DECEMBER 1993

TITLE:

SOURCE:

WORK ITEM:

STATUS:

WE/Y /W T2
XJT// 9Y-004

ISO /IECJTC1/SC22
Programming languages, their environments and system software interfaces

Secretariat: CANADA (SCC)
ISO/IEC JTC1/SC22

N 1531

Summary of Voting on PDAM1 to ISO/IEC 9899:1990 on
Normative Addendum to Programming language C

Secretariat ISO/IEC JTC1/SC22

JTC1.22.20.02

New

CROSS REFERENCE: N1443

DOCUMENT TYPE: Summary of Voting

ACTION:

For information to SC22 Member Bodies.
See attached.

Address reply to: ISO/IEC JTC1/SC22 Secretariat
J.L. Coté ¥

. -2
) Treasury Board Secretariat g L/ i
NN TY aneine Ava Wars 1Ntk Blanr Nttasra Nintarin Canada K1A NRK

SUMMARY OF VOTING ON:

Letter Ballot Reference No: SC22 N1443

Circulated by JTC1/SC22
Circulation Date :1993-09-01
Closing Date :1993-12-10

SUBJECT: PDAM1 to ISO/IEC 9899 on Normative Addendum to Programming
language C

The following responses have been received:

P’ Members supporting proposal,
without comments : 10

P’ Members supporting proposal,

with comments : 00
’P’ Members not supporting proposal, : 03
’P’ Members abstaining : 01
P’ Members not voting : 08

Secretariat Action:

The comments received will be forwarded to WG14 - C for recommendation
on further processing of PDAMI.

v .

ISO/IEC JTC1/SC22 LETTER BALLOT SUMMARY

PROJECT NO: JTC1.22.20.02
SUBJECT: CD9899:1990 PDAM1: Normative Addendum to ISO/IEC

9899:1990 Programming Language C

Reference Document No: N1443 Ballot Document No: N1443
Circulation Date: 1993-09-01 Closing Date:1993-12-10
Circulated To: SC22 P, L Circulated By: Secretariat

SUMMARY OF VOTING AND COMMENTS RECEIVED

Approve Disapprove Abstain Comments Not Voting

'p’ Members
Australia
Austria
Belgium
Brazil
Bulgaria
Canada
China
Denmark
Finland
France
Germany
Greece
Italy

Japan
Netherlands
New Zealand
Slovenia
Sweden
Switzerland
UK

Ukraine
USA

><

N e N’ N N N N e N N i P P i N Nt N Nt P

L]

o Nl N N e N N i N i N P i P i i P i P

] X X "

"

L

P e el el el e latea e etk ta e lea ke ke)

P N e e R e R e e e e I e I e e T T T e e e T)
PN PN PN N, PN PN PN N PN PN PN N N N PN PN PN N PN PN N N
N N N it i i N i N i k. i ik i i i it it “wkl “wwt “wat®
P e e e e e e e T e e e e e e e e R T T T T T B
S LA ST LG T U S T s o SR e
P W e R aa e a a N a a a am a a a am a a T Ta Ta R]
.v‘,\.Swvfxyﬁu\,vns\,iw,‘wS\,Su,\,SHU

L]

0’ Members
Argentina
Cuba
Czech/Slovak Re
Hungary
Iceland
India
Poland
Portugal
Romania
Singapore
Turkey
Thailand
Yugoslavia

<

L e N N P >
N N N N N P P P P P e P P
TN STN SN SN SN SN SN SN PN P s S
N N N N N N P P e e N P
L i I N e e e e .
N N N N N N N e P P e P
FN SN SN AN AN AN N N N o~
N e e e e e e e e e e e
L I N N e e e e e e e W R
N N N N N N " P P P P

-
)

Information Technology Standards Commission of Japan

Information Processing Society of Japan TEL :0394331‘-2838
. . FAX : 03%31-6493
Kikai Shinko Building No. 3-5-8 Shiba-Koen Minato-ku, Tokyo 105, JAPAN TX:02425340 1PSJ

(15

Japan does NOT agree to the circulation of "ISO/IEC
JTC1/SC22 N1443 Proposed Draft Amendment 1 to ISO/IEC
9899:1990 Programming language C on: Normative Integrity
Addendum”" as a DIS.

Japan will vote YES, provided that the following comments
are accepted.

o Japanese working paper for draft proposed "Rationale" (see

attachement) should be added into the Annex as a clause
"Annex B. Rationale".

"Background" in the clause "1 Scope" (from page 1, line 28
to page 2, line 44) should be moved to the new clause
"Annex B. Rationale" in the Annex.

Page 3, line 29, "3.3 Version macro"”;
The top of the line started with the words "this
amendment." should be correctly indented.

Page 5, line 32, Synopsis in "4.5.2.1.1 The iswalnum function"
The error of document formatter command "iswalph<F255D or iswdigit"
should be corrected.

Page 5, line 37, Synopsis in "4.5.2.1.2 The iswalpha function"
vintiiswalpha(wint_t wc);" should be corrected to
"int iswalpha(wint_t wc);"

Page 5, line 39, Description in "4.5.2.1.2 The iswalpha function"
"forwwhich" should be corrected to "for which".

Page 6, line 41, Description in "4.5.2.1.8 The iswpunct function"
The reference to the footnote 9) should be added at the

bottom of the sentence "... for which neither iswapace nor
iswalnum is true."

Page 15, line 49, the footnote 15)
The footnote should be moved to the bottom of the page 14.

page 16, line 47, Descriptionm in “"4.6.2.4.1 The fwprintf function"
The conversion specifier "%s" in the sentence "an array of
wchar_t type using %s conversion" should be changed to "%1ls".

page 17, line 37, Description "4,6.2.4.2 The fwscanf function"
The last comma in the sentence "the conversion specifiers
c, s, and..." should be deleted.

Page 21, line 10, Description in "4.6.2.4.5 The swprintf function”

The error of document formatter command “"the argument F002Bs" should

be corrected.

Page 21, line 13, Returns in "4.6.2.4.5 The swprintf function"
The error of document formatter command "@STD_PH=Returns" should be
corrected.

Page 23, line 41, Description in "4.6.2.5.4 The fputws function"
"The terminating null byte" should be changed to
"The terminating null wide character." i

Page 35, line 23, Returns in "The wctob function"
The sentence "the single-byte representation” should be changed to
"the single-byte representation of that character."

-==-- End of Comments =---

v .

e

P L L I SR

o

oo e

Nov 29 1993 11:04:24 Annex.B

Annex B
(informative)
Rationale

B.1 Background of this Amendment

Most traditional computer systems and computer languages,
including C, have an assumption (sometimes ugdocumen;ed)
that a "character" can be handled as an atomic quantity
associated with a single memory storage unit - a "byte" or
something similar. This is not true in general. For egample,
a Japanese, Chinese, or Korean character usually requires a
representation of two or three bytes; this is'a *multibyte
character* as defined by ISO/IEC 9899:1990 subclause

3.13. Even in the Latin word, a multibyte coded character set
may appear in the near future. This conflict is called a
byte and character problem¥.

A related concern in this area is how to address having at
least two different meanings for string length: number of
bytes and number of characters.

To cope with these problems, many technical experts,
particularly in Japan, have developed their own sets of
additional multibyte character functions, sometimes X
independently and sometimes cooperatively. Fortunately, the
developed extensions are actually quite similar. It can be
said that in the process they have found common features for
multibyte character support. Moreover, the industry
currently has many good implementations of such support.

The above in no way denigrates the important groundwork in
multibyte and wide-character programming provided by ISO/IEC
9899:1990:

- Both the source and execution character sets can contain
multibyte characters(with possibly different encodings),
even in the "C" locale.

- Multibyte characters are permitted in comments, string
literals, character constants, and header name.

- The language support wide-character constants and strings.

- The library has five basic functions that convert between
multibyte and wide characters.

However, these five functions are often too restrictive and
too primitive to develop portable international programs
that manage characters.

Consider a simple program that wants to count the number of
characters, not bytes, in its input. The prototypical
program,

#include<stdio.h>
int main (void)
int ¢, n = 0;

while ((c= getchar()) ! EOF)
n++;

printf ("Count = %d\n", n);

return 0;

}

does not work as expected if the input contains multibyte
characters; it always count the number of bytes. It is
certainly possible to rewrite this program using just some
of the five basic conversion functions, but the simplicity
and elegance of the above is lost.

Internagional Standard ISO/IEC 9899:1990 deliberately chose
not to invent a more complete multibyte and wide-character
library, choosing instead to await their natural development,

as the C community acquired more experience with wide-characters.

The task of committee ISO/IEC JTC 1/8C22/WG14 was to study
Ey?‘vgrzous existing implementations and, with care;. develop

fest cmandenntr 4~ TeA/YERA 0OAO.100N MhA en+ AF

Page 1

Nov 29 1993 11:10:45 Annex.B Page2

Similarly, International Standard ISO/IEC 9899:1990
deliberately chose not to address in detail the problem of
working C source code with character sets such as the _
national variants of ISO 646. These variants often redefine
several of the punctuation characters used to write a number
of C tokens. The (admittedly partial) solution adopted was
to add *trigraphs* to the languages. Thus, for example, ??<
can appear any where in a C program that { should appear,
even within a character constant or string literals.

This amendment reponds to an international sentiment that
more readable alternatives should also be provided, wherever
possible. Thus, it adds to the language alternate spelling
of several tokens. It also adds to library header,
<iso646.h>, that defines a number of macros that expand to
still other tokens which are less readable when spelled with
trigraphs. Note, however, that trigraphs are still the only
alternative to writing certain characters within a character
constant and a string literal.

An important goal of any amendment to an international
standard is to minimize *quiet changes* - changes in the
definition of a programming language that transform a
previously valid program, or into an invalid program that
need not generate a diagnostic message, with different
behavior. (By contrast, changes that invalid a previously
valid program are generally considered palatable if they
generate an obligatory diagnostic message at translation
time.) Nevertheless, this amendment knowingly introduces two
classes of quiet changes:

new tokens - The tokens %: and %:%: are just preprocessing
tokens in International Standard ISO/IEC 9899:1990 but
are given specific meanings in the amendment. An
existing program that uses either of these tokens in a
macro argument can behave differently as a result of
the amendment.

new function names - Several names (with external linkage)
not reserved to implementation in International
Standard ISO/IEC 9899:1990, such as btowc, are now so
reserved if *any* translation unit in the program
includes either of the header <wctype.h> or <wchar.h>.
An existing program that uses any of these names can
behave differently as a result of this amendment.

v .

Nov 29 1993 11:10:45 Annex.B

.

B.2 Programming Model Based on Wide Characters

Using the MSE functions, a multibyte cha;acter handling
program can be written as easily and as in the same style as
a traditional single-byte based program.

A programming model based on MSE function is as follows:
Firstly, a multibyte character or a multibyte string is read
from external file into a wchar_t object or a wchar t array
object by the fgetwc function or other input functions based
on the fgetwc function such as getwchar, getwc, fgetws. While
this reading, a code conversion is occurred. Namely, these
input functions convert the multibyte character to the
corresponding wide character as if by a call to the mbtowc
function. After or while necessary repeats of reading, the
wchar t objects are processed in memory by the MSE functions
like Iswxxx, wcstod, wcscpy, wmemcmp and so on. Finally, the
resulted wchar_t objects are written to external file as a
sequence of multibyte characters by the fputwc function or
other output functions based on the fputwc function such as
putwchar, putwc, fputws. While this writing, a code
conversion is occurred. Namely, these output functions
convert the wide character to the corresponding multibyte
character as if by a call to the wctomb function.

In case of the formatted input/output functions, the similar
programming style can be applicable except that the
character code conversion may also be done through

extended conversion specifiers, such as %ls, %lc.

For example, the wide character based program corresponding
to the subclause "Annex B.1l" can be written as follows;

#include<stdio.h>
#include <wchar.h>

dint main(void)

{
wint_t wc;
int n = 0;

while ((wc = getwchar()) ! WEOF)
n++;

wprintf (L"Count = %d\n", n);

return 0;

Page 3

Nov 29 1993 11

:10:45

B.3 Parallelism versus Improvement

When defining the MSE library functions, the Committee could
chose a design policy between two

have a possibility to »
as a *parallelism* and a *improvement*.

candidates, such

The policy of para
of function define

Annex.B

llelism means that an interface
d in this amendment is similar to the

corresponding single-byte based function in ISO/IEC
9899:1990. Namely, the number of parameter of both

parallel functions are exactly same, and the type of parameter
and the type of return value have a simple correspondence as

shown below:
char <->
int <->

wchar_t
wint_t

An approach along this policy is relatively easy.

on other hand, the improvement means that an interface of

functions in this amendment is changed from the
corresponding single-byte based functions in ISO/IEC

9899:1990 in order to resolve the problems potentially
contained in the existing functions. Or, the corresponding
functions are not introduced in this amendment when the .

functionality can be substituted by other functionms.

On the way of the approach of improvement, there were a lot
of collision of views in order to get the most appropriate

interface. Moreover, much careful considerations and

discussion among various experts in this area was necessary
to decide which policy should be taken for each functions.

The current amendment is the result of these history.

The following is the list of the parallel functions that

treat characters
ISO/IEC

isalnum
isalpha
isentrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
tolower
toupper

fprintf
fscanf
printf
scanf
sprintf
sscanf
viprintf
vprintf
vsprintf

fgetc
fgets
fputc
fputs
getc
getchar
putc
putchar
ungetc

strtod
strtol
strtoul

memcpy
memmove

9899:1990

Amendment

iswalnum
iswalpha
iswentrl
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
towlower
towupper

fwprintf
fwscanf
wprintf
wscanf
swprintf
swscanf

vwfprintf

vwprintf

vswprintf

fgetwe
fgetws
fputwc
fputws
getwe
getwchar
putwc
putwchar
ungetwc

wcstod
westol
wcstoul

wmemcpy
wmemmove

Page 4

934

Nov 29 1993 11:10:45 Annex.B Page 5

strcat wcscat
strncat wcsncat
memcmp wmemcmp
strcmp wcscmp
strcoll wcscoll
strncmp wcsncmp
strxfrm wesxfrm
memchr wmemchr
strchr wcschr
strcspn wcscspn
strpbrk wcspbrk
strrchr wesrchr
strspn wcsspn
strstr wcsstr
memset wmemset
strlen wcslen
strftime wcsftime

The following is the list of the functions that have
different interface between single and wide character
version. The sprintf fam;ly based on wide character have
an extra size_t parameter in order to repair the securlty
hole that the existing functions are potentially carrylng
And the wide character based strtok function, that is
wcstok, has an extra wchar_t ** parameter in order to
eliminate the internal memory that the strtok function have
to hold.

int sprintf(char *s, const char *format, ...);
int swprintf(wchar_t *s, size_t n, const wchar_t *format, ...);
int vsprintf(char *s, const char *format, va_list arg):;

int vswprintf(wchar_t *s, size_t n, const wchar_t *format,
va_list arg);

char *strtok(char *sl, const char *s2);

wchar_t * wcstok(wchar_t * sl, const wchar_t *s2,
wchar_t **ptr);

The following is the list of the functions in ISO/IEC
9899:1990 that do not have corresponding partner in the
amendment because of several reasons, that is, a redundancy,
a dangerous behavior, or an unnecessity in the wide
character based program. Most of them can be replaced by
other functions.

gets
puts
perror
atof
atoi
atol
strerror

The following is the list of the functions in this amendment
that do not have corresponding partner in ISO/IEC 9899:1990.
They were introduced in order to achieve the perfect
conversion between the multibyte character(s) and the wide
character(s), or in order to give character handling
programs a flexibility and simplicity.

wctype
iswctype
wctrans
towctrans
fwide
btowc
wctob
mbsinit
mbrlen
mbrtowc
wcrtomb

mbsrtowcs o
wrertamhs .\

v .

%3 ol

Nov 29 1993 11:10:45 Annex.B Page 6

L . [/3 4

Nov 29 1993 11:10:45 Annex.B Page 7

B.4 Support for ISO 646 invariant character set environment

With its rich set of operators and punctuators, the C language
makes heavy demands on the ASCII character set. Even before the
language was standardized, it presented problems to those who
would move C to EBCDIC machines. More than one vendor provided
alternate spellings for some of the tokens that used characters
with no EBCDIC equivalent. With the spread of C throughout the
world, such representation problems have only grown worse.

ISO 646, the international standard corresponding to ASCII, permits
national variants of a number of the characters used by C. Strictly
speaking, this is not a problem in representing C programs, since

the necessary characters exist in all such variants. They just

print funny. Displaying C programs for human edification suffers,
however, since the operators and punctuators can be hard to recognize
in their various altered forms.

The C Standard addresses the problem in a different way. It provides
replacements at the level of individual characters using three-character
sequences called ‘trigraphs.’ For example, '2?<’ is entirely

equivalent to ‘{’, even within a character constant or string literal.
While this approach provides a complete solution for the known limitations
of EBCDIC and ISO 646, the result is arguably not highly readable.

Thus, this Amendment provides a set of more readable ‘digraphs.’

These are two-character alternate spellings for several of the operators
and punctuators that can be hard to read with ISO 646 national variants.
Trigraphs are still required within character constants and string
literals, but at least the commoner operators and punctuators can have
more suggestive spellings using digraphs.

The added digraphs were intentionally kept to a minimum. Wherever
possible, we instead provided alternate spellings for operators

in the form of macros defined in the new header <iso646.h>. Digraphs
are provided for the preprocessing operators # and ## because they
cannot be replaced by macro names. Digraphs are also provided for
the punctuators [,], {, and } because macro names proved to be a
less readable alternative. We recognize that the solution we offer
is incomplete and involves a mixture of approaches, but we believe
that it can help make Standard C programs more readable.

g b 132

Nov 29 1993 11:10:45 Annex.B Page 8

B.5 Headers
B.5.1 <wchar.h>
B.5.1.1 Prototypes in <wchar.h>

The function prototype declarations for MSE library
functions were necessary to be included in a certain header.

The Committee considered following ideas;

(1) introducing of the new headers such as <wctype.h>,
<wstdio.h> or <wstring.h>, which are symmetry to hgaders
specified in ISO 9899:1990 such as <ctype.h>{ <stdio.h>
or <string.h>, in order to declare MSE function prototypes

in corresponding new headers

(2) declaring all of MSE function prototypes in <stdlib.h>,
where wchar_t is defined

(3) introducing new header and declaring all of MSE function
prototypes in the new header

(4) declaring MSE function prototypes in existing yeaders
specified in ISO 9899:1990 related these functions

The defect of idea (1) is; the relationship between new headers
‘with existing ones, especially their dependencies,
becomes complicated. For example, two headers may be
included in prior to <wstdio.h> header, as below:
#include <stdlib.h>
#include <stdio.h>
#include <wstdio.h>

The defect of idea (2) is; the program has to include many
prototype declarations even if the program does not need
declarations in <stdlib.h> other than existing ones. And the
Committee opposed strongly to add any identifiers to existing
headers.

The defect of idea (3) is; the asymmetry of existing headers
and new header.

The defect of idea (4) is; the Committee opposed strongly to
add any identifiers to existing headers.

The Committee decided to introduce a new header <wchar.h>,
in order to declare all MSE function prototypes.

B.5.1.2 Declared types and macros in <wchar.h>

The concern that the declarations for types and macros in
<wchar.h> should be specified in an efficient way has
arisen.

The Committee considered that necessary header for using

MSE library functions is <wchar.h> only. But there were strong
oppositions to declaring some existing types such as FILE

in the new header.

The declarations in <wchar.h> other than MSE prototypes are
limited those that have high-independency. Existing header
may be included with <wchar.h>, if necessary. And when

the implementation supports MSE, two types, FILE and fpos_t
declared in <stdio.h> are needed to revise suitably.

B.5.2 <wctype.h>

The committee originally intended to place all MSE functionality
in a single header, <wchar.h>. We found, however, that this
header was excessively large, even compared to the existing

large headers <stdio.h> and <stdlib.h>. We also observed that

the wide-character classification and mapping functions seemed
to form a separate group. (These are functions that typically
have names beginning with ‘isw’ or ‘tow’.) A translation unit
could well make use of most of the functionality of the MSE
without using this separate group. Equally, a t¥anslation unit
mieht need the wide-character classification and mapping functions

~
<)
<

Nov 29 1993 11:10:45 Annex.B Page 9

<ctype'.h>. That division also reduced the size of <wchar.h> to
more manageable proportions.

v . N 9

Q
~2

Nov 29 1993 11:10:45 Annex.B Page 19\

B.6 Wide character classification functions

The eleven isw* functions which correspond to the character testing
functions defined in ISO 9899:1990 have been introducgd. Each wide
character testing function is specified in paralle} with the matching
character handling function, i.e. character v.s. wide cha;acter.
However, the following changes are also introduced in addition to
handling wide characters.

B.6.1 No "C" locale restriction for isw* functions

The behavior of character testing functions in ISO 9899:1990

is affected by the current locale. And some of the functions

have implementation-defined aspects only when not in the "C" locale.
The behavior for the "C" locale is specified as, for example,

In the "C" locale, islower returns true only for the characters
defined as lower-case letters (as defined in 5.2.1).

This "C" locale restriction existing for character testing functions
in ISO 9899:1990 has been replaced with supersetting constraint for
wide character testing functions. There is no special description
about "C" locale behavior for isw* functions. In stead, the following
rule is applied to any locale.

When a character c is true for a isxxx function, the corresponding
wide character wc shall be true for a iswxxx function.

isxxx(c) != 0 ==> iswxxx(wc) !=0
B.6.2 Changed space character (’ ‘) handling in iswgraph and iswpunct

Space character (/ ‘) was treated specially in isprint, isgraph and

ispunct. The space character handling in their matching wide character

functions differ from the one specified in ISO 9899:1990.

The matching wide character functions use iswspace class character —~
in stead of single space character (’ ’). Therefore, the behaviors

of the iswgraph and iswpunct functions may differ from their matching

functions in ISO 9899:1990 in this regard (See footnote for iswgraph

in the Amendment).

v . . Z/ ‘)/ID

Nov 29 1993 11:10:45 Annex.B

B.7 Extensible wide character classification/mapping functions

There are eleven standard character testing functions defined

in ISO 9899:1990. As the number of supported locales increases,

the requirements for additional character classification grows and
varies from locale to locale. To satisfy this requirement, many of
existing implementations especially for non-English countries have been
defining new isxxx functions such as iskanji, ishanzi, etc..

However, this approach has a name space problem and is not flexible

at all to support additional classification requirements. Therefore,

in this Amendment, a pair of extensible wide character classification
functions, wctype and iswctype, are introduced to satisfy open-ended
number of requirements for character classification. As the name of
character classification is passed as an argument to the wctype functions,
it does not have a problem of name space pollution. And these generic
interfaces allow a program to test if the classification is available
in the current locale and test locale-specific character classification,
such as kanji or hiragana in Japanese.

In the same way, a pair of wide character mapping functions,
wctrans and towctrans, are introduced to support locale specific
chqracter mappings. One of the example of applying

this functionality is the mappings between hiragana and katakana
in a Japanese character set.

v .

Page 11

YY)

Nov 29 1993 11:10:45 Annex.B Page 121

B.8 The Generalized Multibyte Characters

The International Standard ISO/IEC 9899:1990 intentiogally
restricted the class of acceptable encodings for mgltxbyte
characters. One goal was to ensure that, at least in the
initial shift state, the characters in the basic C character
set have multibyte representations that are single

characters with the same code as the single-byte representation.
The other was to ensure that the null byte should never appear
as the second or subsequent byte of any multibyte code. Hence,
'a’ is always ‘a’ and ‘\0’ is always ‘\0’, to put matters most
simply.

While these may be reasonable restrictions within a C program,
they hamper the ability of the MSE functions to read arbitrary
wide-oriented files. For example, a system may wish to represent
files as sequences of ISO 10646 characters. Reading or writing
such a file as a wide-oriented stream should be an easy matter.
At most, the library may have to map between native and some
canonical byte order in the file. In fact, it is easy to think
of an ISO 10646 file as being some form of multibyte file --
except that it violates both restrictions described above. (The
code for ‘a’ can look like the byte sequence ’\0’, ’\0’, ’\0’,
‘a’, for example.)

Thus, the MSE introduces the notion of a ‘generalized multibyte
encoding.’ It subsumes all the ways we can currently imagine that
operating systems will represent files containing characters from
a large character set.

’-
L by2

Nov 29 1993 11:10:45 Annex.B Page 13

B.9 Streams and Files
B.9.1 The conversion state

It is necessary to convert between multibytehcharacters and wide
characters during performing wide character input/output functions.
The conversion state, introduced in 4.5.3.2 ip thg Amendment, is used
in order to perform this conversion. Every wide xnput/ogtput
functions refer the conversion state held in the FILE object.

The conversion state in the FILE object is determined by the fi}e
position of the corresponding multibyte character stream. Knowing the
current file position and the corresponding conversion state of thg
multibyte character stream, the wide input/output functions determine
the behavior of conversion. The shift states in the state-dependent
encoding is a part of the conversion state.

The wide input/output functions behave as if;

* a FILE object includes a hidden mbstate_t object and,

* the wide input/output functions apply it to the mbrtowc/wcrtomb
functions in performing conversion between a multibyte character and a
wide character.

B.9.2. Implementation

The Committee assumes that only wide character input/output functions
can maintain the consistency between the conversion state information
and the stream. The byte input/output functions may take no care of

the conversion state information in the FILE object.

There is a premise that wide character input/output functions always
begins at the boundary of subsequent two multibyte characters. The
Committee has decided that it is intolerable for implementors to
provide the wide character input/output functions whose behaviors are
ensured without this premise.

Applying a byte input/output function to a wide-oriented stream may
cause to locate the file position indicator of the stream at other
position than the boundary of subsequent two multibyte characters.
The Committee has decided to constrain the usage of the byte
input/output functions because they may break the premise on a
wide-oriented stream.

[Seek operation]

A fpos_t object for a stream in a state-dependent encoding includes
the shift state

information for the corresponding stream. In order to ensure the
behavior of consequent wide character input/output functions under a
state-dependent encoding environment, a seek operation should reset
the conversion state corresponding to the file position as well as
repositioning the file position.

The traditional seek operation functions, fseek/ftell may not
available under such encoding environment that a type ‘long’ object is
too small to hold both the conversion state information

and file position indicator.

[Supporting state-dependent encodings]

Under state-dependent encodings, a FILE object should include the
conversion state corresponding to the stream, because the Committee
has strong intention that programmers need not handle the tremendous
conversion states in wide character input/output.

There is no means for programmers to access the internal shift state
in a FILE object.

[Supporting multiple encoding environment])
" : : : " (L
@_‘wq}tlple encoding Envzronment” which has twé or mqre different / /:3

dmm aAabhaman fae LR IS T

il am AN sARmand ¢ cAme

Nov 29 1993 11:10:45 Annex.B Page 14

i i i two or
There is an environment, for example in Japan, where we have C
more encoding rules for'a single character set. Most implementations
for Japanese environment should take special care of these multiple

encodings.

In the program execution, the wide character input/output functions
get thepingormation about the current encodings from the LC_CTYPE
category of the current locale. When writing a program fqr a multiple
encoding environment, programmer should keep the lnformatlon.of

LC CTYPE category of the current locale fgr each of opened files. At
every access to the files, the corresponding LC_CTYPE category should

be restored.

Because the encoding-rule information is a part.of the conversion
state, a hidden mbstate_t object in the FILE object holds the
encoding-rule information.

The conversion state just created when a file is opened is said to
have "unbound" state because it has no relations to any of the

encoding rules. Just after ; y
the first wide character input/output operation, ghe conversion state
is bound to the encoding rule which is corresponding to the LC_CTYPE

category of the current locale.

The following is the summary of the relations between some objects,
the shift state, and the encoding rules.

| fpos_t | FILE |

shift state | incl. | incl.l

encoding rule | none(*1) | incl. s |

effect of changing LC_CTYPE (unbound) | none | affected |
(bound) | none | none |)

(*1) Some implementations, the fpos_t object may include the encoding
rule.

B.9.3 Constraint of the usage of the byte input/output functions and
the wide character input/output functions.

Both the wide input/output functions and the byte input/output
functions refer the same type of object (FILE object). As described in

B.9.2, however, there is a constraint upon the mixed usage of the both

type of the input/output functions. That is, if one of a wide

input/output functions is applied to a FILE object, its stream becomes

:ide-oriented and no byte input/output functions shall be applied
ater.

The reason of this constraint is to ensure the consistency between the
current file position and the current conversion state in the FILE
object. Applying one of the byte input/output functions to a wide-
oriented stream breaks the consistency which has been held in the FILE
object, because the byte input/output functions may (or should) take no
care of the conversion state information in the FILE object.

The following diagram shows state transition of the stream with
input/output functions.

[[[State Transition Diagram of the Stream will be inserted here]]]

B.9.4 Streams with no difference between text and binary

In some implementations, such as UNIX, there are streams which has
both types of properties, text and binary. According to such an
implementation, the Committee specifies the following usage of the
wide character input/output functions. A stream opened as a binary
stream should be obey the constraints of the usage upon text streams
when the wide character input/output functions are applied.

So implementation of the wide character input/output

functions can rely on the premise that programmers use the wide

character input/output functions to a binary sgfream under the Yyy
constraints upon the text stream. Implementation may provide the wide

~hararter inout/outout functions which behave correctly on a

Nov 29 1993 11:10:45 Annex.B Page 15

However, the behavior of the wide character input/output functions on
the binary stream cannot be always ensured.

v . ’ y 27 iy

Nov 29 1993 11:10:45 Annex.B Eage 16

B.10 Formatted input/output functions
B.10.1 Adding 1 qualifier to existing formatted input/output functions

The simplest extension for the wide character input/optpgt is to use
existing formatted input/output functions with the existing
(byte-oriented) stream. In this case, data consist of characters only
(ie. strings) are treated as wide character and other data such as
numerical data are treated as single byte characters. .Thgugh this is
not a complete model for wide character processing, this is a common
extension among some existing implementa;ions in Japan. So the
committee decided to take similar extension.

At first, new conversion specifiers %S and %C were introduced to
handle a wide character string and a wide character_respectzvely.
After long discussions about the actual implementation and the future
library directions (in 7.13.6 of ISO 9899:1990), these specxfxers were
withdrew. Then new qualifier 1 not only for c and s specifiers but
also for [in the fscanf function is introduced for wide character
processing. Note that even though the new qualifier is introduced

as an extension, the field width and the precision still specify

the number of bytes.

And in order to implement a new qualifier exactly as much as possible,
new set of functions that are quite efficient for parsing wide characters
and converting wide characters from/to single byte characters

completely is required. Thus functions described in 4.6.5.1, 4.6.5.2,
4.6.5.3 and 4.6.5.4 are introduced.

Because this is “"pure extension" to ISO 9899:1990, it has essential
restrictions as follows and is expected to be implemented for
encodings that are not state-dependent basically.

[Restrictions on the fscanf function]

In a state-dependent encoding, one or more shift sequences may be
included in the format and be executed as an ordinary multibyte
character directive. And shift sequences may also be included in an
input string. Because the fscanf function treats these shift
sequences in a quite same way as for single byte characters, an
unexpected match may occur or an expected match might not occur.

See examples described in 4.6.2.3.2.
[Restrictions on the fprintf function)

In a state-dependent encoding, redundant shift sequences may be
written.

B.10.2 Formatted wide character input/outbut functions

In the early MSE, formatted wide character input/outbut functions were
not introduced because an extension to existing formatted input/output
functions seemed to be sufficient. After considering the complete
model for wide character handling, the necessity of formatted wide
character input/outbut functions was recognized.

Formatted wide character input/outbut functions have quite same
conversion specifiers and qualifiers as existing formatted
input/outbut functions including 1 qualifier for c, s and

[conversion. Because the format string consists of wide characters
and the field width and the precision specify the number of wide
characters, some restrictions on existing functions are no more found
in new functions. This means that wide character are read/written
under the complete control of the format.

sy6

v .

Nov 29 1993 11:10:45 Annex.B

B.11 The introduction of the fwide function

While we believe that the MSE provides reasonably complete
functionality for manipulating wide-oriented files, we noticed

that no reliable mechanism existed for testing or setting the
orientation of a stream. (You could try certain operations to

see if they fail, but that is risky and still not a complete
strategy.) Hence, we introduced the function fwide as a means

of forcing a newly opened stream into the desired orientation
without attempting any input/output on the stream. The function also
serves as a passive means of testing the orientation of a stream,
either before or after the orientation has been fixed.

v .

Page 17

vy7

Nov 29 1993 11:10:45 Annex.B Page 18

B.12 Single-byte wide character conversion functions

Two single-byte wide character conversion functions, btowc and wctob,
have been introduced in the Amendment. These functions bridge over
a single-byte character handling and a wide character handling.

There is L’x’ == ’'x’ rule for a member of basic character set
specified in ISO 9899:1990. There was a discussion on this rule
in either way, to relax or to tighten. In the amendment,

this rule is preserved without any changes. Applying the rule

to all of single byte characters brings unnecessary constraint
on implementation with regards to wide character encoding.

It prohibits an implementation from having a common wide character
encoding for multiple multibyte encodings. On the other hand,
relaxing or removing the rule was considered to be inappropriate
in terms of practical implementation. The new function wctob

can be used to test if a single byte character function to

be used safely. For example, when a format string of the

scanf function is parsed and searched for a white space
character, the wctob function can be used combined with the
isspace function. Please refer to the specification of

iswxxx functions, as the wctob function is used to specify

the relationship between isxxx function and iswxxx function.

Meanwhile, when you write practically a code of the wide
character processing program, especially wide character
haqdling library functions, it will be necessary to judge if
this single byte is the first and only character of a valid
multibyte character. This is the reason of the introduction
of the btowc function. Moreover, with some encodings, btowc
can be reduced to a simple in-line expression.

v . : (/(/d/

Nov 29 1993 11:10:45 Annex.B Page 19

B.13 Extended multibyte and wide character conversion utilities

Although ISO/IEC 9899:1990 allows a multibyge character to have state-
dependent encoding (subclause 5.2.1.2), it is not sufficient to

support state-dependent encoding environments due to the following problem
of the multibyte character conversion functions (subclause 7.10.7)

1. Since the Functions maintain the shift state infor@ation internally,
they can not handle multiple strings at the same time.

2. The functions may generate redundant shift sequences as the output, or
can not handle redundant shift sequences as the input.

3. There is an inconvenience in the multibyte string conversion functions
(subclause 7.10.8) regardless of state dependency of the encoding. When
the encoding error occurs, it returns -1 without any information on the
location where the conversion stopped.

B.13.1 Introduction of the Conversion State

To handle multiple strings on state-dependent encoding, the committee
introduced concept of conversion state. The conversion state determines
the behavior of their byte-to-wide character or vise versa by the
position from the beginning of the multibyte character string, and store
information such as encoding, character accumulator and shift state.

The nonarray object, mbstate_t, is defined to hold the conversion state.

A zero-valued mbstate_t object assumed to be in the initial conversion
state. After a zero-valued mbstate t object is declared, but before any
operations are performed on it, the object is unbound. Once a multibyte
and wide character conversion utilities has been applied to the object,
the object beccmes bound and hold the above information.

The conversion utilities maintain the conversion state according to the
encoding specif:ecd in LC_CTYPE category of the current locale. Once the
conversion starts, the utility will work as if the encoding scheme were
not changed on condition that :

the utility is applied to the same string,
and

the LC_CTYPE category setting is the same,
and

the conversion direction is the same.

B.13.2 Conversion Utilities

As mbstate_t object was introduced, the necessity of related functions to
the object were discussed as follows: -

[Function for initialization])

Though a method to initialize the object is needed, it would be better
not to define too many functions in the amendment. Thus the committee
decided to assume a zero-filled mbstate_t object as a initial
conversion state object.

[Function for comparison]

The committee reached the conclusion that it may be impossible to
define the equality between two conversion states. If two mbstate t
objects have the same value to each attributes, they could be the same.
However, there may be another case that they have the -different values
but behave the same.

[The mbsinit function])

The function is introduced to test whether an mbstate t object is
initial shift state or. not, because the initial shift state is not
alway§ a certain value. The function is necessary because many
functions in the amendment treats the initial shift state as a
special condition.

Regarding prob;ems 2 and 3 described in the beginning of B.13,

the committee introduced a method to distinguish an immature multibyte G
segygecs, WElch requires more bytes to determine if ‘they form a valid 9/V4/
el btk a abavwecnbaw Feam an an~AAdin~ arrar Whan nnénnnterjnc an

Nov 29 1993 11:10:45 Annex.B Page 20

stores the immature character information. Thus, the user can resume
the pending conversion due to the immature multibyte sequence.

The new multibyte/wide string conversion utilities are made restartable
by using character accumulator and shift state information. According to
this enhancement, the functions have a parameter for source string as

a pointer to a pointer to the string. The function updates the argument
to point the position where the conversion stopped.

v . . Z/f'[)

Nov 29 1993 11:10:45 Annex.B

B.14 Column width

The number of characters to be read or written can be specified in
existing formatted input/output functions. At the traditional display
device that displays characters with fixed pitch, the number of
characters is directly proportional to the width that is occupied by
these characters. So the display format can be specified through the
field width and/or the precision.

In formatted wide character input/output functions, the field width

and the precision specifies the number of wide characters to be read or
written. The number of wide characters is not always directly
proportional to the width of them. For example, at the Japanese
traditional display device, a single byte character such as an ASCII
characters occupies different width from a Kanji character, while each
of them is treated as one wide character. To enable to control the
display format for wide characters, a set of formatted wide character
input/output functions whose metric was the column width were

proposed.

This proposal was supported only by Japan. Because this proposal was
based on the traditional display device with a fixed width of
characters and many modern display devices support a proportional
pitch, it was doubtful whether input/output functions in this proposal
were really needed. Though another set of functions that return the
column width at any kind of display devices for a given wide character
or wide character string were considered, they seemed to be out of the
scope of C language. Thus all proposals regarding to the column width
were withdrew.

If an implementor needs this kind of functionality, there are a few
way to extend wide character output functions with keeping an
implementation as the conforming implementation. For example, the
field width prefixed with a ’'#’ can specify the column width

as shown below:

$#N set the counting mode to "printing-positions",
and reset the $n counter

§N set the counting mode back to "widechars",
and reset the $%n counter.

-=-- End of Rationale ---

v .

Page 21

455

Virl2/1993 40ido ToLiDLIUE .

AR PR N

Normisheste-instituut

Kalfjoslaan 2

Postbus 5059, 2600 GB Delft
Teletoon (015) 690 390
Telefax (015) 680 190

Telex 38 144 nni Nl

The NNI regrets that it has to vote against SC22/N1443. The NNI does not
whish to support the solution offered for the usage of C with national variants
of the 1SO 646 character set. This solution is contained in clauses 2, 3and 4.4
of N1443.

There is pressure from countries using natonal variants of ISO 646 to have a
standard way of expressing C in the invanant subset of ISO 646 that is more
aesthetically pleasing than the trigraph solution that is embedded in the
current C standard. We understand their whish. But we have come to the con-
clusion that we do not see an acceptable way of realizing this whish. We see
three criteria for proposed solutions: completeness, aesthetics and technical
cleanness.

. The solution in N1341 is both incomplete and overcomplete. Incomplete
because no solution is offered inside strings and literal characters. Over-
complete because, to remain consistent with macro definitions for charac-
ters in the variant subset, it also contsins macro definitions for the invari-
ant subset; e.g. and_eq for &=, because or-_eq needs to be defined as /=.

- The result is barely aesthetically acceprable.

The proposal is technically feasible, but unsatisfactory. The solution uses
two technically different approaches ® solve the same problem; alternate
spelling of tokens and macro definitions.

Standardization of macro definitions .s, strictly speaking, not necessary.
Users can create their own sets of defizitions, without threatening portabil-

ity.

The use of the macro names and_eq a~d not_eq is confusing. and_eq is to
be used as replacement for the assignment operator &=, while not_eq is to
be used as replacement for the compar.son operator /=,

The proposal also seems to be in conf.ict with the emerging C++ standard
with respect to the digraphs <: and %..

we would further like to make the followinz two observations:

1. Usage of ISO 8859-1 (Latin-1), which solves this problem, is becoming
widespread.

2. We expect that the proposed solutton will be little used. Programs written
in the 1SO 646 invariant representatisn of C look so different from the
current representation that they will be hard to maintain for people used to
the current representation i.e the rest +f the world. We expect that for this
reason a large part of the community in countries that stated interest in
this proposal will keep on using the cu:rent representation of C.
Furthermore, only a few of the countras with national variants of 1SO 646
have expressed interest in this proposc..

The proposal in clauses 2, 3 and 4.4 is not zood enough to be acceptable, even
as a compromise. Especially because it soires a disappearing problem. We see
no reason to burden the international comrzunity with this part of N1443.

The rest of N1443 is a worthwhile docume:r that we welcome. We will support
N1443 if the objections mentioned abov: are taken away by removing the
clauses 2, 3 and 4.4.

v .
it e

12,13/83 11:45 FAX 613 896 2690 ; ra‘/ve FINULT L/E W@ Ouo

13-12-1993 311108 FROM BS! INFD SVSTEWS 681 20884 T0 010__1_6_1329;5“2'6‘9_0___ P.Gi

Meces send this form, duly completed, to thwe sereslniot indkaned sbove.

F" VOTE ON COMMITTCE —“
—lennenl
Tioting aste for wiing wwcl ssc22 N
L 1993-12-1Q
'
so/TeC 1 /86 22 cmm»rmmamemmm
: e an rgistration of the draft ge & DIS, In acuwrdnna with
% Programming Languages, theis 243 of part 1 of U IEC/ISO Directves
eavionments snd Sysam software
| g
. Secreurriat_Canads, SCC

‘ cp 9899:1990 PDAM 1
" l e S

' e s - st 1 % TEOEC SE95.15% g g
b sysiem software interiaces Aml iw $899:1990 Progmmming iangusge C
on: Intagrity Addendam

D We agree to the elreulstion of the drafy as ¢ DI In essordance with 2.6.1 of pert 1 o7 the {EC/ 180 Lirectives

We do not agree to the circulstivn of the dratt as 8 OIS
The reasons tof Our disdgreement ate the following (uUes 8 atnamte nage as annex, if Aecessary)

l'} Tie {o“th howe mol” bu\d.z.h_l'g_d/
vuv.»uh-d w owr vwole om N B4l
Clh&bﬂé s B Tl wmd ko
Dilebin of (oo clavses wil ehomge

o vole o ‘TfMl-

F-mempe’r voting U ‘<
— | oo 10. Dcf_a.e.\-.l-u— %93 srewre C M J’“h&s

POAM R (IR0 .

B 11 Al

i s o Y5

