include <wchar.h>
int wprintf(const wchar t *format, ...);
Description
The wprint £ function is equivalent to fwprint£ with the argument stdout interposed before the
arguments to wprint£.

Returns
The wprint £ function returns the number of wide characters transmitted, or a negative value if an output
error occurred.

4.6.2.4.4 The wscanf function

Synopsis
#include <wchar.h>
int wscanf(const wchar t *format, ...);
Description
The wscan£ function is equivalent to fwscanf with the argument stdin interposed before the
arguments to wscan€f.

SC22/WG14/N325 19

29

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Returns
The wscan £ function returns the value of the macro EOF if an input failure occurs before any conversion.

Otherwise, the wscan £ function returns the number of input items assigned, which can be fewer than provided
for, or even zero, in the event of an early matching failure.

4.6.2.4.5 The swprintf£ function

Synopsis

#include <wchar.h>

int swprintf(wchar_t *s, size t n, const wchar t *format, ...);
Description

The swprint £ function is equivalent to £wprint £, except that the argument s specifies an array of wide

characters into which the generated output is to be written, rather than written to a stream. No more than n
wide characters are written, including a terminating null wide character, which is always added (unless n is
Zero).

Returns
The swprint£ function returns the number of wide characters written in the array, not counting the
terminating null wide character, or a negative value if n or more wide characters were requested to be written.

4.6.2.4.6 The swscanf function

Synopsis
#include <wchar.h>
int swscanf(const wchar t *s, const wchar t *format, ...);

Description
The swscanf£ function is equivalent to £wscan£, except that the argument s specifies a wide string from

which the input is to be obtained, rather than from a stream. Reaching the end of the wide string is equivalent
to encountering end-of-file for the fwscan£ function.

Returns

The swscan£ function returns the value of the macro EOF if an input failure occurs before any conversion.
Otherwise, the swscan£ function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

4.6.2.4.7 The vEwprint£ function

Synopsis

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int vfwprintf (FILE *stream, const wchar t *format, va_list azg);
Description

The vEwprint £ function is equivalent to £wprint £, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_azrg calls). The
vEwprint £ function does not invoke the va_end macro.'”

Returns

The vEwprint £ function returns the number of wide characters transmitted, or a negative value if an
output error occurred.
Example

The following shows the use of the vEwprint £ function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

19) As the.fl:ld'aiom viwprintf, vawprintf, and vwprint£ invoke the va_arg macro, the value of arg after the retum is
unspecifi

20 SC22/WG14/N325

2£

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

#include <wchar.h>

void error (char *function name, wchar_t *format, ..)

{

va_list args;

va_start (args, format);

/* print out name of function causing error */
fwprintf (stderr, L"ERROR in %s: ", function name);
/* print out remainder of message *x/

vEwprintf (stderrz, format, args):

va_end (args);

}
4.6.2.4.8 The vwprint¢£ function

Synopsis
#include <stdarg.h>
#include <wchar.h> :
int vwprintf(const wchar_t *format, va_list arg);
Description
The vwprint £ functionis equivalenttowprint£, with the variable argument list replaced by arg, which
shall have been initialized by the va_start macro (and possibly subsequent va_axg calls). The vwprint £
function does not invoke the va_end macro.

Returns
The vwprint £ function returns the number of wide characters transmitted, or a negative value if an output
error occurred.

4.6.2.4.9 The vswprintf function

Synopsis

#include <stdarg.h>

#include <wchar.h>

int vswprintf(wchar_t *s, size t n, const wchar_ t *format,

va_list arg):;
Description
The vswpzrint £ function is equivalent to swprint £, with the variable argument list replaced by axzg,

which shall have been initialized by the va_start macro (and possibly subsequent va_axg calls). The
vswprint £ function does not invoke the va_end macro.

Returns
The vswprint£ function returns the number of wide characters written in the array, not counting the
terminating null wide character, or a negative value if n or more wide characters were requested to be generated.

4.6.2.5 Wide-character input/output functions
4.6.2.5.1 The £getwc function
Synopsis

#include <stdio.h>

#include <wchar.h>
wint_t fgetwc(FILE *stream);

Description
The £getwc function obtains the next wide character (if present) from the input stream pointed to by
st ream, and advances the associated file position indicator for the stream (if defined).

SC22/WG14/N325 21

2/

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Returns

The £getwc function returns the next wide character from the input stream pointed to by st ream If the
stream is at end-of-file, the end-of-file indicator for the stream is set and £getwc returns WEOF'. If a read error
occurs, the error indicator for the stream is set and £getwe returns WEOF. If an encoding error occurs
(including too few bytes), the value of the macro EILSEQ is stored in errno and £getwc retumns WEOF. 2

4.6.2.5.2 The £getws function

Synopsis

#include <stdio.h>

#include <wchar.h>

wchar_t *fgetws(wchar t *sg, int n, FILE *stream);
description

The £getws function reads at most one less than the number of wide characters specified by n from the

stream pointed to by st ream into the array pointed to by s. No additional wide characters are read after a
new-line wide character (which is retained) or after end-of-file. A null wide character is written immediately
after the last wide character read into the array.

Returns

The £getws function retums s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer is returned. If a read or
encoding error occurs during the operation, the array contents are indeterminate and a null pointer is returned.

4.6.2.5.3 The fputwc function

Synopsis

#include <stdio.h>

#include <wchar.h>

wint_t fputwc(wchar t ¢, FILE *stream);
Description

The £putwe function writes the wide character specified by ¢ to the output stream pointed to by st ream,

at the position indicated by the associated file position indicator for the stream (if defined), and advances the
indicator appropriately. If the file cannot support positioning requests, or if the stream was opened with append
mode, the character is appended to the output stream.

Returns

The £putwe function returns the wide character written. If a write error occurs, the error indicator for the
stream is set and £putwe returns WEOF'. If an encoding error occurs, the value of the macro EILSEQ is stored
in errno and £putwc returns WEOF.

4.6.2.5.4 The fputws function

Synopsis
#include <stdio.h>
#include <wchar.h>
int fputws (const wchar_t *s, FILE *stream);
Description
The £putws function writes the wide string pointed to by s to the stream pointed to by st ream. The
terminating null wide character is not written.

Returns

The £putws function returns EOF if a write or encoding error occurs; otherwise, it returns a nonnegative
value.

20) An end-of-file and a read error can be distinguished by use of the feof and ferror functions. i
b ety o e by . rro ons. Also, erzrno will be set to EILSEQ

22 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

4.6.2.5.5 The getwc function

Synopsis
#include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *stream):

Description
The getwec function is equivalent to £getwc, except that if it is implemented as a macro, it may evaluate
st zeam mare than once, so the argument should never be an expression with side effects.

Returns
The getwe function returns the next wide character from the input stream pointed to by st ream or WEOF.

4.6.2.5.6 The getwchar function

Synopsis
#include <wchar.h>
wint_t getwchar(void);
Description
The getwchar function is equivalent to getwc with the argument stdin.
Returns

The getwchar function returns the next wide character from the input stream pointed to by stdin or
WEOF.

4.6.2.5.7 The putwc function

Synopsis
#include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar t c, FILE *stream);
Description
The putwe function is equivalent to £putwe, except that if it is implemented as a macro, it may evaluate
stream more than once, so the argument should never be an expression with side effects.

Returns
The putwc function returns the wide character written or WEOF'.

4.6.2.5.8 The putwchar function

Synopsis
#include <wchar.h>
wint_t putwchar (wchar_t c);
Description
The putwchar function is equivalent to putwe with the second argument stdout.

Returns
The putwchar function returns the character written or WEOF'.

4.6.2.5.9 The ungetwc function

Synopsis
#include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t ¢, FILE *stream);

SC22/WG14/N325 23

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Description

The ungetwe function pushes the wide character specified by ¢ back onto the input stream pointed to by
stream. The pushed-back wide characters will be returned by subsequent reads on that stream in the reverse
order of their pushing. A successful intervening call (with the stream pointed to by st ream) toa file positioning
function (£seek, £setpos, or rewind) discards any pushed-back wide characters for the stream. The
external storage corresponding to the stream is unchanged.

One wide character of pushback is guaranteed, even if the call to the ungetwe function follows just after
a call to a formatted wide character input function (fwscan£ or wscanf£). If the ungetwe function is called
too many times on the same stream without an intervening read or file positioning operation on that stream,
the operation may fail.

If the value of c equals that of the macro WEOF', the operation fails and the input stream is unchanged.

A successful call to the ungetwe function clears the end-of-file indicator for the stream. The value of the
file position indicator for the stream after reading or discarding all pushed-back wide characters is the same as
it was before the wide characters were pushed back. For a text or binary stream, the value of its file position
indicator after a successful call to the ungetwc function is unspecified until all pushed-back wide characters
are read or discarded.

Returns
The ungetwe function returns the wide character pushed back, or WEOF if the operation fails.

4.6.2.5.10 The £wide function

Synopsis
#include <stdio.h>
#include <wchar.h>
int fwide(FILE *stream, int mode);

Description

The £wide function determines the orientation of the stream pointed to by st ream. If mode is greater
than zero, the function first attempts to make the stream wide oriented. If mode is less than zero, the function
first attempts to make the stream byte oriented.?? Otherwise, mode is zero and the function does not alter the
orientation of the stream.

Returns
The £wide function returns a value greater than zero if, after the call, the stream has wide orientation, a
value less than zero if the stream has byte orientation, or zero if the stream has no orientation.

4.6.3 General wide-string utilities

The header <wchar.h> declares a number of functions useful for wide-string manipulation. Various
methods are used for determining the lengths of the arrays, but in all cases a wchar_t * argument points to
the initial (lowest addressed) element of the array. If an array is accessed beyond the end of an object, the
behavior is undefined.

4.6.3.1 Wide-string numeric conversion functions
4.6.3.1.1 The wcstod function

Synopsis
#include <wchar.h>
double wcstod(const wchar t *nptr, wchar t **endptr):;

21) If the orientation of the stream has already been determined, fwide does not change it.

24 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Description

The westod function converts the initial portion of the wide string pointed to by nptr to double
representation. First, it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space wide characters (as specified by the iswspace function), a subject sequence resembling a
floating-point constant; and a final wide string of one or more unrecognized wide characters, including the
terminating null wide character of the input wide string. Then, it attempts to convert the subject sequence to a
floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty sequence of
digits optionally containing a decimal-point wide character, then an optional exponent part as defined for the
corresponding single-byte characters in ISO/IEC 9899:1990 subclause 6.1.3.1, but no floating suffix. The
subject sequence is defined as the longest initial subsequence of the input wide string, starting with the first
non-white-space wide character, that is of the expected form. The subject sequence contains no wide characters
if the input wide string is empty or consists entirely of white space, or if the first non-white-space wide character
is other than a sign, a digit, or a decimal-point wide character.

If the subject sequence has the expected form, the sequence of wide characters starting with the first digit
or the decimal-point wide character (whichever occurs first) is interpreted as a floating constant according to
the rules of ISO/IEC 9899:1990 subclause 6.1.3.1, except that the decimal-point wide character isused in place
of a period, and that if neither an exponent part nor a decimal-point wide character appears, a decimal point is
assumed to follow the last digit in the wide string. If the subject sequence begins with a minus sign, the value
resulting from the conversion is negated. A pointer to the final wide string is stored in the object pointed to by
endptr, provided that endpt r is not a null pointer.

Additional implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the value
of nptx is stored in the object pointed to by endptx, provided that endptz is not a null pointer.

Returns

The westod function returns the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus HUGE VAL is returned
(according to the sign of the value), and the value of the macro ERANGE is stored in exrxrno. If the correct
value would cause underflow, zero is returned and the value of the macro ERANGE is stored in exrno.

4.6.3.1.2 The wecstol function

Synopsis

#include <wchar.h>

long int wcstol (const wchar_t *nptr, wchar_t **endptr, int base);
Description

The westol function converts the initial portion of the wide string pointed to by nptr to long int
representation. First, it decomposes the input string into three parts: an initial, possibly empty, sequence of
white-space wide characters (as specified by the iswspace function), a subject sequence resembling an
integer represented in some radix determined by the value of base, and a final wide string of one or more
unrecognized wide characters, including the terminating null wide character of the input wide string. Then, it
attempts to convert the subject sequence to an integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer constant as
described for the corresponding single-byte characters in ISO/IEC 9899:1990 subclause 6.1.3.2, optionally
preceded by a plus or minus sign, but not including an integer suffix. If the value of base is between 2 and
36 (inclusive), the expected form of the subject sequence is a sequence of letters and digits representing an
integer with the radix specified by base, optionally preceded by a plus or minus sign, but not including an
integer suffix. The letters from a (or A) through z (or 2) are ascribed the values 10 through 35; only letters
and digits whose ascribed values are less than that of base are permitted. If the value of base is 16, the wide
characters 0x or 0X may optionally precede the sequence of letters and digits, following the sign if present.

SC22/WG14/N325 25

3)

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

The subject sequence is defined as the longest initial subsequence of the input wide string, starting with the
first non-white-space wide character, that is of the expected form. The subject sequence contains no wide
characters if the input wide string is empty or consists entirely of white space, or if the first non-white-space
wide character is other than a sign or a permissible letter or digit.

1f the subject sequence has the expected form and the value of base is zero, the sequence of wide characters
starting with the first digit is interpreted as an integer constant according to the rules of ISO/IEC 9899:1990
subclause 6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and 36,
it is used as the base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion is negated. A pointer to the final wide string
is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Additional implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the value
of nptr is stored in the object pointed to by endpt z, provided that endptr is not a null pointer.

Returns

The westol function returns the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, LONG_MAX or LONG_MIN isreturned
(according to the sign of the value), and the value of the macro ERANGE is stored in exrno.

4.6.3.1.3 The westoul function

Synopsis
#include <wchar.h>
unsigned long int wcstoul (const wchar_t *nptr, wchar t **endptr,
int base);

Description

The westoul function converts the initial portion of the wide string pointed to by nptr to unsigned
long int representation. First, it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space wide characters (as specified by the iswspace function), a subject sequence
resembling an unsigned integer represented in some radix determined by the value of base, and a final wide
string of one or more unrecognized wide characters, including the terminating null wide character of the input
wide string. Then, it attempts to convert the subject sequence to an unsigned integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer constant as
described for the corresponding single-byte characters in ISO/IEC 9899:1990 subclause 6.1.3.2, optionally
preceded by a plus or minus sign, but not including an integer suffix. If the value of base is between 2 and
36 (inclusive), the expected form of the subject sequence is a sequence of letters and digits representing an
integer with the radix specified by base, optionally preceded by a plus or minus sign, but not including an
integer suffix. The letters from a (or A) through z (or 2) are ascribed the values 10 through 35; only letters
and digits whose ascribed values are less than that of base are permitted. If the value of base is 16, the wide
characters Ox or 0X may optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide string, starting with the
first non-white-space wide character, that is of the expected form. The subject sequence contains no wide
characters if the input wide string is empty or consists entirely of white space, or if the first non-white-space
wide character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of wide characters
starting with the first digit is interpreted as an integer constant according to the rules of ISO/IEC 9899:1990
subclause 6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and 36,
it is used as the base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion is negated. A pointer to the final wide string
is stored in the object pointed to by endptx, provided that endpt is not a null pointer.

Additional implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the value
of aptz is stored in the object pointed to by endpt r, provided that endptr is not a null pointer.

‘26 SC22/WG14/N325

Q&

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Returns

The westoul function returns the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, ULONG_MAX is retumned, and the
value of the macro ERANGE is stored in errno.

4.6.3.2 Wide-string copying functions
4.6.3.2.1 The wcscpy function

Synopsis
#include <wchar.h>
wchar_t *wcscpy(wchar_t *sl, const wchar_ t *82) ;
Description
The wescpy function copies the wide string pointed to by s2 (including the terminating null wide
character) into the array pointed to by s1.

Returns
The wescpy function returns the value of s1.

4.6.3.2.2 The wcsncpy function

Synopsis
#include <wchar.h>
wchar_t *wecsncpy (wchar_t *sl, const wchar t *s2, size_ t n);
Description
The wesncpy function copies not more than n wide characters (those that follow a null wide character are
not copied) from the array pointed to by s2 to the array pointed to by s1.2
If the array pointed to by s2 is a wide string that is shorter than n wide characters, null wide characters are
appended to the copy in the array pointed to by s1, until n wide characters in all have been written.

Returns
The wesncpy function returns the value of s1.

4.6.3.3 Wide-string concatenation functions
4.6.3.3.1 The wecscat function

Synopsis
#include <wchar.h>
wchar_t *wcscat (wchar t *sl, const wchar t *s2);

Description
The wescat function appends a copy of the wide string pointed to by s2 (including the terminating null

wide character) to the end of the wide string pointed to by s1. The initial wide character of 82 overwrites the
null wide character at the end of s1.

Returns :
The wescat function returns the value of s1.

4.6.3.3.2 The wcsncat function

Synopsis
#include <wchar.h>
wchar_t *wcsncat (wchar_t *sl, const wchar t *s2, size t n);

22) Thus, if there is no null wide character in the first n wide characters of the array pointed to by 82, the result will not be null-terminated.

SC22/WG14/N325 7

33

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Description

The wesncat function appends not more than n wide characters (a null wide character and those that
follow it are not appended) from the array pointed to by 82 to the end of the wide string pointed to by s1. The
initial wide character of 82 overwrites the null wide character atthe end of s 1. A terminating null wide character

is always appended to the result.®

Returns
The wesncat function returns the value of s1.

4.6.3.4 Wide-string comparison functions

Unless explicitly stated otherwise, the functions described in this subclause order two wide characters the
same way as two integers of the underlying integral type designated by wchar_t.

4.6.3.4.1 The wcscmp function

Synopsis
#include <wchar.h>
int wcscmp (const wchar t *sl, const wchar t *s2);
Description
The wescmp function compares the wide string pointed to by s1 to the wide string pointed to by s2.
Returns
The wescmp function returns an integer greater than, equal to, or less than zero, accordingly as the wide
string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2.

4.6.3.4.2 The wescoll function

Synopsis
#include <wchar.h>
int wescoll (const wchar t *sl, const wchar t *s2);
Description
The wescoll function compares the wide string pointed to by s1 to the wide string pointed to by s2,
both interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns

The wescoll function returns an integer greater than, equal to, or less than zero, accordingly as the wide
string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2 when both are
interpreted as appropriate to the current locale.

4.6.3.4.3 The wcsncmp function

Synopsis
#include <wchar.h>
int wcsncmp (const wchar t *sl, const wchar t *s2, size t n):;
Description
The wesncmp function compares not more than n wide characters (those that follow a null wide character
are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns

The wesnecmp function returns an integer greater than, equal to, or less than zero, accordingly as the possibly
null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array
pointed to by s2.

23) Thus, the maximum number of wide characters that can end up in the array pointed to by sl iswoslen (sl)+n+1.

28 SC22/WG14/N325

34

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

4.6.3.4.4 The wesx£frm function

Synopsis
#include <wchar.h>
size_t wesxfrm(wchar_t *sl, const wchar t *s2, size_t n);
Description
The wesx£xrm function transforms the wide string pointed to by s2 and places the resulting wide string
into the array pointed to by s1. The transformation is such that if the wescmp function is applied to two
transformed wide strings, it returns a value greater than, equal to, or less than zero, corresponding to the result
of the wescol1l function applied to the same two original wide strings. No more than n wide characters are
placed into the resulting array pointed to by s1, including the terminating null wide character. If n is zero, s1
is permitted to be a null pointer.
Returns
The wesx£rm function retums the length of the transformed wide string (not including the terminating
null wide character). If the value returned is n or greater, the contents of the array pointed to by s1 are
indeterminate.
Example
The value of the following expression is the length of the array needed to hold the transformation of the
wide string pointed to by s:
1 + wesxfrm(NULL, s, O0)

4.6.3.5 Wide-string search functions
4.6.3.5.1 The weschr function

Synopsis
#include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar t c);
Description
The weschr function locates the first occurrence of ¢ in the wide string pointed to by s. The terminating
null wide character is considered to be part of the wide string.

Returns
The weschr function returns a pointer to the located wide character, or a null pointer if the wide character
does not occur in the wide string.

4.6.3.5.2 The wesespn function

Synopsis
#include <wchar.h>
size_t wcscspn(const wchar_t *sl, const wchar t *s2);

Description
The wescspn function computes the length of the maximum initial segment of the wide string pointed to
by s1 which consists entirely of wide characters not from the wide string pointed to by s2.

Returns
The wescspn function returns the length of the segment.

4.6.3.5.3 The wespbrk function

Synopsis
#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *sl, const wchar_ t *s2);

SC22/WG14/N325 29

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Description :
The wespbrk function locates the first occurrence in the wide string pointed to by s1 of any wide character
from the wide string pointed to by s2.

Returns
The wespbzrk function returns a pointer to the wide character in s1, or a null pointer if no wide character

from s2 occurs in s1.
4.6.3.5.4 The wesrchr function

Synopsis
#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar t c);
Description
The wesxchr function locates the last occurrence of ¢ in the wide string pointed to by s. The terminating
null wide character is considered to be part of the wide string.

Returns
The wesxchr function returns a pointer to the wide character, or a null pointer if ¢ does not occur in the

wide string.
4.6.3.5.5 The wcsspn function
Synopsis
#include <wchar.h>
size t wecsspn(const wchar_t *sl, const wchar_t *s2);
Description
The wesspn function computes the length of the maximum initial segment of the wide string pointed to
by s1 which consists entirely of wide characters from the wide string pointed to by s2.

Returns
The wesspn function returns the length of the segment.

4.6.3.5.6 The wecsstr function

Synopsis
#include <wchar.h>
wchar_t *wcsstr(const wchar_t *sl, const wchar t *s2);
Description
The wesstx function locates the first occurrence in the wide string pointed to by s1 of the sequence of
wide characters (excluding the terminating null wide character) in the wide string pointed to by s2.

Returns
The wesst x function retums a pointer to the located wide string, or a null pointer if the wide string is not
found. If 82 points to a wide string with zero length, the function returns s1.

4.6.3.5.7 The wecstok function

Synopsis

#include <wchar.h>

wchar_t *wcstok(wchar_t *sl, const wchar t *s2, wchar_ t **ptr);
Description

A sequence of calls to the westok function breaks the wide string pointed to by s1 into a sequence of

tokens, each of which is delimited by a wide character from the wide string pointed to by s2. The third argument
points to a caller-provided wehazr_t pointer into which the west ok function stores information necessary
for it to continue scanning the same wide string.

30 SC22/WG14/N325

3£

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

For the first call in the sequence, s1 shall point to a wide string, while in subsequent calls for the same
string, s1 shall be a null pointer. I s1 is a null pointer, the value pointed to by ptz shall match that set by
the previous call for the same wide string; otherwise its value is ignored. The separator wide string pointed to
by s2 may be different from call to call.

The first call in the sequence searches the wide string pointed to by s1 for the first wide character that is
not contained in the current separator wide string pointed to by s2. If no such wide character is found, then
there are no tokens in the wide string pointed to by s1 and the westok function returns a null pointer. If such
a wide character is found, it is the start of the first token.

The west ok function then searches from there for a wide character that is contained in the current separator
wide string. If no such wide character is found, the current token extends to the end of the wide string pointed
to by a1, and subsequent searches in the same wide string for a token return a null pointer. If such a wide
character is found, it is overwritten by a null wide character, which terminates the current token.

In all cases, the westok function stores sufficient information in the pointer pointed to by ptr so that
subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptzr, shall start searching
just past the end of the previously returned token (if any).

Returns
The westok function returns a pointer to the first wide character of a token, or a null pointer if there is no
token.

Example
#include <wchar.h>
static wchar_t strl[] = L"?a???b,,,#c";
static wchar t str2[] = L"\t \t%“;
wchar_t *t, ¥ptrl, *ptr2;

t = wcstok(strl, L"?", &ptrl): /* t points to the token L"a" */
t = wecstok (NULL, L",", &ptrl); /* t points to the token L"?7?b" */
t = westok(str2, L" \t", &ptr2); /* t is a null pointer */
t = westok (NULL, L"#,", &ptrl); /* t points to the token L"c" */
t = wecstok (NULL, L"?", &ptrl); /* t is a null pointer */

4.6.3.5.8 The wcslen function

Synopsis

#include <wchar.h>
size_t wcslen(const wchar t *s);
Description
The weslen function computes the length of the wide string pointed to by s.

Returns
The weslen function returns the number of wide characters that precede the terminating null wide
character.

4.6.3.6 Wide-character array functions

These functions operate on arrays of type wchaxr_t whose size is specified by a separate count argument.
These functions are not affected by locale and all wchaxr_t values are treated identically. The null wide
character and wehar_t values not corresponding to valid multibyte characters are not treated specially.

Unless explicitly stated otherwise, the functions described in this subclause order two wide characters the
same way as two integers of the underlying integral type designated by wchar_t.

Where an argument declared as size_t n determines the length of the array for a function, n can have
the value zero on a call to that function. Unless stated explicitly otherwise in the description of a particular
function in this subclause, pointer arguments on such a call must still have valid values, as described in
subclause 7.1.7 of ISO/IEC 9899:1990. On such a call, a function that copies wide characters copies zero wide
characters, while a function that compares two wide character sequences returns zero.

SC22/WG14/N325 31

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

4.6.3.6.1 The wmemchr function ¥

Synopsis
#include <wchar.h> ¢
wchar_t *wmemchr (const wchar t *s, wchar_t c, size t n);
Description
The wmemch function locates the first occurrence of ¢ in the initial n wide characters of the object pointed
toby s.
Returns
The wmemchz function returns a pointer to the located wide character, or a null pointer if the wide character
does not occur in the object.

4.6.3.6.2 The wmemcmp function '

Synopsis
#include <wchar.h>
int wmemcmp (const wchar_t *sl, const wchar_t *s2, size_ t n)’
Description
The wmemcmp function compares the first n wide characters of the object pointed to by s1 to the first n
wide characters of the object pointed to by s2.

Returns
The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the object
pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

4.6.3.6.3 The wmemcpy function

Synopsis
#include <wchar.h>
wchar_t *wmemcpy(wchar t *sl, const wchar t *s82, size_t n);
Description
The wvmemcpy function copies n wide characters from the object pointed to by s2 to the object pointed to
by s1.

Returns
The wmemcpy function returns the value of s1.

4.6.3.6.4 The wvmemmove function

Synopsis

#include <wchar.h>

wchar t *wmemmove (wchar_t *sl, const wchar t *s2, size t n);
Description

The wmemmowve function copies n wide characters from the object pointed to by s2 to the object pointed

to by s1. Copying takes place as if the n wide characters from the object pointed to by s2 are first copied into
a temporary array of n wide characters that does not overlap the objects pointed to by s1 or 82, and then the
n wide characters from the temporary array are copied into the object pointed to by s1.

Returns
The wmemmowe function returns the value of s1.

4.6.3.6.5 The wmemset function

Synopsis
#include <wchar.h>
wchar t *wmemset (wchar t *s, wchar t ¢, size t n):;

32 SC22/WG14/N325

3§

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Description
The wmemset function copies the value of ¢ into each of the first n wide characters of the object pointed

to by s.

Returns
The wmemset function returns the value of s.

4.6.4 The wesftime function

Synopsis
#include <wchar.h>
size_t wcsftime (wchar_t *s, size t maxsize,
const wchar_t *format, const struct tm *timeptr):;

Description
The wes £t ime function is equivalent to the st r£t ime function, except that:

— The argument s points to the initial element of an array of wide characters into which the generated output
is to be placed.

— The argument maxsi ze indicates the limiting number of wide characters.

— The argument format is a wide string and the conversion specifiers are replaced by corresponding
sequences of wide characters.

— The return value indicates the number of wide characters.

Returns

If the total number of resulting wide characters including the terminating null wide character is not more
than maxsize, the wes £t ime function returns the number of wide characters placed into the array pointed
to by s not including the terminating null wide character. Otherwise, zero is returned and the contents of the
array are indeterminate.

4.6.5 Extended multibyte and wide-character conversion utilities

The header <wchar .h> declares an extended set of functions useful for conversion between multibyte
characters and wide characters.

Most of the following functions — those that are listed as “restartable,” subclauses 4.6.5.3 and 4.6.5.4 —
take as a last argument a pointer to an object of typembstate_t that is used to describe the current conversion
state from a particular multibyte character sequence to a wide-character sequence (or the reverse) under the
rules of a particular setting for the LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of a new
multibyte character in the initial shift state. A zero-valuedmbstate_t object is (at least) one way to describe
an initial conversion state. A zero-valued mbstate_t object can be used to initiate conversion involving any
multibyte character sequence, in any LC_CTYPE category setting. If an mbstate_t object has been altered
by any of the functions described in this subclause, and is then used with a different multibyte character
sequence, or in the other conversion direction, or with a different LC_CTYPE category setting than on earlier
function calls, the behavior is undefined.?

On entry, each function takes the described conversion state (either internal or pointed to by ps) as current.
The conversion state described by the pointed-to object is altered as needed to track the shift state, and the
position within a multibyte character, for the associated multibyte character sequence.

24) Thus a particular mbstate_t object can be used, for example, with both the mbrt owc and mbsrt owcs functions as long as they
are used to step sequentially through the same multibyte character string.

SC22/WG14/N325 13

4y

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

4.6.5.1 Single-byte wide-character conversion functions
4.6.5.1.1 The btowec function

Synopsis
#include <stdio.h>
#include <wchar.h>
wint_t btowc(int c);
Description
The btowe function determines whether ¢ constitutes a valid (one-byte) multibyte character in the initial
shift state.
Returns
The btowe returns WEOF if ¢ has the value EOF or if (unsigned char) c does not constitute a valid
(one-byte) multibyte character in the initial shift state. Otherwise, it returns the wide-character representation
of that character.

4.6.5.1.2 The wctob function

Synopsis
#include <stdio.h>
#include <wchar.h>
int wectob(wint_t c);
Description
The wetob function determines whether ¢ corresponds to a member of the extended character set whose
multibyte character representation is a single byte when in the initial shift state.

Returns
The wet ob returns EOF if ¢ does not correspond to a multibyte character with length one in the initial shift
state. Otherwise, it returns the single-byte representation of that character.

4.6.5.2 Thembsinit function

Synopsis
#include <wchar.h>
int mbsinit (const mbstate_t *ps);

Description
If ps is not a null pointer, the mbsinit function determines whether the pointed-to mbstate_t object
describes an initial conversion state.

Returns
The mbsinit function returns nonzero if ps is a null pointer or if the pointed-to object describes an initial
conversion state; otherwise, it returns zero.

4.6.5.3 Restartable multibyte/wide-character conversion functions

These functions differ from- the corresponding multibyte character functions of ISO/IEC 9899:1990
subclause 7.10.7 (mblen, mbtowc, and wctomb) in that they have an extra parameter, ps, of type pointer
to mbstate_t that points to an object that can completely describe the current conversion state of the
associated multibyte character sequence. If ps is a null pointer, each function uses its own internal
mbstate_t object instead, which is initialized at program startup to the initial conversion state. The
implementation behaves as if no library function calls these functions with a null pointer for ps.

Also unlike their corresponding functions, the return value does not represent whether the encoding is
state-dependent.

34 SC22/WG14/N325

Y0

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

4.6.5.3.1 The mbrlen function

Synopsis
#include <wchar.h>
size_t mbrlen(const char *s, size_t n, mbstate_t *ps);
Description
The mbrlen function is equivalent to the call:
mbrtowc ((wchar_t *)0, s, n, ps != NULL ? ps : &internal)
where internal is thembstate_t object for the mbrlen function.

Returns
The mbrlen function retums (size_t)-2, (size_t) -1, a value between zero and n, inclusive.

Forward References: the mbrtowc functions (4.5.6.3.2).

4.6.5.3.2 The mbrtowec function

Synopsis
#include <wchar.h>
size_t mbrtowc(wchar_t *pwc, const char *s, size t n,
mbstate_t *ps):
Description
If s is a null pointer, the mbrtowe function is equivalent to the call:
mbrtowec (NULL, "", 1, ps)
In this case, the values of the parameters pwc and n are ignored.

If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning with the byte pointed
to by s to determine the number of bytes needed to complete the next multibyte character (including any shift
sequences). If the function determines that the next multibyte character is completed, it determines the value
of the corresponding wide character and then, if pwe is not a null pointer, stores that value in the object pointed
to by pwe. If the corresponding wide character is the null wide character, the resulting state described is the
initial conversion state.

Returns
The mbrtowe function returns the first of the following that applies (given the current conversion state):
0 if the next n or fewer bytes complete the multibyte character that corresponds to the null wide character
(which is the value stored).
positive if the next n or fewer bytes complete a valid multibyte character (which is the value stored); the value
returned is the number of bytes that complete the multibyte character.
(size_t) -2 if the next n bytes contribute to an incomplete (but potentially valid) multibyte character, and
all n bytes have been processed (no value is stored).2®
(size_t) -1 if an encoding error occurs, in which case the next n or fewer bytes do not contribute to a
complete and valid multibyte character (no value is stored); the value of the macro EILSEQ is stored in
errno,and the conversion state is undefined.

4.6.5.3.3 The wertomb function

Synopsis
#include <wchar.h>
size_t wcrtomb(char *s, wchar_t wc, mbstate_t *ps);
Description
If s is a null pointer, the wexrtomb function is equivalent to the call

25) When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant shift
sequences (for implementations with state-dependent encodings).

SC22/WG14/N325 35

Y]

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

wcrtomb (buf, L’\0’, ps)

where buf is an internal buffer.

If s is not a null pointer, the wertomb function determines the number of bytes needed to represent the
multibyte character that corresponds to the wide character given by we (including any shift sequences), and
stores the resulting bytes in the array whose first element is pointed to by s. At mostMB_CUR_MAX bytes are
stored. If we is a null wide character, a null bytes is stored, preceded by any shift sequence needed to restore
the initial shift state; the resulting state described is the initial conversion state.

Returns

The wertomb function returns the number of bytes stored in the array object (including any shift
sequences). When we is not a valid wide character, an encoding error occurs: the function stores the value of
the macro EILSEQ in errno and retums (size_t) -1; the conversion state is undefined.

4.6.5.4 Restartable multibyte/wide-string conversion functions

These functions differ from the corresponding multibyte string functions of ISO/IEC 9899:1990 subclause
7.10.8 (mbstowcs and westombs) in that they have an extra parameter, ps, of type pointer tombstate_t
that points to an object that can completely describe the current conversion state of the associated multibyte
character sequence. If ps is a null pointer, each function uses its own intemal mbstate_t object instead,
which is initialized at program startup to the initial conversion state. The unplementanon behaves as if no
library function calls these functions with a null pointer for ps.

Also unlike their corresponding functions, the conversion source parameter, sxc, has a pointer-to-pointer
type. When the function is storing the results of conversions (that is, when dst is not a null pointer), the pointer
object pointed to by this parameter is updated to reflect the amount of the source processed by that invocation.

4.6.5.4.1 The mbsrtowecs function

Synopsis
#include <wchar.h>
size_t mbsrtowcs (wchar t *dst, const char **src, size t len,
mbstate_t *ps);

Description

The mbsrtowes function converts a sequence of multibyte characters, beginning in the conversion state
described by the object pointed to by ps, from the array indirectly pointed to by sxc into a sequence of
corresponding wide characters. If dst is not a null pointer, the converted characters are stored into the array
pointed to by dst. Conversion continues up to and including a terminating null character, which is also stored.
Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid
multibyte character, or (if dst is not a null pointer) when len codes have been stored into the array pointed
to by dst.? Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by szc is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last multibyte
character converted (if any). If conversion stopped due to reaching a terminating null character and if dst is
not a null pointer, the resulting state described is the initial conversion state.

Returns

If the input conversion encounters a sequence of bytes that do not form a valid multibyte character, an
encoding error occurs: the mbsrtowcs function stores the value of the macro EILSEQ in exxrmno and returns
(size_t) -1; the conversion state is undefined. Otherwise, it returns the number of multibyte characters
successfully converted, not including the terminating null (if any).

26) Thus, the value of 1en is ignored if dst is a null pointer.

36 SC22/WG14/N325

Yz

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

4.6.5.4.2 The wesrtombs function

Synopsis
#include <wchar.h>
size t wcsrtombs (char *dst, const wchar_t **grc, size_t len,

mbstate_t *ps);
Description

The weszrtombs function converts a sequence of wide characters from the array indirectly pointed to by
src into a sequence of corresponding multibyte characters, beginning in the conversion state described by the
object pointed to by ps. If dst is not a null pointer, the converted characters are then stored into the array
pointed to by dst. Conversion continues up to and including a terminating null character, which is also stored.
Conversion stops earlier in two cases: when a code is reached that does not correspond to a valid multibyte
character, or (if dst is not a null pointer) when the next multibyte character would exceed the limit of 1len
total bytes to be stored into the array pointed to by dst. Each conversion takes place as if by a call to the
wertomb function.??

If dst is not a null pointer, the pointer object pointed to by sxc is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide character) or the address just past the last wide
character converted (if any). If conversion stopped due to reaching a terminating null wide character, the
resulting state described is the initial conversion state.

Returns

If conversion stops because a code is reached that does not correspond to a valid multibyte character, an
encoding error occurs: the wesrtombs function stores the value of the macro EILSEQ in errno and returns
(size_t) -1; the conversion state is undefined. Otherwise, it retuns the number of bytes in the resulting
multibyte characters sequence, not including the terminating null (if any).
4.7 Future library directions

— Extension to 7.13 —
The list of headers and their reserved identifiers is adjusted to include the following:
4.7.1 Wide-character classification and mapping utilities <wctype .h>
Function names that begin with is or to and a lowercase letter (followed by any combination of digits,
letters, and underscore) may be added to the declarations in the <wctype . h> header.
4.7.2 Extended multibyte and wide-character utilities <wchar .h>

Function names that begin with wes and a lowercase letter (followed by any combination of digits, letters,
and underscore) may be added to the declarations in the <wchar . h> header.

Lowercase letters may be added to the conversion specifiers in fwprint £ and fwscanf.

27) If conversion stops because a terminating null character has been reached, the bytes stored include th initi
shift state immediately before the null byte. o B

 SC22/WG14/N325 37

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

wcrtomb (buf, L’\0’, ps)

where buf is an internal buffer.

If s is not a null pointer, the wertomb function determines the number of bytes needed to represent the
multibyte character that corresponds to the wide character given by we (including any shift sequences), and
stores the resulting bytes in the array whose first element is pointed to by s. At mostMB_CUR_MAX bytes are
stored. If we is a null wide character, a null bytes is stored, preceded by any shift sequence needed to restore
the initial shift state; the resulting state described is the initial conversion state.

Returns

The wertomb function returns the number of bytes stored in the array object (including any shift
sequences). When we is not a valid wide character, an encoding error occurs: the function stores the value of
the macro EILSEQ in errno and retums (size_t) -1; the conversion state is undefined.

4.6.5.4 Restartable multibyte/wide-string conversion functions

These functions differ from the corresponding multibyte string functions of ISO/IEC 9899:1990 subclause
7.10.8 (mbstowcs and westombs) in that they have an extra parameter, ps, of type pointer tombstate_t
that points to an object that can completely describe the current conversion state of the associated multibyte
character sequence. If ps is a null pointer, each function uses its own intemal mbstate_t object instead,
which is initialized at program startup to the initial conversion state. The unplementanon behaves as if no
library function calls these functions with a null pointer for ps.

Also unlike their corresponding functions, the conversion source parameter, sxc, has a pointer-to-pointer
type. When the function is storing the results of conversions (that is, when dst is not a null pointer), the pointer
object pointed to by this parameter is updated to reflect the amount of the source processed by that invocation.

4.6.5.4.1 The mbsrtowecs function

Synopsis
#include <wchar.h>
size_t mbsrtowcs (wchar t *dst, const char **src, size t len,
mbstate_t *ps);

Description

The mbsrtowes function converts a sequence of multibyte characters, beginning in the conversion state
described by the object pointed to by ps, from the array indirectly pointed to by sxc into a sequence of
corresponding wide characters. If dst is not a null pointer, the converted characters are stored into the array
pointed to by dst. Conversion continues up to and including a terminating null character, which is also stored.
Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid
multibyte character, or (if dst is not a null pointer) when len codes have been stored into the array pointed
to by dst.? Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by szc is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last multibyte
character converted (if any). If conversion stopped due to reaching a terminating null character and if dst is
not a null pointer, the resulting state described is the initial conversion state.

Returns

If the input conversion encounters a sequence of bytes that do not form a valid multibyte character, an
encoding error occurs: the mbsrtowcs function stores the value of the macro EILSEQ in exxrmno and returns
(size_t) -1; the conversion state is undefined. Otherwise, it returns the number of multibyte characters
successfully converted, not including the terminating null (if any).

26) Thus, the value of 1en is ignored if dst is a null pointer.

36 SC22/WG14/N325

Yz

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Annex A: Library summary (informative)

A.1 Errors <errno.h>
EILSEQ

A2 Alternative spellings <is0646 .h>

and
and eq
bitand
bitor
compl
not
not_eq
or
or_eq
xor
xor_eq

A3 Wide-character classification and mapping utilities <wctype .h>

wctrans t
wctype_t
WEOF
wint_t

A.3.1 Wide-character classification functions

int iswalnum(wint t wc);

int iswalpha(wint t wc);

int iswentrl(wint t we);

int iswdigit(wint t wc);

int iswgraph(wint t wc):;

int iswlower(wint t wc):;

int iswprint(wint t wc);

int iswpunct (wint t wc);

int iswspace(wint_t wc):;

int iswupper (wint t wc);

int iswxdigit (wint t wc);

wctype_t wctype (const char *property),
int 1awctype(w1nt t wc, wctype t desc);

A 3.2 Wide-character mapping functions

wint_t towlower(wint_t wc):;

wint_t towupper (wint_t wc);

wctrana t wctrans (const char *property):
wint_t towctrans (wint_t wc, wctrans_t desc);

A4 Extended multibyte and wide-character utilities <wchar.h>

mbstate_t
size t
struct tm
wchar t
WCHAR MAX
WCHAR MIN
WEOF
wint_t
A 4.1 Formatted wide-character input/output functions
int fwprintf(FILE *stream, const wchar t *format, ...);
int fwscanf(FILE *stream, const wchar t *format, ...);
int wprintf(const wchar t *format, . =)
int wscanf (const wchar t *format, %),
int swprintf(wchar t *g, size t n, onst wchar t *format, ...);
int swscanf (const wchar t *s, const wchar > t *format, ...);

int vfwprintf(FILE *stream, const wchar t *format, va .'L:Lst arg);
SC22/WG14/N325 39

Yy

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

int vwprintf (const wchar_t *fomt, va_list arg);
int vswprintf(wchar_t *s, size_t n, const wchar t *format,

va_list arg);

A.4.2 Wide-character input/output functions

wint_t fgetwc (FILE *stream);

wchar t *fgetws (wchar t *s, int n, FILE *stream);
wint t fputwc (wchar t c, FILE *stream);

int Tputws (const wchar_t *s, FILE *stream);
wint_t getwc (FILE *stream) ;

wint_ —t getwchar (void);

w:.nt t putwc(wchar t ¢, FILE *stream,);

wint_t putwchar(wchar t c);

wint t ungetwc (wint_| t ¢, FILE *stream);

int Twide (FILE *stream, int mode);

A.4.3 Wide-string numeric conversion functions

double wcstod(const wchar t *nptr, wchar t **endptr);

long int wcstol (const wchar t *nptr, wcha: t **endptr, int base);

unsigned long int wcstoul (const wchar_t *nptr, wchar_t **endptr,
int base):

A.4.4 Wide-string functions

wchar_t *wcscpy(wchar t *sl, const wchar_t *s2);

wchar_t *vcsncpy(wchar_; *sl, const wchar t *s2, size t n);
wchar t *wcscat (wchar_t *sl, const wchar t *s2);

vchar t *wcsncat(uchar t *sl, const wchar t *s2, size t n):;
int wcscmp (const wchar t *sl, const wchar | > t *32),

int wcscoll (const wchar t *sl, const wchar t *s82);

int wesncmp (const wchar t *sl, const wchar t *32, size t n);
size_t wcsxfrm(wchar t ¥sl, const wchar t ¥s2, size t n);
wchar_; *weschr (const wchar t *s, wchar | t ¢);

size_t wcscspn(const wchar | t *sl, const wchar >t *82);
wchar_p *wespbrk (const wcha: t *sl, const wcha: t *s82);
wchar t *wcsrchr(const wchar t *s, wchar_t c);

size t wcsspn(const wchar t *sl, const wchar t *s82);

wchar t *wcsstr(const vchar t *31, const wchar >t *s2);
wcha: t *wcstok (wchar_t *s1l, const wchar t *g2, wchar_t **ptr);
size t wcslen(const wchar t *s);

wchar t *wmemchr (const wchar t *s, wchar >t ¢, size_t n);

int wmemcmp(const wchar t *sl, const wchar t *s2, size t n);
wchar_t *wmemcpy(wchar t *sl, const wchar t *s2, size_t n);
wchar £ *wmemmove(wchar t *sl, const wchar -t *s2, size t n);
vchar t *wmemset (wchar t *s, wchar >t e, size t n);

A.4.5 Wide-string time conversion function

size t wcsftime(wchar t *s, size t maxsize,
Const wchar -t *format, const struct tm *timeptr) ;

A.4.6 Extended multibyte/wide-character conversion functions

40

wint_t btowc(int c);

int wctob(w:.nt t)

int mbsinit (const mbstate_t *ps) ;

size_t mbrlen(const char *s, size t n, mbstate_t *ps);

size_t mbrtowc(wchar t *pwc, const char *s, size t n,
mbstate t *ps);

size t wertomb (char *s, wchar -t wc, mbstate t *ps),

size t mbsrtowcs (wchar t *dst, const char *¥src, size t len,
mbstate t *ps);

size t wcsrtombs (char *dst, const wchar - t **src, size t len,
mbstate_t *ps); Y

SC22/WG14/N325

Yy

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

Annex B: Rationale (informative)

B.1 Background

Most traditional computer systems and computer languages, including traditional C, have an assumption
(sometimes undocumented) that a “character” can be handled as an atomic quantity associated with a single
memory storage unit — a “byte” or something similar. This is not true in general. For example, a Japanese,
Chinese, or Korean character usually requires a representation of two or three bytes; this is a multibyte character
as defined by ISO/IEC 9899:1990 subclause 3.13. Even in the Latin world, a multibyte coded character set
may appear in the near future. This conflict is called a byte and character problem.

A related concern in this area is how to address having at least two different meanings for string length:
number of bytes and number of characters.

To cope with these problems, many technical experts, particularly in Japan, have developed their own sets
of additional multibyte character functions, sometimes independently and sometimes cooperatively. Fortu-
nately, the developed extensions are actually quite similar. It can be said that in the process they have found
common features for multibyte character support. Moreover, the industry currently has many good implemen-
tations of such support.

The above in no way denigrates the important groundwork in multibyte and wide-character programming
provided by ISO/IEC 9899:1990.

— Both the source and execution character sets can contain multibyte characters (with possibly different
encodings), even in the "C" locale.

— Multibyte characters are permitted in comments, string literals, character constants, and header names.

— The language supports wide-character constants and strings.

— The library has five basic functions that convert between multibyte and wide characters.

However, these five functions are often too restrictive and too primitive to develop portable international
programs that manage characters. Consider a simple program that wants to count the number of characters,
not bytes, in its input. The prototypical program,

#include <stdio.h>

int main(void)
int ¢, n = 0;

while ((c = getchar()) != EOF)
n++;

printf("Count = %d\n", n);

return 0;

}
does not work as expected if the input contains multibyte characters; it always counts the number of bytes. It
is certainly possible to rewrite this program using just some of the five basic conversion functions, but the
simplicity and elegance of the above are lost.

ISO/IEC 9899:1990 deliberately chose not to invent a more complete multibyte and wide-character library,
choosing instead to await their natural development as the C community acquired more experience with wide
characters. The task of committee ISO JTC1/SC22/WG14 was to study the various existing implementations
and, with care, develop this first amendment to ISO/IEC 9899:1990. The set of developed library functions is
commonly called the MSE (Multibyte Support Extension).

Similarly, ISO/IEC 9899:1990 deliberately chose not to address in detail the problem of writing C source
code with character sets such as the national variants of ISO 646. These variants often redefine several of the
punctuation characters used to write a number of C tokens. The (admittedly partial) solution adopted was to
add trigraphs to the language. Thus, for example, ? ?< can appear anywhere in a C program that { can appear,
even within a character constant or a string literal.

SC22/WG14/N325 41

47

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

This amendment reponds to an international sentiment that more readable alternatives should also be
provided, wherever possible. Thus, it adds to the language alternate spellings of several tokens. It also adds a
library header, <is064 6 . h>, that defines a number of macros that expand to still other tokens which are less
readable when spelled with trigraphs. Note, however, that trigraphs are still the only alternative to writing
certain characters within a character constant or a string literal.

An important goal of any amendment to an international standard is to minimize quiet changes — changes
in the definition of a programming language that transform a previously valid program into another valid
program, or into an invalid program that need not generate a diagnostic message, with different behavior. (By
contrast, changes that invalidate a previously valid program are generally considered palatable if they generate
an obligatory diagnostic message at translation time.) Nevertheless, this amendment knowingly introduces two
classes of quiet changes:
new tokens — The tokens % : and % : & ; are just preprocessing tokens in ISO/IEC 9899:1990 but are given

specific meanings in this amendment. An existing program that uses either of these tokens in a macro
argument can behave differently as a result of this amendment.

new function names — Several names (with external linkage) not reserved to the implementation in ISO/IEC
9899:1990, such as bt owe, are now so reserved if any translation unit in the program includes either of
the headers <wctype .h> or <wchar.h>. An existing program that uses any of these names can
behave differently as a result of this amendment.

B.2 Programming model based on wide characters

Using the MSE functions, a multibyte-character handling program can be written as easily and in the same
style as a traditional single-byte based program. A programming model based on MSE function is as follows:
First, a multibyte character or a multibyte string is read from an external file into a wchar_t object or a
wchar_t array object by the £getwe function, or another input functions based on the £getwc function
such as getwchar, getwc, or £getws. During this read operation, a code conversion occurs — the input
function converts the multibyte character to the corresponding wide character as if by a call to the mbtowc
function.

After all necessary multibyte characters are read and converted, the wchar_t objects are processed in
memory by the MSE functions, such as iswxxx, westod, wescpy, wmemcmp, and so on. Finally, the
resulting wchax_t objects are written to an external file as a sequence of multibyte characters by the £putwe
function or other output functions based on the £putwc function, such as putwchar, putwc, or fputws.
During this write operation, a code conversion occurs — the output function converts the wide character to the
corresponding multibyte character as if by a call to the wet omb function.

In the case of the formatted input/output functions, a similar programming style can be applied, except that
the character code conversion may also be done through extended conversion specifiers, such as $1s and $1c.
For example, the wide-character based program corresponding to that shown in subclause B.1 can be written
as follows;

#include <stdio.h>
#include <wchar.h>

int main(void)
wint_t wc;
int n = 0;

while ((wc = getwchar()) != WEOF)
n+t;

wprint€ (L"Count = %d\n", n);

return 0;

}

42 SC22/WG14/N325

g

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

B.3 Parallelism versus improvement

When defining the MSE library functions, the committee could have chosen a design policy based either
on parallelism or on improvement. “Parallelism” means that a function interface defined in this amendment is
similar to the corresponding single-byte function in ISO/IEC 9899: 1990. The number of parameters in
corresponding functions are exactly same, and the types of parameters and the types of return values have a
simple correspondence:

char <==> wchar_t

An approach using this policy is relatively easy.

On other hand, “improvement” means that a function interface in this amendment is changed from the
corresponding single-byte functions in ISO/IEC 9899:1990 in order to resolve problems potentially contained
in the existing functions. Or, a corresponding function is not introduced in this amendment when the
functionality can be better attained through other functions. In an attempt to achieve improvement, there were
numerous collisions of viewpoints on how to get the most appropriate interface. Moreover, much careful
consideration and discussion among various experts in this area was necessary to decide which policy should
be taken for each function. The current amendment is the result of this process.

The following is a list of the functions that manipulate characters in parallel:

int <==> wint_t

ISO/IEC 9899:1990 Amendment
isalnum iswalnum
isalpha iswalpha
isentrl iswentrl
isdigit iswdigit
isgraph iswgraph
islower iswlower
isprint iswprint
ispunct iswpunct
isspace iswspace
isupper iswupper
isxdigit iswxdigit
tolower towlower
toupper towupper
fprintf fwprintf
fscanf fwscanf
printf wprintf
scanf wscanf
sprintf swprintf
sscanf swscanf
vfprintf vwiprintf
vprintf vwprintf
vsprintf vswprintf
fgetc fgetwec
fgets fgetws
fputc fputwe
fputs fputws
getc getwc
getchar getwchar
putc putwc
putchar putwchar
ungetc ungetwec
strtod westod
strtol wcstol
strtoul wcstoul
memcpy wmemcpy
memmove wmemmove
strcpy wCscpy

" SC22/WG14/N325 43

77

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

strncpy wCesncpy
strcat wcscat
strncat wcsncat
memcmp wmemcmp
strcmp wescmp
strcoll wcscoll
strncmp wcsncemp
strxfrm wesxfrm
memchr wmemchr
strchr weschr
strcspn wcscspn
strpbrk wcspbrk
strrchr wesrchr
strspn wcsspn
strstr wcsstr
memset wmemset
strlen wcslen
strftime wesftime

The following functions have different interfaces between single-byte and wide-character versions:

— Members of the sprint £ family based on wide characters all have an extra size_t parameter, in order
to repair the security hole that the existing functions carry. Compare:

int sprintf(char *s, const char *format, ...):’
int swprintf(wchar_ t *s, size t n, const wchar t *format, ...);

int vsprintf(char *s, const char *format, va list arg):;
int vswprintf(wchar t *s, size t n, const char t *format,
va_list arg);

— westok, the wide-character version of stzrtok, has an extra wchar_t ** parameter, in order to
eliminate the internal memory that the st rt ok function has to maintain. Compare:

char *strtok(char *sl, const char *s2):;
wchar t * wcstok(wchar_t * sl, const wchar_t *s2, wchar t **ptr);

The following is a list of the functions in ISO/IEC 9899:1990 that do not have corresponding partners in
the amendment for any of several reasons, such as redundancy, dangerous behavior, or a lack of need in a
wide-character based program. Most of these can be rather directly replaced by other functions:

gets
puts
perror
atof
atoi
atol
strerror

Finally, the following is a list of the functions in this amendment that do not have corresponding partners
in ISO/IEC 9899:1990. They were introduced to achieve better control over the conversion between multibyte
characters and wide character, or to give character handling programs greater flexibility and simplicity:

wctype
iswctype
wctrans
towctrans
fwide
btowe
wctob
mbsinit
mbrlen
mbrtowc
wcrtomb
mbsrtowcs
wcsrtombs

4 SC22/WG14/N325

o

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

B.4 Support for invariant ISO 646

With its rich set of operators and punctuators, the C language makes heavy demands on the ASCII character
set. Even before the language was standardized, it presented problems to those who would move Ctw EBCDIC
machines. More than one vendor provided alternate spellings for some of the tokens that used characters with
no EBCDIC equivalent. With the spread of C throughout the world, such representation problems have only
Zrown worse.

ISO 646, the international standard corresponding to ASCII, permits national variants of a number of the
characters used by C. Strictly speaking, this is not a problem in representing C programs, since the necessary
characters exist in all such variants. They just print funny. Displaying C programs for human edification suffers,
however, since the operators and punctuators can be hard to recognize in their various altered forms.

ISO/IEC 9899:1990 addresses the problem in a different way. It provides replacements at the level of
individual characters using three-character sequences called trigraphs. For example, ? ?< is entirely equivalent
to {, even within a character constant or string literal. While this approach provides a complete solution for
the known limitations of EBCDIC and ISO 646, the result is arguably not highly readable.

Thus, this amendment provides a set of more readable digraphs. These are two-character alternate spellings
for several of the operators and punctuators that can be hard to read with ISO 646 national variants. Trigraphs
are still required within character constants and string literals, but at least the commoner operators and
punctuators can have more suggestive spellings using digraphs.

The added digraphs were intentionally kept to a minimum. Wherever possible, the committee instead
provided alternate spellings for operators in the form of macros defined in the new header <iso646.h>.
Alternate spellings are provided for the preprocessing operators # and ## because they cannot be replaced by
macro names. Digraphs are also provided for the punctuators [, 1, {, and } because macro names proved to
be a less readable alternative. The committee recognizes that the solution offered in this amendment is
incomplete and involves a mixture of approaches, but nevertheless believes that it can help make Standard C
programs more readable.

B.5 Headers
B.5.1 <wchar.h>
B.5.1.1 Prototypes in <wchar .h>

Function prototypes for the MSE library functions had to be included in some header. The Committee
considered following ideas:

1. Introduce new headers such as <wctype .h>, <wstdio.h>, and <wstring.h>, corresponding to the
existing headers specified in ISO/IEC 9899:1990, such as <ctype .h>, <stdio.h>,and <string.h>.

2. Declare all the MSE function prototypes in <stdlib.h>, where wchar_t is already defined.
3. Introduce a new header and declare all the MSE function prototypes in the new header.

4. Declare the MSE function prototypes in existing headers specified in ISO/IEC 9899:1990 related these
functions

The drawback to idea 1 is that the relationship between new headers and existing ones, especially their
dependencies, becomes complicated. For example, two headers may have to be included prior to including
<wstdio.h>,asin:

#include <stdlib.h>

#include <stdio.h>
#include <wstdio.h

The drawback to idea 2 is that the program has to include many prototype declarations even if the program
does not need declarations in <stdlib .h> other than existing ones. And the committee strongly opposed
adding any identifiers to existing headers.

The drawback to idea 3 is that it introduces an asymmetry between existing headers and new header.

The drawback to idea 4 is that the committee strongly opposed adding any identifiers to existing headers.

SC22/WG14/N325 45

-

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

So the committee decided to introduce a new header <wchazx . h> as the least objectionable way to declare
all MSE function prototypes. (Later, the committee split off the functions analogous to those in <ctype .h>
and placed their declarations in the new header <wctype .h>, as described in subclause B.5.2.)

B.5.1.2 Types and macros in <wchar.h>

The committee was concerned that the definitions of types and macros in <wchar.h> be specified
efficiently. One goal was to require that only the header <wchar.h> need be included to use the MSE library
functions. But there were strong objections to declaring existing types such as FILE in the new header.

The definitions in <wchaz . h> are thus limited to those types and macros that are largely independent of
the existing library. The existing header <stdio .h> must also be included along with <wchazr .h> when
the program needs explicit definitions of either of the types FILE and £pos_t. (How these types are defined
in <stdio.h> may need to be revised so that suitable synonyms, with reserved names, can be used within
<wchar.h>)

B.5.2 <wctype.h>

The committee originally intended to place all MSE functionality in a single header, <wchazr .h>, as
explained in subclause B.5.1.1. It found, however, that this header was excessively large, even compared to
the existing large headers <stdio .h> and <stdlib .h>. The commitiee also observed that the wide-char-
acter classification and mapping functions seemed to form a separate group. (These are functions that typically
have names of the form iswxxx or towxxx.) A translation unit could well make use of most of the
functionality of the MSE without using this separate group. Equally, a translation unit might need the
wide-character classification and mapping functions without needing the other MSE functions.

Hence, the committee decided to form a separate header, <wectype . h>, closely analogous to the existing
<ctype .h>. That division also reduced the size of <wchax . h> to more manageable proportions.

B.6 Wide-character classification functions

Eleven iswxxx functions have been introduced to correspond to the character-testing functions defined in
ISO/IEC 9899:1990. Each wide-character testing function is specified in parallel with the matching single-byte
character handling function. However, the following changes were also introduced.

B.6.1 Locale dependency of iswxxx functions

The behavior of character-testing functions in ISO/IEC 9899:1990 is affected by the current locale. And
some of the functions have implementation-defined aspects only when not in the "C" locale. For example, in
the "C" locale, islower retumns true (nonzero) only for lower-case letters (as defined in subclause 5.2.1 of
ISO/IEC 9899:1990).

This existing "C" locale restriction for character testing functions in ISO/IEC 9899:1990 has been replaced
with a supersetting constraint for wide-character testing functions. There is no special description of "C" locale
behavior for the iswxxx functions. Instead, the following rule is applied to any locale. When a character ¢
causes isxxx (c) to return true, the corresponding wide character we shall cause the corresponding function
call iswxxx (we) to return true.

isxxx(c) != 0 ==> iswxxx(wc) !=0

B.6.2 Changed space-character handling

The space character (* ‘) is treated specially in isprint, isgraph, and ispunct. Space-character
handling in the corresponding wide-character functions differs from that specified in ISO/IEC 9899:1990. The
corresponding wide-character functions return true for all wide characters for which iswspace returns true,
instead of just the single space character. Therefore, the behaviors of the iswgraph and i swpunct functions
may differ from their matching functions in ISO/IEC 9899:1990 in this regard. (See the footnote concerning
iswgraph in this amendment).

B.7 Extensible classification and mapping functions

There are eleven standard character-testing functions defined in ISO/IEC 9899:1990. As the number of
supported locales increases, the requirements for additional character classifications grows, and varies from
locale to locale. To satisfy this requirement, many existing implementations, especially for non-English
speaking countries, have been defining new isxxx functions, such as iskanji, ishanzi, efc.

46 SC22/WG14/N325

S

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

However, this approach adds to the global namespace problem and is not flexible at all in supporting
additional classification requirements. Therefore, in this amendment, a pair of extensible wide-character
classification functions, wetype and iswctype, are introduced to satisfy the open-ended requirements for
character classification. Since the name of a character classification is passed as an argument (o the wetype
function, it does not add to problem of global namespace pollution. And these generic interfaces allow a
program to test if the classification is available in the current locale, and to test for locale-specific character
classifications, such as kan3ji or hiragana in Japanese.

In the same way, a pair of wide-character mapping functions, wct zans and towctrans, are introduced
to support locale-specific character mappings. One of the example of applying this functionality is the mappings
between hiragana and katakana in a Japanese character set.

B.8 Generalized multibyte characters

ISO/IEC 9899:1990 intentionally restricted the class of acceptable encodings for multibyte characters. One
goal was to ensure that, at least in the initial shift state, the characters in the basic C character set have multibyte
representations that are single characters with the same code as the single-byte representation. The other was
to ensure that the null byte should never appear as the second or subsequent byte of any multibyte code. Hence,
ra’ isalways ‘a’ (at least initially) and / \0’ is always ’ \0’, to put matters most simply.

While these may be reasonable restrictions within a C program, they hamper the ability of the MSE functions
to read arbitrary wide-oriented files. For example, a system may wish to represent files as sequences of ISO
10646 characters. Reading or writing such a file as a wide-oriented stream should be an easy matter. At most,
the library may have to map between native and some canonical byte order in the file. In fact, it is easy to think
of an ISO 10646 file as being some form of multibyte file — except that it violates both restrictions described
above. (The code for / a’ can look like the four-byte sequence "\0\0\0a", for example.)

Thus, the MSE introduces the notion of a generalized multibyte encoding. It subsumes all the ways the
committee can currently imagine that operating systems will represent files containing characters from a large
character set. (Such encodings are valid only in files — they are still not permitted as internal multibyte
encidings.)

B.9 Streams and files

B.9.1 Conversion state

It is necessary to convert between multibyte characters and wide characters within wide-character input/out-
put functions. The conversion state, introduced in subclause 4.5.3.2 of this amendment, is used to help perform
this conversion. Every wide-character input/output function makes use of (and updates) the conversion state
held in the FILE object controlling the wide-oriented stream.

The conversion state in the FILE object augments the file position within the corresponding multibyte
character stream with the parse state for the next multibyte character to obtain from that stream. For
state-dependent encodings, the remembered shift state is a part of this parse state, and hence a part of the
conversion state. (Note that a multibyte encoding that has any characters requiring two or more bytes needs a
nontrivial conversion state, even if it is not a state-dependent encoding.)

The wide-character input/output functions behave as if:
— a FILE object includes a hidden mbstate_t object;
— the wide-character input/output functions use this hidden object as the state argument to the mbrtowe or

wertomb functions that perform the conversion between multibyte characters in the file and wide
characters inside the program.

B.9.2 Implementation

The committee assumed that only wide-character input/output functions can maintain consistency between
the conversion-state information and the stream. The byte input/output functions do nothing with the
conversion state information in the FILE object. The wide-character input/output functions are designed on
the premise that they always begin executing with the stream positioned at the boundary between two multibyte
characters.

SC22/WG14/N325 47

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

The committee felt that it would be intolerable to require implementors to implement these functions without
such a guarantee. Since executing a byte input/output function on a wide-oriented stream may well leave the
file position indicator at other than the boundary between two multibyte characters, the committee decided to
prohibit such use of the byte input/output functions.

B.9.2.1 Seek operations

An £pos_t object for a stream in a state-dependent encoding includes the shift state information for the
comespondinz stream. In order to ensure the behavior of subsequent wide-character input/output functions in
a state-dependent encoding environment, a seek operation should reset the conversion state corresponding to
the file position as well as restoring the file position.

The traditional seek functions £seek and £tell may not be adequate in such an environment, because a
long object may be too small to hold both the conversion state information and the file position indicator.
Thus, the newer £setpos and £getpos are preferred, since they can store as much information as necessary
in an £pos_t object.

B.9.2.2 State-dependent encodings

With state-dependent encodings, a FILE object must include the conversion state for the stream. The
committee felt strongly that programmers should not have to handle the tedious details of keeping track of
conversion states for wide-character input/output. There is no means, however, for programmers to access the
internal shift state or conversion state in a FILE object.

B.9.2.3 Multiple encoding environments

A multiple encoding environment has two or more different encoding schemes for files. In such an
environment, some programmers will want to handle two or more multibyte character encodings on a single
platform, possibly within a single program. There is, for example, an environment in Japan that has two or
more encoding rules for a single character set. Mostimplementations for Japanese environments should provide
for such multiple encodings.

During program execution, the wide-character input/output functions get information about the current
encodings from the LC_CTYPE category of the current locale. When writing a program for a multiple encoding
environment, the programmer should be aware of the proper LC_CTYPE category for each opened file. During
every access to a file, the appropriate LC_CTYPE category should be restored.

The encoding-rule information is effectively a part of the conversion state. Thus, the encoding-rule
information should be stored with the hidden mbstate_t object within the FILE object. (Some implemen-
tations may even choose to store the encoding rule as part of the value of an £pos_t object.)

The conversion state just created when a file is opened is said to have unbound state because it has no
relations to any of the encoding rules. Just after the first wide-character input/output operation, the conversion
state is bound to the encoding rule which corresponds to the LC_CTYPE category of the current locale. The
following is a summary of the relations between various objects, the shift state, and the encoding rules:

fpos_t FILE
shift state | included | included |
encoding rule | maybe | included |
changing LC_CTYPE (unbound) | no effect | affected |
(bound) | no effect | no effect |

B.9.3 Byte versus wide-character input/output

Both the wide-character input/output functions and the byte input/output functions refer the same type of
object (a FILE object). As described in subclause B.9.2, however, there is a constraint on mixed usage of the
two type of input/output functions. That is, if a wide-character input/output functions is executed for a FILE
object, its stream becomes wide-oriented and no byte input/output functions shall be applied later (and
conversely). -

48 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

The reason for this constraint is to ensure consistency between the current file position and the current
conversion state in the FILE object. Executing one of the byte input/output functions for a wide-oriented
stream breaks this consistency, because the byte input/output functions may (or should) ignore the conversion
state information in the FILE object.

The following diagram shows the state transitions of a stream in response to various input/output functions.

fwide (s, 0) OR
positioning
function

fwide(s, 1) OR
wide-character
function

fwide(s, -1) OB
byte
function

ORIENTED

function function

other ‘ BYTE
ORIENTED

fclose
B.9.4 Text versus binary input/output
In some implementations, such as UNIX, there are streams which look the same whether read or written as
text or binary. (For example, arbitrary file-positioning operations are supported even in text mode.) In such an
implementation, the committee specifies the following usage of the wide-character input/output functions. A
file opened as a binary stream should obey the usage constraints of placed upon text streams when accessed
as a wide-character stream. (For example, file positioning is more restricted.)

So an implementation of the wide-character input/output functions can rely on the premise that programmers
use the wide-character input/output functions with a binary stream under the same constraints as for a text
stream. An implementation may also provide wide-character input/output functions that behave correctly on
an unconstrained binary stream. However, the behavior of the wide-character input/output functions on such
an unconstrained binary stream cannot be ensured by all implementations.

B.10 Formatted input/output functions

B.10.1 Enhancing existing formatted input/output functions

The simplest extension for wide-character input/output is to use existing formatted input/output functions
with existing (byte-oriented) streams. In this case, data consists of characters only (such as strings) are treated
as sequences of wide character and other data (such as numerical values) are treated as sequences of single-byte
characters. Though this is not a complete model for wide-character processing, it is acommon extension among
some existing implementations in Japan. So the committee decided to include a similar extension.

At first, the new conversion specifiers $S and $C were added to the existing formatted input and output
functions, to handle a wide-character string and a wide character respectively. After long discussions about the
actual implementation and future library directions (in subclause 7.13.6 of ISO/IEC 9899:1990), these
specifiers were withdrawn. They were replaced with the qualified conversion specifiers $1s and $1c (with
the addition of $1[...] in the formatted input functions). Note that even though the new qualifier is
introduced as an extension for wide-character processing, the field width and the precision still specify the
number of bytes (in the multibyte representation in the stream).

SC22/WG14/N325 49

2

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

To implement these new conversion specifiers efficiently, a new set of functions is required. These parse or
generate multibyte sequences “restartably.” Thus, the functions described in subclauses 4.6.5.1,4.6.5.2,4.6.5.3,
and 4.6.5.4 of this amendment were introduced.

Because these new conversions are pure extensions to ISO/IEC 9899:1990, they have several essential
restriction on their ability to deal with state-dependent encodings. It is expected, therefore, that they will be
most useful in implementations that are not state-dependent. The restrictions are:

— £scanf function — In a state-dependent encoding, one or more shift sequences may be included in the
format, to be matched as part of an ordinary multibyte character literal text directive. And shift sequences
may also be included in an input string. Because the £scanf function treats these shift sequences in exactly
the same way as for single-byte characters, an unexpected match may occur or an expected match might
not occur. See examples described in subclause 4.6.2.3.2 of this amendment.

— £print£ function — In a state-dependent encoding, redundant shift sequences may be written.

B.10.2 Formatted wide-character input/output functions

In the early MSE, formatted wide-character input/output functions were not introduced because an extension
to existing formatted input/output functions seemed to be sufficient. After considering the complete model for
wide-character handling, the necessity of formatted wide-character input/output functions was recognized.

Formatted wide-character input/output functions have much the same same conversion specifiers and
qualifiers as existing formatted input/output functions, even including the qualified conversion specifiers $1c,
%1s,and $1[. . .].Butbecause the format string consists of wide characters and the field width and precision
specify the number of wide characters, some of the restrictions on existing functions are removed in the new
functions. This means that wide character are read/written under more complete control of the format string.

B.11 Adding the fwide function

While the committee believes that the MSE provides reasonably complete functionality for manipulating
wide-oriented files, it noticed that no reliable mechanism existed for testing or setting the orientation of a
stream. (The program can try certain operations to see if they fail, but that is risky and still not a complete
strategy.) Hence, the committee introduced the function £wide as a means of forcing a newly opened stream
into the desired orientation without attempting any input/output on the stream. The function also serves as a
passive means of testing the orientation of a stream, either before or after the orientation has been fixed. And
it serves as a way to bind an encoding rule to a wide-oriented stream under more controlled circumstances.
(See subclause B.9.2.3.)

B.12 Single-byte wide-character conversion functions

Two single-byte wide-character conversion functions, btowe and wctob, have been introduced in this
amendment. These functions simplify mappings between a single-byte character and its corresponding wide
character (if any).

ISO/IEC 9899:1990 specifies the rule L’ x’ == ’x’ for a member x of the basic character set. The
committee discussed whether to relax or tighten this rule. In this amendment, this rule is preserved without
any changes. Applying the rule to all single-byte characters, however, imposes an unnecessary constraint on
implementation with regard to wide-character encodings. It prohibits an implementation from having a
common wide-character encoding for multiple multibyte encodings.

On the other hand, relaxing or removing the rule was considered to be inappropriate in terms of practical
implementations. The new function wetob can be used to test safely and quickly whether a wide character
corresponds to some single-byte character. For example, when the format string on a scan<£ function call is
parsed and searched for a white space character, the wetob function can be used in conjunction with the
isspace function. (See the specification of the i swxxx functions in subclause 4.5.2.1 of this amendment.)

Similarly, there are frequent occasions in wide-character processing code, especially in the wide-character
handling library functions, where it is necessary to test quickly and efficiently whether a single-byte character
is the first and only character of a valid multibyte character. This is the reason for introducing the btowe
function. Note that, for some encodings, bt owc can be reduced to a simple in-line expression.

50 SC22/WG14/N325

SC22/WG14/N325 © ISO/IEC 9899:1990/Amendment 1:1994 (E)

B.13 Extended conversion utilities

Although ISO/IEC 9899:1990 allows multibyte characters to have state-dependent encoding (subclause
5.2.1.2), the original functions are not always sufficient to efficiently support state-dependent encodings, due
to the following limitations of the multibyte character conversion functions (subclause 7.10.7):
1. Since the functions maintain shift state information internally, they cannot handle multiple strings at the
same time.
2. The formatted output functions may write redundant shift sequences, and the formatted input functions
cannot reliably parse input with arbitrary or redundant shift sequences.
3. The multibyte-string conversion functions (subclause 7.10.8) have an inconvenient shortcoming, regardless
of state dependency of the encoding. When an encoding error occurs, these functions return —1 without any
information on the location where the conversion stopped.
For all these reasons, the committee felt it necessary to augment the set of conversion functions in this
amendment.

B.13.1 Conversion state

To handle multiple strings with a state-dependent encoding, the committee introduced the concept of
conversion state. The conversion state determines the behavior of a conversion between multibyte and
wide-character encodings. For conversion from multibyte to wide character, the conversion state stores
information such as the position within the current multibyte character (as a sequence of characters or a
wide-character accumulator). And for conversions in either direction, the conversion state stores the current
shift state (if any) and possibly the encoding rule.

The non-array object type mbstate_t is defined to encode the conversion state. A zero-valued
mbstate_t object is assumed to describe the initial conversion state. (It is not necessarily the only way to
encode the initial conversion state, however.) Before any operations are performed on it, such a zero-valued
object is unbound. Once a multibyte or wide-character conversion function executes with the mbstate_t
object as an argument, however, the object becomes bound and holds the above information.

The conversion functions maintain the conversion state in anmbstate_t object according to the encoding
specified in the LC_CTYPE category of the current locale. Once the conversion starts, the functions will work
as if the encoding scheme were not changed provided all three of the following conditions obtain:

— the function is applied to the same string as when the mbstate_t object was first bound;
— the LC_CTYPE category setting is the same as when the mbstate_t object was first bound;

— the conversion direction (multibyte to wide character, or wide character to multibyte) is the same as when
the mbstate_t object was first bound.

B.13.2 Conversion utilities
Once the mbstate_t object was introduced, the committee discussed the need for additional functions
to manipulate such objects.

B.13.2.1 Initializing conversion states

Though a method to initialize the object is needed, the committee decided that it would be better not to
define too many functions in this amendment. Thus the committee decided to specify only one way to make
an mbstate_ t object represent the initial conversion state — by initializing it with zero. No initializing
function is supplied.

B.13.2.2 Comparing conversion states

The committee reached the conclusion that it may be impossible to define the equality between two
conversion states. If tvombstate_t objects have the same values for all attributes, they mignt be the same.
However, they might also have different values and still represent the same conversion state. No comparison
function is supplied.

SC22/WG14/N325 51

© ISO/IEC 9899:1990/Amendment 1:1994 (E) SC22/WG14/N325

Testing for initial shift state

The function mbsinit was added to test whether anmbstate_t object describes the initial conversion
state or not, because this state does not always correspond to a certain set of component values (and the
components cannot be portably compared anyway). The function is necessary because many functions in the
amendment treat the initial shift state as a special condition.

Regarding problems 2 and 3 described at the beginning of subclause B.13, the committee introduced a
method to distinguish between an invalid sequence of bytes and a valid prefix to a still incomplete multibyte
character. When encountering such an incomplete multibyte sequence, the mbxlen and mbrtowc functions
return -2 instead of -1, and the character accumulator in the mbstate_t object stores the partial character
information. Thus, the user can resume the pending conversion later, and can even convert a sequence one byte
at a time.

The new multibyte/wide-string conversion utilities are thus made restartable by using the character
accumulator and shift-state information stored in an mbstate_t object argument. As part of this enhance-
ment, the functions also have a parameter of type pointer to pointer to the source string. The function uses this
argument to store a pointer to the position where the conversion stopped.

B.14 Column width

The number of characters to be read or written can be specified in existing formatted input/output functions.
On a traditional display device that displays characters with fixed pitch, the number of characters is directly
proportional to the width occupied by these characters. So the display format can be specified through the field
width and/or the precision.

In formatted wide-character input/output functions, the field width and the precision specifies the number
of wide characters to be read or written. The number of wide characters is not always directly proportional to
the width of their display. For example, with Japanese traditional display devices, a single-byte character such
as an ASCII character has half the width of a Kanji character, even though each of them is treated as one wide
character. To control the display format for wide characters, a set of formatted wide-character input/output
functions were proposed whose metric was the column width instead of the character count.

This proposal was supported only by Japan. Critics observed that the proposal was based on such traditional
display devices with a fixed width of characters, while many modern display devices support a broad assortment
of proportional pitch type faces. Hence, it was questioned whether the extra input/output functions in this
proposal were really needed or were sufficiently general. Also considered were another set of functions that
return the column width for any kind of display devices for a given wide character or wide-character string;
but these seemed to be beyond the scope of C language. Thus all proposals regarding column width were
withdrew.

If an implementor needs this kind of functionality, there are a few ways to extend wide-character output
functions and still remain conforming to this amendment. For example, the field width prefixed with a # can
specify the column width as shown below:

$#N — set the counting mode to “printing positions” and reset the $n counter;
$N — set the counting mode back to “wide characters” and reset the $n counter.

52 SC22/WG14/N325

i

SC22/WG14/N325

Index

%: operator, 3.1

%:%: operator, 3.1

% : punctuator, 3.2

%> punctuator, 3.2

+> operator, 3.1

+> punctuator, 3.2

<% punctuator, 3.2

<: operator, 3.1

<: punctuator, 3.2

and macro, 4.4

and_eqmacro, 4.4

bitand macro, 4.4

bitor macro, 4.4

btowe function, 4.6.5.1.1

byte and character problem, clause 1
byte input/output functions, 4.6.2
byte-oriented streams, 4.6.2.1
compl macro, 4.4

control wide character, 4.5.2
conversion state, 4.6.5

EILSEQ macro, 4.3,4.6.2.2
encoding error, 4.6.2.2,4.6.2.5.1,4.6.2.5.5

fgetwc function, 4.6.2.5.1
fgetws function, 4.6.2.5.2
£print£ function, 4.6.2.3.1
f£putwc function, 4.6.2.5.3
£putws function, 4.6.2.5.4
£scanf function, 4.6.2.3.2
£wide function, 4.6.2.5.10
fwprint £ function, 4.6.2.4.1
fwscanf£ function, 4.6.2.4.2

getwc function, 4.6.2.5.5
getwchar function, 4.6.2.5.6

is0646.h header, 4.4, clause 2
iswalnum function, 4.5.2.1.1
iswalpha function, 4.5.2.1.2
iswentrl function, 4.5.2.1.3
iswctype function, 4.5.2.2.1
iswdigit function, 4.5.2.1.4
iswgraph function, 4.5.2.1.5
iswlower function, 4.5.2.1.6
iswprint function, 4.5.2.1.7
iswpunct function, 4.5.2.1.8
iswspace function, 4.5.2.1.9
iswupper function, 4.5.2.1.10
iswxdigit function, 4.5.2.1.11

mbrlen function, 4.6.5.3.1
mbrtowe function, 4.6.5.3.2
mbsinit function, 4.6.5.2
mbsrtowes function, 4.6.5.4.1
mbstate_t type, 4.6.1

not macro, 4.4

not_eq macro, 4.4

null wide character, 4.1

or macro, 4.4

or_eq macro, 4.4

orientation, stream, 4.6.2.1
printing wide character, 4.6.2
putwe function, 4.6.2.5.7
putwchar function, 4.6.2.5.8

SC22/WG14/N325

© ISO/IEC 9899:1990/Amendment 1:1994 (E)

shift sequence, 4.1

size_t type,4.6.1

stream orientation, 4.6.2.1
swprint£ function, 4.6.2.4.5
swscanf function, 4.6.2.4.6

towctrans, 4.5.3.2.2
towlower function, 4.5.3.1.1
towupper function, 4.5.3.1.2

ungetwc function, 4.6.2.5.9

vfwprintf function, 4.6.2.4.7
vwprint £ function, 4.6.2.4.8
vswprint £ function, 4.6.2.4.9

WCHAR MAX macro, 4.6.1
WCHAR_MIN macro, 4.6.1
wchar_t type, 4.6.1
wcrtomb function, 4.6.5.3.3
wescat function, 4.6.3.3.1
weschr function, 4.6.3.5.1
wescmp function, 4.6.3.4.1
wescoll function, 4.6.3.4.2
wescpy function, 4.6.3.2.1
wcscspn function, 4.6.3.5.2
wes £time function, 4.6.4
weslen function, 4.6.3.5.8
wesncat function, 4.6.3.3.2
wesncmp function, 4.6.3.4.3
wesncpy function, 4.6.3.2.2
wespbrk function, 4.6.3.6.2
weszrchr function, 4.6.3.5.4
wesrtombs function, 4.6.5.4.2
wesspn function, 4.6.3.5.5
wesstr function, 4.6.3.5.6
westod function, 4.6.3.1.1
westok function, 4.6.3.5.7
westol function, 4.6.3.1.2
westoul function, 4.6.3.1.3
wesx£rm function, 4.6.3.4.4
wectob function, 4.6.5.1.2
wctrans function, 4.5.3.2.1
wctrans_t type, 4.5.1
wctype functon, 4.5.2.2.1
wctype_t type, 4.5.1

WEOF macro, 4.5.1, 4.6.1
wide-character, 4.1
wide-character input functions, 4.6.2
wide-character input/output functions, 4.6.2
wide-character output functions, 4.6.2
wide string, 4.1

wide-oriented streams, 4.6.2.1
wint_t type,4.5.1,4.6.1
wmemchr function, 4.6.3.6,1
wmememp function, 4.6.3.6.2
wmemcpy function, 4.6.3.6.3
wmemmove function, 4.6.3.6.4
wmemset function, 4.6.3.6.5
wprint £ function, 4.6.2.4.3
wscanf function, 4.6.2.4.4

xor macro, 4.4
xor_eq macro, 4.4

3

i

