1 X3J11/93-062
January 3, 1994 WG14/N315

Minutes of X3J11.1 Meeting #6
(NCEG Meceting #11)
6-7 December 1993

Kona Hilton
Resolution Room
Kailua-Kona, Hawaii

Attendees

Harry Cheng, Frank Farance, Sam Figueroa, Jamie Frankel, Doug Gwyn, Rex
Jaeschke (Chair), Bob Jervis, David Keaton, John Kwan, Tom MacDonald (Vice

Chair), Mike Meissner, Tom Plum, Linda Stanberry (Secretary), Jim Thomas,
Fred Tydeman, Neil Weidenhofer, Jeff Zeeb, Jonathon Ziebell.

Legend

The following symbols in the left margin of these minutes have the indicated
meaning:

A General approval

SV Straw vote

MSP Moved, seconded, passed (formal vote)
" Action item

The activities reported here are grouped by subject and do not necessarily follow
the exact chronological order of presentation during the meeting.

1. Opening Activities

1.1  Opening Comments, Goals and Purpose of the Meeting
The meeting was convened at 9:00 a.m. on Monday, 6 December 1993, by

Chairman Jaeschke. MacDonald served as Vice Chairman. Stanberry served as
meeting secretary.

Jaeschke announced that the goals and purpose of the meeting were essentially
"business as usual," to continue work on each subgroup's proposals. Three have
already been "forwarded" to X3J11, and four others are still pending. Another
goal is to discuss how to continue after the merger of NCEG and X3J11, which
will be effective in January.

1.2 : Host Facilities

Plum Hall, Incorporated, was the host for this meeting. Plum gave information on
local facilities and provisions for photocopying.

1.3 Approval of Previous Minutes [93-025]

Tydeman corrected the dates on page 19 of the "next" X3J11 meeting. They met
on 1-3 of December.

(‘J



X3J11/93-062

2
January 3, 1994 WG14/N315

A
14

The minutes were approved without further correction.
Status of Action Items from Previous Meeting

Jaeschke reported that, although not indicated as an action item in the minutes, he
had investigated making the rationale for the C standard available electronically,
and it is now included with the NCEG documents available via anonymous ftp in

directory DMK/nceg at

ftp.dmk.com

Jaeschke will notify Hal Computers, David Hough, and Microsoft of loss of
voting status for non-attendance. Done.

MacDonald will forward 93-019 to X3J11, and to Keaton for ftp update. Done.
Jaeschke will talk to Prosser on status of the [compound literals and designated
initializers] proposal, and ask him to send [it] to the NCEG reflector with the
changes when it is done. Done, 93-024.

Meyers, Tydeman, and MacDonald should send their comments on FPCE
proposal to Thomas electronically. Done.

Thomas will produce a cover letter with these comments and FPCE proposal with

. the approved amendments, and forward to X3J11 and to Keaton for ftp update.

Done, although not yet sent to Keaton for ftp update.

Meyers and Kwan will develop a proposal for an <inttypes.h> mapping. Done,
X3J11/93-056 (WG14/N309).

Meyers will revise and recirculate his paper on extended integer type issues. Not

-done, but subsumed by work with Kwan on <inttypes.h> proposed mapping.

g(\;van will report the NCEG votes and positions back to the SPARC committee.
ne.

Jaeschke will talk to Prosser and Ritchie to determine the status of the [fat
xmters VLA] proposal. No response received, and Jaeschke didn't follow up on
s.

Meissner will work with Prosser to produce a complete VLA proposal. Meissner
has brought an updated proposal, but it is independent of the earlier Prosser/

Ritchie proposal.

MacDonald will include Plum's notice for the December meeting in the next
mailing. Done.

Tydeman believed he had two additional actions items to answer: (1) Does a 48-
bit pointer imply that an implementation must have a 48-bit integral type? and (2)
How many digits must strtod() process? Both of these were submitted as defect
reports to X3J11/WG14 and answered there.

&30



January 3, 1994 3 X3J11/93-062

. 1.5

1.6

1.7

1.8

WG14/N315

Approval of the Agenda

The agenda was rearranged in order to accommodate new requests for agenda
time for presentations. Papers for agenda items were identified. The DPCE
subgroup announced an evening meeting for Monday night at 8 PM.

Introduction of Participants

Attendees introduced themselves, and identified their roles within subgroups. An
attendatnce list was circulated and is attached to these minutes.

Distribution of New Documents

X3J11.1/93-034, "Data Parallel C Extensions," which was not available for the
second mailing was distributed at the meeting.

New documents were assigned X3J11(WG14) numbers, and will appear in the
next X3J11 mailing. There will not be any more X3J11.1 mailings. Available
documents were distributed.

93-054 (N307) "Why Infix Relational Operators,” Thomas, distributed.
93-055 (N308) "Hexadecimal FP Constants,” Thomas, distributed.

93-056 (N309) "Extended Integers," John Kwan and Randy Meyers, distributed.

93-057 (N310) "Why Imaginary Types," Thomas, distributed.

93-058 (N311) "Numerical Extensions to ANSI C in the CH Programming
Language," Cheng, distributed.

93-059 (N312) "Fat Pointers," Meissner, distributed.

93-060 (N313) "A Proposal for Standard C++ Complex Number Classes,"
Vermeulen, distributed.

93-061 (N314) "Minutes of DPCE Meeting, 6 December 1993," Stanberry.

93-062 (N315) "Minutes of X3J11.1 Meeting #6, 6-7 December 1993,"

Stanberry.
Identification of voting members
After the attendance list was consulted, MacDonald announced that there were 17

eligible voting members, and 10 were attending. 8 non-voting members were in
attendance.

Status of proposal to merge J11.1 into J11

Jaeschke reviewed the status of the merger. The results of the unanimous letter

- ballot in favor of the merger from X3J11.1 members was forwarded to the OMC

(formerly SPARC), who essentially gave their unanimous approval to the request.
It is currently the subject of an X3 letter ballot, closing in January, for final
approval. It was assumed for the rest of the discussion that there will be no
objection to the merger.

Jaeschke clarified that NCEG/X3J11.1 was not "disbanding" as indicated,
unfortunately, in the letter ballot; rather, the same group of heretics would be
reconvening under a different banner.



4 X3J11/93-062
January 3, 1994 WG14/N315

Jaeschke then discussed the organizational changes for handling NCEG issues
under X3J11. As convenor of the J11 meetings, he will attempt to clqstcr the
NCEG agenda items together for those who attend only those discussions. Only a
few persons are affected by this, as most of the NCEG representatives are also the
J11 representatives for their organizations and have been attending both meetings.

From now on NCEG documents will have dual X3J11 and WG14 numbers, to be
obtained from P. J. Plauger (see information below on mailings). MacDonald
asked about what should be done with X3J11.1 documents that were allocated,
but have not yet been produced. These documents will need to be reassigned
X3J11/WG14 numbers if they are going to be distributed in future J11 mailings.

As for voting rights after the merger, Jaeschke intends to propose that voting
rights be formally extended to those few NCEG members who have not been J11
members, essentially counting their attendance at X3J11.1 meetings as attendance
for J11 voting determination. Those members who have belonged only to
X3J11.1 will have to become members of X3J11.

Plum confirmed that the committee has the right to make such exceptions to the
usual attendance and voting rules to accommodate the transition from J11.1 to
J11. He proposed that a specific list of persons to whom to grant voting rights be
prepared for the next J11 meeting. -

g Jaeschke will email both the NCEG and J11 reflectors to notify anyone
who may be affected on the rules for attendance and voting after the merger.

3. Liaison Reports
X3J11

Jaeschke reported on the recent activities of the J11 committee which includes
processing defect reports, publishing their first Record of Response and Technical
Corrigenda, reaffirming their support for the Normative Addenda, considering
NCEG documents, and voting to undertake a revision of the C standard. The
international vote on the Normative Addenda at the WG14 meeting the previous
week was 3 for, 0 against, and 1 abstention. The work for revising the C standard
will begin with producing a charter proposal to set the ground rules for what will
be considered, focusing on (1) C/C++ compatibility, and (2) prior art (including
some or all of the NCEG technical report). Jaeschke has taken an action item to
collect suggestions for what to include in the charter, and to produce the proposal
for the next J11 meeting.

‘X316

Plum reported on the recent activity in the C++ committee. There has been a push
to resolve many C/C++ incompatibilities, which included defining "plain ol' data
structures” (PODS) that maintain C semantics under C++. There was nothing
very specific dealing with NCEG issues to give as feedback, due mostly to the
fact that the J16 subcommittees have too much already on their agenda to spend
much cogmittce time on the NCEG proposals. The following points were briefly
mentioned:

The restricted pointers paper had been presented, but currently rejected by the
extensions subcommittee.

232>



January 3, 1994 5 X3J11/93-062

WG14/N315

A Complex proposal from Vermeulen of Rogue Wave was presented at the
meeting in November. The proposal is consistent with the Knaak NCEG
paper, and presents ‘complex' as implementable as classes or as a builtin data

type.

There was some discussion about the FPCE proposal with respect to C++ (Jervis,
Thomas, Gwyn). Plum noted there is an incompatibility with the FPCE widest-
need and C++ overloading rules—one or the other could be specified, but not both.
Gwyn requested feedback from J16 on the FPCE overloading issues, and
MacDonald asked for feedback on the controversial FPCE issues such as pragmas
and relational operators.

Plum briefly discussed the time schedule for J16. The November meeting was
supposed to be the last time to make new substantive proposals. In order to finish
a committee draft on schedule, they can only consider organizational issues form
now on. Hence any NCEG proposals would be considered just as "compatible
extensions" from now on, but would not be part of the proposed C++ standard.

Plum expressed a concern with the work on a new revision of the C standard, as
this will greatly increase the need for liaison activity between J11 and J16.
Jaeschke suggested that C++ could freeze C as of now, and even consider the
Normative Addenda after issuing their standard.

X3H5

Farance reported that he had attended the X3HS meeting held in November, at
which time they agreed to continue informal liaison with the DPCE subgroup.
Jaeschke noted that the X3HS chair is in danger of losing his officer status for
failure to follow X3 rules (e.g., not submitting an annual report).

X3T2

Tydeman reported on the current status of the LIA (Language Independent
Arithmetic) proposal, which is currently out for public comment. J11 agreed to
forward Tydeman's remarks on the document as the J11 position, along with the
question, "Is this needed?"

Tydeman will circulate his edited comments to the J11 reflector before forwarding
them to T2. He plans to report on what else is happening in other SC22 groups
with respect to the LIA and similar proposals. :

_ There was some discussion of whether or not LIA requires [EEE754.

POSIX and DSP

There was no one present to report on any activity in these areas.

Designated Initializers and Compound Literals [X3J11.1/93-024]

Jervis led the discussion of the status of this proposal, presenting the updated
proposal in 93-024. He reviewed the J11 meeting decisions, in which Plum had

raised the issue of C++ compatibility: the functionality provided by compound
literals should logically be provided by constructors in C++. Plum hasa J11

S

(2}



6 X3J11/93-062
January 3, 1994 7 el
action item to produce a paper addressing these issues, comparing the two
approaches.

Jaeschke noted that the proposal could be split into two separate proposals; they
had just been presented as one proposal up to now for organizational convenience,
but are orthogonal proposals.

There was discussion (Gwyn, Jervis, Keaton, Meissner, Farance) questioning the
intent that compound literals in a loop block would be allocated but not freed.
The paper is explicit that this is the intent. It was noted that the storage could be
reused if in a block: some confusion exists on the proposal's use of "function
body" rather than block, and there was consensus that this needs to be clarified in
the next revision of the proposal. The functionality of malloc() versus alloca()
was compared. An explicit control mechanism for storage management 1s
desirable. The motivation for compound literals is to provide a portable,
convenient method for expressing structured values.

There was some discussion of the utility of the two proposals. Jervis believes that
designated initializers are more important than compound literals. Farance
believes that compound literals will be very useful for DPCE.

Plum opposes both, believing that neither are strongly motivated numerical
extensions, and constructors/destructors buys you more, such as dynamic
initialization of statics.

Farance noted that adding constructor/destructor functionality won't eliminate the
need for current C initializers as in "int i = 10;". The proposal is a natural
extension of what we currently have.

Jervis reported that in the ad hoc meeting held last week on what extensions J11
members would like to see in the next revision of the C standard, the vote was "14
Yes, 1 No" for compound literals and designated initializers, and "7 Yes, 4 No"
for constructors/destructors. He further indicated he would support the proposal
with changes to eliminate the surprise of infinite allocation and clean up implied
with the current proposal.

CLwyn indicated he would support the proposal with changes of "function body" to
"block."

MacDonald reminded us that Fortran has the designated initializer functionality,
and we should provide the equivalent in C.

Jaeschke closed the discussion by suggesting that proposals for handling the

- scoping/allocation issues be emailed to Prosser. When Plum's paper is available,
we siould revisit whether this belongs in the TR for NCEG, or if it should be
deferred to the J11 standard revision.
Keaton has a J11 action item to take over the work on this proposal.

* Keaton will take over work on the compound literal/designated
initializers proposal, and pursue answers to the questions raised at this meeting.

23Y



5 X3711/93-062
January 3, 1994 WG14/N315

e - A Aliasing [X3J11.1/93-026, 93-031, 93-040, 93-041; X3J11/93-058 (WG14/N311)]

MacDonald gave an overview of the presentation given to J11, in which he had
described the proposed edit in 93-040 to the restricted pointer proposal in 93-026:

Rlars i

* Delete section 1.6: aliasing of unmodified objects

« In the Semantics subsection of section 2, delete the phrase shown on the first
line below:

Elsmedifiedhen

all references to values of
O shall be through pointer
expressions based on P.

The intent
Consider types with two successive restricted pointer derivations, as in:

int * restrict * restrict p;
int * restrict * restrict g;

The intent was that p and q can be analyzed as if they were arrays:

™ int a[][n];
int b(][n];

The problem

Without the edit, there is an unintended distinction between references which
modify the pointers referenced thru p and q:

*++p[i]
*q[k]++

and those that do not:
plil (3] = ...
qlm] [k] = ...

Example 1

void fl(int n, int * restrict * restrict p,
int * restrict * restrict q)

{

int 1, 3; /* Without edit, */
for (i=0; i<n; i++) /* optimization */
for (j=1; j<n; 3j++) /* is inhibited. */

Pli][3] += q[i][j-1];



8 X3J11/93-062
January 3, 1994 WG14/N315

Without the edit, p and q may point to the same array of restricted pointers,
since that array is not modified.

« The most natural usage does not promote optimization

Example 2

void f2(int n, int * restrict * restrict p,
int * restrict * restrict Qq)

{
- § o <t D B /* Without edit, */
for (i=0; i<n; i++) /* optimization */
for (3j=1; Jj<n; Jj++) /* requires extra */
*++p[i] += *q[i]++; /* analysis. */

}

Without the edit, p and q may not point to the same array of restricted
pointers, since that array is modified.

« The compiler must track which pointers are modified to establish the
absence of aliasing that is in this example but not in the first example.

Example 3

void £f3(int n, int (* restrict p) [n],
int (* restrict q) [n])
{

bl A N B
for (i=0; i<n; i++) /* Optimization */
for (j=1; j<n; 3j++) /* is easy. */

: plil (3] += qli]l([3-1];

Here, since p and q point directly to the modified objects, those objects must
be different (with or without the edit).

« The original intent was that f1 and f2 should be no more difficult to optimize
than f3, and this intent is realized by the edit.

Minimal disad
The disadvantage is only that function calls that result in aliasing of

unmodified objects will now have undefined behavior, even in those cases in
which no optimizations are at stake.

void f(int * restrict p, int * restrict q,
int * restrict r, int n)
{

int i;
for (i=0; i<n; i++) pl[i] = q[i] + r[i];

234



9 X3711/93-062
January 3, 1994 WG14/N315

Acall f (a,b,b) will be undefined (even though it will almost certainly give
the expected results). The programmer can either un-restrict q and r, or define
another version with one less parameter. -

Jervis asked if Fortran has the same problem. MacDonald clarified that Fortran
doesn't have pointers, only arrays.

Plum asked if the need for the edit reflects that the specification of restrict is still
imprecise; that it hasn't been characterized carefully enough yet? Is the problem
that we haven't located the motiviating example yet? Or is there no motivating
example? Could the problem be solved with const versus non-const
distinguishing of pointers--e.g., in example 1, use

int const * restrict const * restrict g

Jervis and Keaton both argued that optimization in example 1 is not inhibited
without the edit, and that the edit is not needed. After off-line discussions,
however, they agreed that the edit was needed.

Gwyn suggested that the proposal needed to better distinguish what is meant by
modifiability. MacDonald related that it is really hard to get the words right about
walking through references with modifiability; he had tried before and abandoned
it as an intellectual exercise!

Consensus at last was that CRI should proceed with the edit and present the
revised proposal at the next meeting.

= MacDonald/Homer will produce revised proposal for aliasing.

Cheng believes that restricted pointers add too much to the language, and he
presented alternatives to this approach from his papers X3J11.1/93-031 and 93-
041, as summarized in X3J11/93-058.

Alternative Solutions to Restricted Pointers for Anti-Aliasing

1. Add do-loop. This has "fixed size" advantages.
2. Add assumed-shaped arrays, only arrays can be passed to assumed-shape

arrays.
3. Add nested-functions that modularize the program and ease the detection

of aliasing. The functions must be in the same file, which helps analysis.
4. Add array syntax without aliasing. :

_Jervis asked how his do-loop proposal handled aliasing—does it implicitly
"restrict” the pointers? MacDonald suggested that you can capture aliasing and
bound information before the loop, but this doesn't necessarily help alias analysis.
Jervis indicated that the C semantics with respect to pointers shouldn't be different
from Fortran because that would be confusing; the alias analysis should be the
same. :

Meissner itemized two objections to the alternative proposal: (1) nested functions
introduce all sorts of problems (e.g., &nested_func implies getting context of the
function), and (2) the proposal is too limiting, not general and separable from
other proposals.

z39



3, 1994 X3J11/93-062
T i WG14/N315

Jervis noted that assumed-shape arrays can't be dynamically allocated, and this is
losing a C advantage over Fortran. Cheng pointed out that you can use deferred-
shape arrays for this; assumed-shape arrays are not intended to be the only
mechanism for passing arrays.

Gwyn and Thomas also voiced concern over the scope of the proposal and the fact
that it addresses more than one problem, without separating them out into distinct
proposals.

6. Complex [X3J11.1/93-020, 93-030, 93-035, 93-036, 93-048, 93-049, 93-058;
X3J1193-057 (WG14/N310)]

MacDonald presented revision 10 of Knaak's proposal for complex, X3J11.1/93-
049.

« There are no diff marks in revision 10 to indicate the changes from revision
9, due to the extent of the changes in reorganizing the document to include the
rationale in each section.
« This is intended to be CRI's final proposal.

The following additional changes to the proposal were described:
Promotion Rules
« Changed promotion rules back to:

When real op complex, real gets promoted tocomplex

« Rev 9 promotion rule only solved half of the gratuituous NaN problem—<.g.,
doesn't address:

real op complex

if one operand has a zero real part and the other contains an infinity (a
grautitous NaN might be generated).

Grammar

Added grammar rules and terminology to clarify the distinctions between
floating types, real floating types, and complex floating types. Last time had
tried to fold types and the sense of the committee at that time was that these
needed to be distinct.

« floating types:

real ﬂoaﬁng types
complex floating types

floating-constant:
real-floating-constant
complex-floating-constant

i



X3J11/93-062

1
January 3, 1994 | WG14/N315

Octal and Hex constants can'not be suffixed with i.

1i /* ok still */
Ox1i /* not ok * /

Note that this does not interact with Thomas' FPCE proposal for hex floating
point constants as it uses different syntax.

Other changes

» changed section numbers from ANSI to ISO (ANSI)

» eliminated octal and hexadecimal complex constants

« changed the Rationale sections to reflect the current state of affairs and to
prepare for possible publication in the Technical Report.

With respect to the revised promotion rules, Thomas noted that the sum of two
imaginary numbers is always imaginary, mdcpcndent of value. MacDonald will
talk to Knaak about this.

Plum, acting as C++ liaison, requested that among the names defined in
<complex.h> there should be synonyms added, or the names should be changed,
to use underscores for float_complex, etc. After discussion, the consensus was to
provide names without underscores because we have CRI prior art, but
MacDonald will discuss it with Knaak.

MacDonald will recommend changing the names defined in <complex.h> to use
underscores to Knaak.

Thomas presented his latest revision of his complex proposal, X3J11. 1/93 048,
along with a Monday paper on imaginary types, X3J11/93-057 (WG14/N310):

* Complex support for Special Values
* Infinities, NaNs, signed zeros
* CCE (93-048) versus CEC (93-049)
CCE extends treatment of special values from real to complex
CEC does not handle special values
* Key difference: imaginary type

. Scéxantic/efﬁciency problem without imaginary types
ood:
2.01i * (oo + 3.0i) => - 6.0 + eeoi

2 multiplies
Bad:

2.0i * (o0 + 3.0i) => (0.0 + 2.0i) * (e + 3.0i)
=> (0.0 * e« = 2,0 * 3.0) + (0.0 * 3.0 + 2.0 * o0)i
=> NaN + eooj

4 multiplies, 2 adds, and undesirable result



12 X3711/93-062
January 3, 1994 WG14/N315

MacDonald disagrees with the conclusion, and believes that you can still achieve
the optimization of number of operations. Gwyn noted that sufficiency
requirement must be considered, too. Kwan noted that the implication is that no

promotion rule applies for complex op complex.
Thomas next identified the following issues for comparing the proposals:

« Perfection or nothing. Belives the CRI position is that, since we can't handle
all special values, don't handle any. Thomas believes that we can handle a
significant number of the special value cases, however. MacDonalc} s;ated
that this is not worth adding three new types. Thomas noted that this is not
argued in the Knaak paper.

« Special cases are rare, which makes their careful treatment more important.
Noted that they are rare from a data perspective, but not necessarily rare in
code treatment. Farance believes that you would still need to have code that
deals with special value cases with this proposal. Gwyn noted that since there
are no universal formulas for handling NaN's and e's, he questioned the utility
of automatic computation of results for special cases as this may be a
disservice to users who then don't (have to) think about these cases. But
Thomas believes this disallows making results predictable for the specialist,
who otherwise must be paranoid in writing code.

« Simplicity-the Thomas proposal simplifies the specification,
implementation, and the programs for complex.

« Complex special cases are more, well, complex.

« Preclusion of support for special cases. Special cases are not precluded in
the CRI proposal. Thomas is still skeptical of this.

« Other languages and imaginary types. Although there is no imaginary type
in Fortran, there is a class-like package available in Ada with imaginary types
(see X3J11.1/93-035, 93-036).

« IEEE and complex. IEEE doesn't specify complex, but it is derived from
real arithmetic model-i.e., the Cartesian product model.

Finally, Thomas outlined what the alternatives would be if there was no imaginary
type included with the complex proposal, and claimed that each of the alternatives
would be at least as complicated as the imaginary type proposal.

« under the table implementations

« exclude infinities, NaN's and signed zeros from simple specification

« auxilliary specification

« imaginary unit I which has complex type and imaginary property

« propogation rules for imaginary and real properties-i.e., promotion rules by
property rather than type

eci+ci=ci,ci*ci=cr,...

« conversion rules of ci, cr to complex yields ...

» adaptation for C++ problematic

Y0



January 3, 1994 13 X3J11/93-062

WG14/N315

« simpler for whom? Without imaginary type, complex is only useful for a
very few persons who are really interested in managing all the special cases
themselves.

Cheng presented the complex proposal components of CH as described in
X3J11.1/93-020 and X3J11/93-058. This proposal includes specification of:

¢ Declaration of Complex Variables

A Complex Constructor

« I/O for Complex Numbers )

« Semantics of operations on complex values, both as operators and functions
« Valid Ivalues related to complex numbers

Cheng presented an overview of different models for representing complex.
These models differ in their specification of infinities in the complex domain.
Cheng's proposal is consistent with a complex model in which there is only one
infinity. There was some discussion (Farance, Gwyn) on the regularity of
infinities under these models.

Cheng noted the following properties of his proposal:

+ Complex numbers follow mathematical conventions

* Program Complex Numbers in the Extended Finite Complex Plane

« Deliver a Consistent Correct Numerical Value or Complex NaN

« Distinguish -0.0 from 0.0 in Real Numbers, not in Complex Numbers

« The Principal Value © lies in the range of -t <O <7

o F(x + i0) = F(x) + i0, if x is Within the Valid Domain of F(x)

« When a complex is converted to real number, only its real part is used and
the imaginary part will be discarded if the imaginary part is identically zero.
If the imaginary part is not identically zero, the converted real number
becomes NaN.

« Optional Arguments for Different Branches of Mulitple-Valued Complex
Functions are used

FP/IEEE [X3J11.1/93-028, 93-029, 93-033, 93-058; X3J11/93-054
(WG14/N307), 93-055 (N308)]

Thomas presented a few last proposed tweeks to the FPCE part of the technical
report.

The first addresses the comments received on the last ballot from Meyers, in
which he noted that returning HUGE_VAL from strtof() and strtold() would be

- problematic. The proposal is to introduce new macros for the float and long
double versions of HUGE_VAL, HUGE_VALF and HUGE_VALL. The changes
are then made to the appropriate sections throughout the proposal.

Another tweek resulted from a problem noted by Clive Feather with Standard C
name spaces and the new (unreserved) names introduced by <fp.h> and
<fenv.h>. The concern is that, since the names are not reserved names, it would
be possible to link with an incorrect library. The proposed fix is to add words in
the rationale to suggest how an implementation can preserve the program name
1sipacc.: by providing a mapping of the new names to names reserved for the C




January 3, 1994 14 X3J11/93-062

MSP

8.

WG14/N315

#define acosh __acosh

There was some discussion on whether this was adequate to solve the problem. It
was noted that this is the same solution suggested in the Normative Addenda for
the multibyte names.

There was one other substantive change proposed, in response to a bug found by
Yinsun Feng, correcting the wording of differences between roundtol() and
rinttol() in F.6.7 to be with respect to default rounding direction.

There were some additional editorial changes to other parts of the document.
There were no objections to any of the proposed changes.

Shall we accept the proposed changes to the FPCE document? (Farance, Zeeb)
9 Yes. 0 No. 1 Not voting. .

Thomas will prepare draft #2 of the FPCE document with these changes.

Cheng presented an overview of the FP/IEEE features included in CH as
summarized in X3J11/93-058.

* Program Real Numbers in the Entire Real Domain with NaN, 0.0, and +Inf
* Deliver a Consistent Correct Numerical Value or Nan

* Polymorphic Functions

* Add Binary Integral Constants—e.g., 0b11110, 0B11110

* Add Binary Format Specifier, %b

* Add Double Constants—e.g., 3.4D, 3.4e9D, 3.4E9d

* Add Exclusive-or Operator, A

* Increment and Decrement Operation-allow multiple ++ or — operations

* Bitwise Shifting Operation—reverse shift direction if shift amount is negative
* Functional Type Conversion Operation—int, float, complex conversions

* Relational Operations—detail results for exceptional values in relational
expressions

* Single Delimiter Comment—uses /# to delimit comment to end of line

Gwyn suggested that Cheng should propose these éhangcs to X3J11.
MacDonald noted that the mechanisms for getting agenda time to consider
such proposals requires that a champion attend the meetings to present the
proposal.

Those interested in further discussions with Cheng on these issues may
contact him at:

hhcheng@ucdavis.edu
Array Syntax [X3J11.1/93-034, 93-046, 93-050; X3J11/93-058 (WG14/N311))

Stanberry presented the status of the DPCE subgroup. (Thanks to Keaton for
providing portions of this section of the minutes from his notes on the discussion!)

* DPCE met in September in Toronto to work on editing and preparing
X3J11.1/93-034 for distribution at this meeting. This document is considered



1994 15+, X3711/93-062
Januzg( A WG14/N315

a "draft" as it is still partially unspecified. However, it is the basis for future
changes that the subgroup will consider. The subgroup has learned that it 1s
not easy to develop complete and consistent standardese to capture the intent

of their technical proposals!

« They will hold a technical/edit session in the evening during this meeting
(see below).

« They will hold another technical/edit meeting, March 23-35, in Pleasanton,
CA. They plan to complete a revised draft of the proposal for the second
mailing of J11 before the June meeting.

« Discussion of the proposal takes place between meetings on email at:

dpce@farance.com
dpce-request@farance.com /* to subscribe*/

« The document will soon be available in Keaton's ftp archive as well.

Stanberry then gave an overview of the current proposal as detailed in 93-034:
« Concepts - the proposal introduces new concepts including/involving:
« shapes — encapsulation of
« dimension
« layout
* context :
* types - objects, values, operands
e operations
« contextualization
« intrinsics and builtin functions

« A shape is a descriptor of parallel data.
* not itself parallel
« used to define parallel types :
« is a new object type, which implies that it can be assigned, copied,
passed as a parameter

shape [10][20]S;
shape [200]T;
shape U;

S;

T;

(@RI O [P I

int:U localvar; /* block (function body) scope */

U
U
f
{

}

« Shapes when declared can be partially or fully unspecified, or fully
specified:

shape S; /* fully unspecified */
shape [10]T; /* fully specified */
shape [][]U; /* partially unspecified */



16 X3J11/93-062
January 3, 1994 WG14/N315

« Examples to illustrate how rank, dimension, and layout are specified:

shape [100][200]S;
/* rank 2, dimensions 100 and 200, default

layout (implementation defined) */

shape [1000 block(10)]1T;
/* rank 1, dimensions 1000, layout-blocks of

10 consecutive elements per memory
partition */

shape [500 scale(10)]U;
/* rank 1, dimensions 500, layout-evenly

distributed across memory partitions in
blocks of 10 elements */

MacDonald asked if shapes can be multidimensional, unlike arrays. Answer was
that that wasn't quite the right question, but shaped objects (not shapes
themselves) are multidimensional in the way that arrays aren't. Gwyn made an
analogy between shapes (descriptors) and Algol-60 dope vectors.

It was noted that a goal of the proposal is not to cater to either SIMD or MIMD
machines in particular.

There was some discussion of the syntax of shape declarations.

* A parallel type is a new aggregate data type derived from an element type
and a shape.

* A parallel object is an object of parallel type: "A structured collection of
o}rlle or more identically-sized objects where the structure is defined by a
shape."

* A collection of C objects

* Object-like, but not strictly a C object

It was noted that parallel objects are not necessarily contiguous.

There was discussion (MacDonald, Frankel, Jervis) of memory layout: memory
layout distinguishes an array of parallel objects from a parallel array of objects.
Various people attempted to explain implications of this but much confusion
remained. During the discussion, it was pointed out that a picture would help.

shape [100]S;
shape[10] [20]T;

int:s x; /* parallel int type */
float:T y; /* parallel float type */
double:S z; /* parallel double type */

struct {...}:T a; /* parallel struct type */
union {...}:S b; /* parallel union type */

int:8 *p: /* pointer to parallel */

7/"/ ‘1 ‘



January 3, 1994 17 X3J11/93-062

WG14/N315

float:T q[100]; /* array of parallel floats */

typedef int A[100]; :
A:S w; /* parallel array of ints */

int sS850y ; /* function returning parallel int */

« Note: element type of a parallel type cannot be parallel, and parallel structs
or unions cannot have parallel members or pointer members.

« Parallel operands are parallel-typed: either parallel objects (variables) or
parallel values (expressions)

» Parallel operations
* Promotion rules extended—a non-parallel value is promoted to a parallel
value by replicating the non-parallel value
« Conversion rules extended-both the integral promotions and the usual
arithmetic conversions are modified for parallel operands

shape [10][20]S;
short:S a;

int:8 b;

char c;

float:is 4;

a + b; /* a is promoted to parallel int */

{0 2 /* ¢ is promoted to parallel int */

b + d; /* b is converted to parallel float */

* Operators that are extended to produce parallel values
* arithmetic: +,-,%,/,%
* shift: <<, >>
*unary: ++, -, &, 1, *
* bit: &,I,~,A
« relational/equality: <, >, <=, >=, ==, I=
* access: ., ->

shape [100]S;
int:S a,b:;
struct {int a;}:S x;

a + b; /* parallel int whose element values are
the element-wise sum of a and b */

a << 2; /* parallel int whose element values are
the element-wise shift of a by 2 */

b++; /* increments every element of b */

b & 0x101;/* parallel int whose element values are
the logical product of elements of b
and 0x101 */

a < b; /* parallel int whose element values are

’ the element-wise comparison of a and b
* .

2 f/)’



: X3J11/93-062
January 3, 1994 18 WG14/N315

X.a; /* parallel int whose element values are
selected from the a field of the
parallel struct x */

» New operators for parallel operands . .
« reduction operators—new use of "compound assignment operators” as
unary operators, as well as new operators for min and max

shape [100]S;

inEssix;

+=x; /* Sum reduction of elements of x */
&=X; /* Logical product reduction of x */
<?=x; /* min reduction */

>?=x; /* max reduction */

» parallel element accessing—"parallel indexing"

shape [100]S;
int S 'x;

[10])x; /* Accesses "10th" element of x */

* reflects potential non-local cost (communication) to access element
» future specification will detail indexing by parallel int, e.g.,

inti:8 «a, b, 'e;

a = [blc;
[(bla = c;

* Assignment operators

shape [100]S;
int:S x;
int sum;

x =0; /* Assigns every element of x to be 0 */

sum = 0;
sum += x; /* Adds every element of x to sum */
/* Same as sum = sum + += x */

* Contextualization
* The context of a shape is the set of active positions—i.e., which elements
will participate in parallel operations
* Default (initial) context is all positions are active
* Context modification occurs in
* where and everywhere statements
*&&, | |, ?2: operators
* scope of context modification is the operation or statement block
* context is restored at the end of the operation or statement block
* Masks are parallel ints specifying context

-vb



January 3, 1994 19 X3J11/93-062
WG14/N315

shape [100]S;
int:S a;
float:S b;

b = a; /* all positions active */
where (a >= 0) /* Sets new context for S */

b = a; /* executed for active positions */
else

b = -a; /* executed for inactive positions */
/* context of S restored */
where (a > 10) /* Sets new context for S */
e o
everywhere (S) a++; /* overrides (resets) context

of S */

}
/* context of S restored */

* Other features
« elemental functions
* operate elementally on elements
» act as non-parallel functions on scalar argumcnts

void elemental f(int a);
{
a++;
s }
shape [100]S;
inksS xz2.
int y;

f(x); /* As if parallel execution for each
element of x */
f(y); /* ordinary C function call */

« Not yet specified in the document are the following features that have
been proposed and accepted during technical discussions:

* nodal functions

* slicing

« parallel pointer handles

« intrinsic/builtin functions, including:
dimof() rankof()
shapeof() positionsof()
allocate_shape() deallocate_shape()
pcoord()

* library extensions
« parallel versions of math

* parallel storage management

Parallel control flow proposals have been debated by the DPCE subgroup during
techmsc:ll sessions, without consensus being reached, so it was left out of the
proposal.

r)
~



20 X3J11/93-062

3, 1994
Sapuay WG14/N315

Stanberry summarized the discussions and suggestions made at the DPCE evening
session on Monday, 6 December:
« Farance proposed adopting APL-style terminology throughout the document.
This proposal would require changes to the document in the following areas,
which Farance will itemize in a formal proposal to be presented to the
subgroup at its next meeting:
* Definitions (shape, ALO, ...)
« Separation of the concept of shape from layout and context
* Revise
e promotion rules
* reduction ops
* declaration syntax
* On contextualization, it was suggested by Jervis that the proposal should
limit the scope of contextualization to function boundaries
* MacDonald and Jervis supported separation of layout/distribution from
parallel operations; want parallel operations on non-distributed objects
* Limit keywords-make available through an appropriate header file
* Add discussion of errno, exceptions

At last, the time had come "to talk of many things," which are recorded here in the
order of speakers, but notice that there are several parallel threads of discussion
taking place: :

Plum asked if Fortran 90 dope vectors describe parallel data. MacDonald and
Farance indicated that it does. Plum suggested that the subgroup develop a design
criteria list (functional decomposition) to evaluate both the DPCE and VLA
propo;als, considering their interaction with Fortran 90 and other proposals such
as HPF.

= Farance will investigate other languages' features (Fortran 90 and HPF) that may
have an impact on the DPCE and VLA proposals.

Jervis and MacDonald summarized Frankel's concern that Fortran 90 lacks the
ability to adequately express communication cost.

MacDonald added that HPF recognizes that it can't provide a model that is
optimal for all communication architectures.

Cheng noted that Fortran 90 is architecture independent, high level specification,
and that this is not good for system programmers. He believes we need some
middle ground for system programmers and beginners.

~ Gwyn stated that we must not lose sight of C clients (signal processing, toasters,
etc.) who need access to architecture dependent features.

MacDonald added some cautions from Fortran 90 experience: (1) must be careful
using operators and intrinsics-if any operands overlap, user must make own
temps/copies; and (2) equivalence supports compound implementations.

Jervis reiterated problems of non-separability of layout and context from shape
for his customers. The constraint of "same shape" as currently in the DPCE
proposal is more than most data parallel programs are interested in. It imposes a
burden on non-distributed memory architectures to "plan ahead" when it is
irrelevant to their architectures.

= £



1994 X3J11/93-062
faqhary 9 . WG14/N315

Plum noted that the critical functional feature is the non-contiguity of an ALO.
The question is how to specify distribution of objects. Fo_r i.nstancp, C++ dynamic
arrays allow dynamic extensibility without moving the original object as a
consequence of non-contiguity relaxation.

Gwyn reminded the committee that there are already many instances in theC
standard (e.g., pointer sizes) in which we have adopted more neutral specifications
to accommodate architectural variations.

Farance stated that his proposal will separate the functional aspects of layout and
context from shape.

Frankel disagrees that DPCE is oriented toward distributed memory architectures,
although he believes the distributed memory model is the most general and can
work well on any architecture. Thinking Machines experience of customers
writing programs without layout in the design resulted in very poor performance,
and adding layout directives after the fact does not yield optimal performance.

Plum noted that the left/parallel indexing will be a major liaison problem.

Farance added that he believes that left/parallel indexing is not portable across
architectures. Separation of layout from shape will still allow implementations to
combine the concepts for specific architectures.

Frankel explained that left versus right indexing separates non-contiguous from
contiguous address spaces. He noted that you can still have all indices on the
right, however. The main point is to distinguish parallel objects from arrays since
they aren't accessible in the same way as C arrays. He noted that if fat pointers
are used for distributed objects, it would be possible to support ordinary array
indexing through pointer operations.

Plum noted that parallel objects under DPCE need layout information for efficient
operations. He clarified that resizing is not part of the proposal; this would
require changing a shape as part of resizing.

Jervis reiterated the two fundamental differences in approach: (1) if the concepts
of layout and context are separable from shape, you can maintain contiguous
access operations, but (2) if they are combined, you give up non-contiguous
access. The proposals haven't captured what we want: elegance of expressibility
with C efficiency. .

Plum suggested that C needs to grow beyond efficiency to handle new data
" concepts.

Gwyn suggested that we need to allow each programmer to design for own needs.

Thomas asked for clarification on what happens with subgroup proposals now that

J11 and NCEG have merged. Jaeschke responded that it will require J11 approval

:1(1) include a proposal in the technical report, and a 2/3 vote to change a proposal
ereafter.

Frankel stated that Thinking Machines doesn't believe that any of the current C++
proposals or class libraries provide needed performance.



22 X3J11/93-062

January 3, 1994 WG14/N315

SV

Plum said we shouldn't preclude class library implementations.

Farance led a review of the document, section by section, in the time remaining.
There were numerous comments and suggestions from the committee that will be
incorporated in the next revision of the document. These included:

* physical - should be defined in terms, §1.6

* clarify that shapes are multidimensional, unlike arrays

* alphabetize term definitions )

* clarify "single thread" - programmer’s model versus execution model

* clarify that you can't really express in C the same functionality as in DPCE,

as suggested in the example in §2.1

* avoid COBOL-style keywords (using underscores)

» use header file to introduce new "keywords"

* define what is meant by "nodes" in §2.1.2

* clarify layout of physical - assumes gang scheduling?

Meissner will determine what is the official dictionary for terms not defined in the
C standard.

There were numerous editorial/standardese corrections suggested that will also be
included in the next revision.

Farance asked for specific direction from the committee on proceeding with the
DPCE proposal. '

Should Farance prepare a proposal for separable layout and context concepts with
respect to the DPCE document?
9 Yes. 3 No.

MacDonald presented the latest revision of the CRI proposal for iterators,
X3J11.1/93-050.

* Matrix multiply example

void f(int m, int n, int 1,
double a[m] [n],
double b[m] [1],
double c[1l][n])

unord int I = m, J = n;
iter int K = 1;
/* implied loops */
: afI][J] += bI[I][K] * c[K][J);

* unordered iterators imply no guaranteed order
* ordered iterators imply C (sequential) order

230



January 3, 1994 23 X3J11/93-062

WG14/N315
« Guard — atomic update or critical section, without ordering

double fl(double *a, int n)

{
double sum = 0.0;
guard(unord int I = n) sum += a[I];
return sum; y

}

void f(int m, int n, int 1,
double a[m] [n],
double b([(m][1],
double c[1l] [n])

unord int I =m, J =n, int K = 1;
FOore oL peed piK)
guard (K) /* sequentializes (unordered) */
alIl([J] += b[I][K] * c[K][J]’
}

* Key points
« separates parallel operations from data distribution (layout)
» guards allow parallel operations on linked lists and trees
» minimal addition

* Changes
« iterators are now specified with a storage class, rather than type-
specifiers

Meissner expressed concern about the use of a storage class. MacDonald clarified
that this is desirable to prevent access of iterators.

 Advantages were itemized
« Compatible with previous implementation by Analog Devices

Frankel commented that the expressability of iterators is very good—can use to
denote scans and spreads. It is a very high level specification, but gives no way to
estimate performance. It is left up to the compiler to make efficient, which has
both advantages and disadvantages.

Meissner noted that the proposal assumes 0 as a lower bound on index range.
MacDonald indicated that it could be extended for non-zero lower bound in the
 future.

Farance commented that the iterator proposal is not necessarily competing with
other parallel extension proposals. i

e



1994 X3J11/93-062
January 3, o WG14/N315

9. Variable Length Arrays [X3J11.1/93-038, 93-041, 93-043; X3J11/93-058
(WG14/N311), 93-059 (N312)]

Cheng presented his proposal for assumed-shape arrays, from X3J11.1/93-041
and X3J11/93-058:
« Rules and restrictions :
« the same syntax as for Fortran 90, using a "' to indicate a variable extent.
For example:

int funct (complex a(:], int b([:][:]);

It can only be used in function definitions or prototyﬁcs for specifying
array parameters in the current implementation of C*.
« the rank of an assumed-shape array is equal to the number of colons.
» array indices are coerced to adhere to array bounds—if index is less than
0, a 0 index is used; if index is greater than upper bound, the upper bound
is used; warning messages are issued.
* only arrays can be passed as assumed-shape arguments; pointers cannot.
« polymorphic and intrinsic functions will be applied to assumed-shape
arrays, depending on the data type.

* Should this also be a rule?
« the same array can not be passed to the assumed shape arrays of a
function more than once; otherwise, the behavior is undefined.

Gwyn and MacDonald agreed that this last proposed rule should be compatible
with the wording and constraints used in Fortran.

There was discussion and questions on pointer operations and sizeof applied to
assumed-shape arguments. Cheng pointed out that when pointer and sizeof
operations are applied to an assumed-shape array, the results are obtained as if
they were applied to the original array passed to the function.

MacDonald suggested that this was similar to the fat pointer proposal, but didn't
allow access to the descriptor passed for the array. Also, there is no explicit
dereference as required in the fat pointer proposal.

Meissner stated that the fat pointer proposal solves more general VLA needs
whereas this VLA proposal only works for function parameters. For example, it
doesn't handle dynamic struct applications sucah as a linked list.

Meissner then presented his version of the fat pointer proposal, X3J11/93-059:
* Two parts
* VLA's-essentially the same wording as in MacDonald's paper for
describing scoping details
« Fat Pointers

al(*) /* Declares fat pointer */
alexp] /* Declares array */

* Contain two parts ("dope vector")

a) pointer to base array
b) bounds for each array bound until you run out of dimensions

2y



January 3, 1994 25 X3J11/93-062

SV

WG14/N315

Kwan asked about the representation of the dope vector.

Plum approved of the improvement in syntax, simplicity of use for beginners from
previous versions.

MacDonald noted that this version introduces an implicit dereference; he was
smiling when he mentioned this!

« Conversions between pointers and fat pointers
* ptr <- fat ptr : just converts base pointer
« fat ptr <- ptr : not allowed
« fat ptr <- array : base pointer <- array, bound <- array bounds

« Constants/sizeof
« Neither VLA or fat ptr are constant sized
« sizeof(fat ptr) is the product of all array bounds and the sizeof(base type)

« Example

void foo(int[*]);

void bar(int n);

{ int VLA[n]:;
foo (VLA) ;

}

void foo(int fp[*])
{ int 1i;
int max = (sizeof (fp))/(sizeof(int));
for (i=0; i<max; i++)
fp(i] = 0;
}

Meissner also noted there was a synergy with "shapes” that needs to be explored
to see how they interact.

Plum suggested that fp[*] be used to denote the whole array in sizeof
expressions—i.e., sizeof(fp[*]) is the size of the array, not of the fat pointer. It
would be nice to use the same notation for all arrays. This is a style issue, but it is
easier to teach!

MacDonald asked if &(fat pointer) converts to pointer to array. (He was still
smiling.) Meissner said that would be ok, and that would be useful for passing the
array to memcpy(), etc.

" Gwyn suggested that explicit indirection recipe might be better for long term.

MacDonald suggested using ? or : instead of *. Meissner wondered if ? might be
better for C++ compatability.

Plum stated that we still don't have any one VLA proposal that answers all the
problems raised in other VLA proposals. He suggests that we need a thoughtful
synthesis of all proposals.

Is implicit dereferencing preferred to explicit indirection?
10 Yes, 3 No.

W,

N



26 X3J11/93-062
January 3, 1994 WG14/N315

* Meissner will expand and revise the fat pointer proposal for the next meeting.

MacDonald presented the CRI proposals in X3J11.1/93-038 and 93-043. The
proposals are the same except 93-043 maintains strict lexical ordering: the
relaxed lexical ordering prototype section has been moved to an appendix. The
changes otherwise are:

* 93-038 is diff-marked against 93-007

* Variably Qualified vs. Variably Modified \ .
All occurrences of the term variably qualified were changed to variably
modified throughout the proposal to avoid confusion with other uses of the
term qualified.

* 6.3.6 (3.3.6) Additive Operators , ¢ : )
Rationale was added to this section to clarify that pointer arithmetic
involving "pointers to VLAs" is well defined.

{
int n=4, m=3;
int a(n][m];
int (*p)[m] = a; /* p==ga[0] */

p+=1; /* p==&a[l] *x/
(*p) [2]=99; /* a[l][2]==99 */
n=p-a; /* n== "

}

* 6.5.2 (3.3.2) Type Specifiers
* Add identifiers with function prototype scope as accepted VLAs
* Add block scope static pointers to VLAS; the only difference is in the
storage duration of p.

int B[100];

void. £ (int. n) {
static.dnti (*p).in)=&B; /* OK.*/
}

Plum asked whether cast/assignment of fixed size array to VLA can be done
without a dope vector. MacDonald noted "proof by implementation" since CRI
has done it-works like Fortran77 assumed shape arrays, basically.

* Cheng asked for clarification of what p[0] is in last example above. Itis a pointer
to an array element.

*6.5.4.2 (3.5.4.2) Array Declarators
* Changed to "The [ and ] may delimit an expression or *" since [is
accepted.
* Clarify that:

int A[(int) (3.2+5.4)]

it



January 3, 1994 27 X3J11/93-062
WG14/N315

declares A to be a VLA, since the size is not an integral constant
expression. (Note that this is an error if at file scope. ) Since this results
in undefined behavior, it could be accepted by a compiler, however.

Gwyn asked if this VLA proposal becomes part of the language, will it matter
whether this is treated as a constant expression?



January 3, 1994 28 X3J11/93-062

Sv

Sy

WG14/N315

¢ 6.6.2 (3.6.2) Compound Statement . )
« Clarify that VLA expressions are evaluated when a block is entered (just

like auto initializers)

{
}

Jervis asked what if "int i = n++;" occurred before the declaration above. The
proposal has the right words to enforce "point of declaration” semantics rather
than beginning of block, honoring sequence points.

int a[n]([n];

« Added the words "and variably qualified declarators” to this section.
» Can create own dope vector if needed.

struct tag {
int n:
void *p;

} x = {0 };

malloc (N);
N;

xX X
3o
nn

int m = x.n / sizeof(int);
int (*q)[m] = x.p;

Frankel suggested that words be added in Appendix B that make it not sound like
an optional implementation.

How many favor the strict lexical ordering in the current proposal? 14
How many favor the relaxed lexical ordering? 1

There was discussion of the C++ compatibility of the VLA proposals. Plum
stated that we need to propose on both sides how liaison should proceed between
J11 and J16. We should propose to J16 that they set up a committee/subgroup to
handle extensions not currently in C. Then we need to follow, pay attention, and
provide feedback to them on the utility of these extensions in future C++. It
would help them to get their standard out if these extensions are not to be part of

" that standard, however.

Plum believes that only the dope vector/descriptor-based approach will be C++
compatible. He expects hidden object versions won't map into C++ class objects.
J16 is also considering some dynamic array proposals that we should be aware of.

Ic\:/[acDonald stated that we also have to consider Fortran compatibility, not just
++.

How many prefer the CRI VLA proposal? 5
How many prefer the fat pointer VLA proposal? 10

o g A



January 3, 1994 29 X3J11/93-062

Sv

MSP

MSP

10.

WG14/N315

There was further discussion of how to proceed with the two VLA proposals.
MacDonald believes that the CRI proposal is finished; what do they do with it
now? Gwyn suggested that it be forwarded to J11 and let them decide to accept it
or table it or whatever. Jervis suggested that the technical report could contain
two proposals. Plum suggested that both proposals could be published, and that
one or both might become part of a future standard. Jaeschke suggested that a
comparison of the proposals would be helpful. Thomas prefers that only one
VLA proposal be published.

Shall we forward the CRI VLA proposal (X3J11.1/93-043) to J11 for inclusion in
the technical report? (Frankel, MacDonald)

9 Yes*, 0 No, 1 Not voting

*1 "Yes, with comment" (Thomas)

In favor of Meissner refining the fat pointer proposal?
11 Yes, 1 No, 5 Don't know/don't care

Move to reconsider CRI VLA vote. (Frankel, Kwan)
8 Yes, 0 No, 1 Abstain, 1 Not voting

Shall we forward the CRI VLA proposal (X3J11.1/93-043) to J11 for inclusion in
the technical report, and coincidentally make the proposal available for broader
distribution for public comment? (Frankel, MacDonald)
9 Yes*, 0 No, 1 Not voting
*2 "Yes, with comment" (Keaton, Thomas)
(Keaton) "This is with the understanding that it does not exclude the other
VLA proposal.”

Thomas will provide his comments for his votes on the CRI VLA proposal.
Meissner will revise the fat pointer proposal for the next meeting.
MacDonald will forward the CRI VLA proposal to J11.

Extended Integers [X3J11/93-056 (WG14/N309)]

gvgan presented an overview of the proposal for an <inttypes.h> as given in 93-
56:
* Purpose
* not a general solution
* not tied to 64-bit (or an n-bit) systems
* provide a way to write portable code by
* defining new integer types
« providing consistent properties and behavior
» easily implemented

* Definitions for architectures supporting int sizes that are powers of 2
* Integers of exactly n bits

typedef ? int8_t
typedef ? intlé_t
typedef ? int32 t
typedef ? uint8_t

N
|
N



30 X3J11/93-062
January 3, 1994 GILE3.082
typedef ? uintlé_t
typedef ? uint32_t Bl
typedef ? int64_t
typedef ? uinté4_t
« Largest integer supported

typedef ? intmax_t
typedef ? uintmax_t

* Most efficient integer type

typedef ? intfast_t

Gwyn asked isn't "int" the most efficient integer type. This was true under K&R,
but not necessarily in standard C.

Keaton asked if there is any minimum bit count that int fast_t has to be?
0..intmax was suggested.

Jaeschke and Frankel suggested that you also need to define a uintfast_t.

MacDonald asked if implementers are free not to define any type not supported.
The answer was yes. This led to discussion of how to be portable then. Requires
use of macros to determine which sizes are supported.

* Pointers
» Integer datatypes that are large enough to hold a pointer —~

typedef ? intptr_t

typedef ? uintptr_t
Discussion: should these be void *? Note that there is no requirement that any
int type be the size of a pointer in standard C.

* NOTE:
* Not all pointers are the same size in some systems
* Should ptrdiff_t be the same as intptr_t?

Discussion: no, ptrdiff_t and intptr_t should not be the same.

« Limits
* Fixed length integer type

#define INT8 MIN (-128)

#define INT16_MIN (-32768)

#define INT32_MIN (-2147483647 - 1)
#define INT8 MAX (127)

#define INT16_MAX (32767)

#define INT32_ MAX (2147483647)
#define UINT8_MAX (255)

#define UINT16_MAX (65535)

#define UINT32_MAX (4294967295)

X o ol



31 X3J11/93-062

3, 1994
Tanmery WG14/N315

There was discussion of how to express limits in form (n - 1) when it may not be
possible to represent n.

Meissner questions the usefulness of min/max macros. Plum indicated that it was
a convenience to the programmers, not a standard requirement.

Jervis indicated that there should be a min/max for every type, including
intfast_t and intptr_t.

There was discussion of whether to map to these types if not supported—e.g., 36
bit machines. No, that's what "at-least" versions are for. Need to use "feature”

macros to determine what types are supported.
« Constants

#define _ CONCAT__ (A,B) A##B
#define INT16_C(c) (intl6_t c)
#define UINT16_C(c) ((uintl6_t)__ CONCAT__(c,u))

#define INTMAX C(c) ((int64_t)__ CONCAT__ (c,1l))
« implementation defined

Jervis questioned the need for these macros as they don't seem to buy an
advantage over a cast. MacDonald and Meissner argued that they are needed to

generate 1l constants.

* Formatted I/O - 3 ways to do
« extend the width specifier
« use "wnd" where n is the width of object in bits

printf("int 16 is $wléd\n:,sl6);

* Use * as the width and sizeof operator
printf ("int fast ‘16 is %$w*d\n",
sizeof (intfastl6_t) * bits_per byte,

myint) ;
» can be used with datatypes of "at least” n bits

« Use macros - requires no extensions

Meissner indicated a fourth way is to cast all to long, which users must do on their
own.

* Conversion functions
extern int8_t strtoi8();
extern intlé_t strtoilé():;
extern int32_t strtoi32();
extern int64_t strtoiéd();
extern uint8_t strtou8();
extern 'uintl6 t' 'strtoulé(
extern uint32_t strtou32(
(

);
b ):
extern uint64_t strtoué64();

N
\\
)



32 X3111/93-062
January 3, 1994 WG14/N315

extern intmax_t strtoimax();
extern uintmax_t strtoumax();

« only the last two are really necessary

« Integers of "at least" n bits ;
» Most efficient signed integral types of at least n bits:
typedef ? intfast8_t
typedef ? intfastlé_t
typedef ? intfast32_t
typedef ? intfast64_t

* Most efficient unsigned integeral types of at least n bits:
typedef ? uintfast8_ t
typedef ? uintfastlé_t
typedef ? uintfast32_t
typedef ? uintfasté4_t

* Do we need these? These were difficult to specify and raise issues of
space versus execution efficiency.

* level of support
* two levels of support possible
* with extensions to library and/or compiler
* without extensions

Kwan would like feedback to update and complete this proposal for the San Jose
meeting.

Thomas asked for clarification that all definitions are available. Yes, they are.

Tydeman noted that a switch is needed to indicate what model was assumed for
code. Kwan agreed, and added you also need a switch to indicate what the default

is.
MacDonald asked if this part of the technical report would be for information only

or expected to become part of a future standard. Is this solving a general problem
or just for a set of specific users?

Meissner suggested that the Farance approach (see below) is more general, but the
<inttypes.h> approach is more immediate. Plum suggested that we not delay the
<inttypes.h> proposal for including the Farance notations, which still need to be
worked out with respect to their interaction with C++, etc.

Jervis commented that the <inttypes.h> proposal is ok for the technical report, but
would pose problems for some architectures if it became part of the standard.

Frankel noted that we are voting for the FPCE proposal even though not all
architectures can support it.

SV Should Kwan continue to work on the <inttypes.h> proposal?
14 Yes, 1 No, 2 Don't Know/Don't Care

. Kwan will revise the <inttypes.h> proposal for the next meeting.

2460



93 X3J11/93-062
January 3, 1994 WG14/N315

Farance presented an alternative approach to extended integer range specification:
* Desired features e
« Exact specification of precision
» Fastest type for precision
* Promotion of types
* Byte-ordering/alignment
* Bit-ordering/alignment

* Exact/Fastest specification
« Exact type needed for external structure (c.g., shared databases).
Performance isn't as important as exactness.
* Fastest type gives performance
*Smallest may be bigger than exact

exact => int:N x; /* N specifies number of bits */
fastest => long:N x;
smallest =>  short:N x;

* Promotion of types
« short, int, long can gl] be mapped into some int:N. For example:

short int:16
int int:32
long int:32

« This naturally merges basic C types with specific ranges
* User defined types are ordered with C types

* Byte/Bit Ordering/Alignment
* These features are necessary to write portable code for data structures
whose bit/byte ordering/alignment is specified (e.g., Internet packets).

* Bit/Byte Ordering
* Type qualifiers:

big_byte => Big Endian
little_byte => Little Endian

big bit =>MSBisbit0
little_bit =>LSB is bit0

* Bit/Byte Alignment
* Type qualifiers:

byte_align:N => align to N bytes
bit_align:N => bit fields align to N bits

« Important: Performance isn't as critical as portability

N



34 X3J11/93-062
January 3, 1994 WG14/N315

« Example

typedef big _byte long:32 @nt32;
typedef big byte long:16 int 16;

struct

{
int32 byte_align:4 a;
intlé byte_align:4 b;
int16 byte_align:4 c;

}:

* Prior art
* In BSD Unix (and any system that supports sockets), there are functions
to support network to host ordering conversions. Alignment isn't
supported, but XDR is a first cut at support there.

* Problems with this:
* too many functions
* not enough data types
* no alignment support

* preference for VAX and 68000
* only 8, 16, 32 data types (no 64)

* Work to be done
* printf/scanf support
* other library support?
* more convenient syntax
* log2 macro to map range to number of bits
* min/max values
* pointers to types - which are valid?

Meissner stated that this sounds a little like the ADA specification.
Gwyn prefers this general size specification to an "exact” size specification.
Thomas noted that this has applicability to other than just int types.

Frankel noted that DPCE also has seen a bit array proposal from Maya Gokhale
with similar syntactic notations.

Kwan will try to coordinate with Farance, but not with respect to alignment and
endianness parts of his proposal.

Farance will keep his proposal separate until the inter-language details are solved.

I\
(1



January 3, 1994 35 X3J11/93-062

11.
11.1

11.2

11.3

11.4

WG14/N315
Administration
Summary of decisions reached
Stanberry reviewed the votes taken during the meeting. Note: most votes were
postponed until this section of the agenda time, but they are recorded with each
subgroup discussion in the sections above.
Action Items Committed To
Stanberry reviewed the action items from the meeting.
Future Meeting Schedule
Jaeschke reminded us that we start meeting jointly with J11 as of the next
meeting. Also, X3J11/WG14 has agreed to begin work on a revised standard, and
this will mean meeting jointly and three times per year, instead of twice a year,
beginning after the meetings that have already been scheduled (i.e., in 1995).
The meetings scheduled as of this time are:

6/6-10/94 San Jose, CA (J11 only) Perennial/HP

7/27-29P4  Tokyo, Japan Japanese Standards
12/5-9/94 Richardson, TX Convex
6/19-2395  Copenhagen, Denmark Danish Standards
10/16-2095 Boston, MA Thinking Machines
2/5-9/96 Orange County, CA Unisys

There will also be a DPCE meeting:
3/23-2594  Pleasanton, CA LLNL

Mailings and Submission Procedures

Now that J11 and NCEG have merged, all document numbers must be obtained
from Plauger:

P. J. Plauger
398 Main Street
Concord, MA 01742

pjp@plauger.com
phone: 508-369-8489

fax: 508-371-9014

Items for mailings should have the document number on the cover of the
document, and then should be sent to Plauger. He prefers hard copy, then fax,
then email.

~N

o



January 3, 1994 36 X3J11/93-062

14.5

14.6

11.7
MSP

WG14/N315

Deadlines for mailings are:

Post-Kona 1/7/94

Pre-San Jose 4/29/94

Pre-Tokyo 6/3/94

Post-San Jose 7/8/94

Post-Tokyo 8/26/94
Next Meeting Agenda

The needs of the subgroups for the next meeting were discussed. Jaeschke will
schedule agenda time for each subgroup, and agenda time for a report on Fortran
90 as it relates to DPCE and VLA proposals.

Other Business

Jaeschke thanked CRI for providing the NCEG mailings.

There was discussion of what to do with the nceg email reflector now that J11 and
NCEG have merged. It was proposed that the J11 members should be removed
from the nceg mailing list, and that the j11 reflector address should be added.
Note:  we won't send to the WG14 reflector, just to WG14 members who have
subscribed to nceg reflector. MacDonald and Meissner will coordinate this
change.

Jaeschke thanked Plum Hall for hosting this meeting.

Jaeschke thanked MacDonald for serving as vice chair of NCEG.

We all thanked Jaeschke for serving as chair of NCEG.

Adjournment

Move we adjourn. (Stanberry, Keaton)
Lots Yes.

The meeting was adjourned at 5:42 PM, 7 December. Sunset was at 5:45!

LY



T O T 6€¥09 1| 'euuobly
enueAy sse) YNos 006 ‘12e/SON ™M ‘Apod Aioyeioqe |jeN euuobiy
T ] | ] | L Xely ‘uswsjez
29020 VW ‘PoomioN
L1 | | | | Kepm ABojouyoe) |
woo'bojsue @ uswijoy uBwW 'ou) ‘sedine( Bojeuy QI8 ‘usuyjoH "ou| ‘seaineq Bojeuy
[ N N B | eouely
€0 xepeD uok] epy69
elep-18IAIA pieAejnog ‘| ueysuyo ‘ueg  yueesey Jejndwo) pesuBApy
[P SIS NN S 62216 HO 'PuBpiod
preaejnog euls MN ¥2v wip ‘oueleA
P | || ] 18122 VA 'BuUUeiA
10 yupelse ‘3 91Se owso)| ‘sejjeje]
[FECS NS RS R | ] 90€58 ZV 'e[epuejd
eouugd NB Yod 1seM 94ES Ined ‘ejqneyos
(it 1o LT ] | VAvNvD

9MZ NPW U0 ojuaio}
enueAy oujwo(q 62 yBni “1ejewjepey

| V1 | | \,ﬁ.\ [ ev6e-¥se-80¢  Rpemrelqpeunn - 0£0S6 VO ‘oueles ejuoly -
/ “va " hNS Q) paeal i greqes oueles BIA SHOLI qe8 .n_aon. s.h%a‘...t SDM
(A | | IAR W 20E20 AN 'R0 Kesier
\ 7 1eens Jeuep 90} {enuwreg ‘eosenbiy
bid ] L.l | 09056 VO 'Zni) wjues
4 idy ‘eAuQq weisep SS€ sewsep ‘esnu)
viNNv]|e|ez| 1| 3anOHd UvW-3 ss3adaav 33A0dNE ANVdINOD

(v) eeweyje ue ese nok Jeyieym
10 Bugeew sy 18 (A) smels BugoA eAey NOA Jelpeym ejedlpul osly "SUWIN|0d esoy) K|uo yoeyd ‘Ajuo eesy) pue euo sAep
pepueye noA ) ‘ejdwexe Jo4 ‘sequinu Aep ey Bupoeyo Aq pepuepe Guijeew ey jo Aep yoee 1o) eaueseld JnoA ejealpu) esee|d

fwiporol Lot @/

m..a\md :ej8Q 9 FF  [‘1[£E X 0uneen
19)S|bay bunjoA/eduepusany bUnNGdWN (D3ON) FFIFEX
w;_ vie|le| ]| 3NOHd UVIN-3 « ss3daav 33A0dN3 ANVdINGD

[
|

Z ot



[ Al | [ AT A | oloc-188-€09
% woa'gepieue’e|} ® qeez Kesjer ‘qeez ejewle)je
l | | | | | 8692-290€0 HN ‘enyseN
O0EN/E-2ONZ
€¥.2-188-€09 peoy Yoaiquds 0} }
. woa oepjeue’ep @ siedeuu ewdojereq O XVA Apuey ‘siedepy *dio) yuewdinb3z jeybig
[ | | | =] 56186 VM ‘ejuees
Se-H4 uo)buiysep jo Ausieaun piae( ‘|leddey) eaue|og Jejndwo) jo ‘yedeq
| A1 | [ AT /S| 1600-098-€0L 16022 VO ‘uoisey
E 7 il Wwoo'e|ssne @ xel KAep MoeN suemS 502 xey ‘exyssesy feuoissejaid 930
| | | | | | 1ees-vee-vie 08052 X1 'uospieyoly
Wo9°'uns unsxe) xukod @ pe.j Aemssesdx3 [eijued ‘N €02 pesd ‘dejung ‘dio) XIHAD
/\ VAl P 8185-€89-C19 (T CTET Y] 12ISS U\ 'uebe3 PleuoQgoepy woj
9095-€689-219  wodkeio@iewoy 4Q %eQ euo 4559 g ‘Jewop ‘ou| ‘yaueesey Aeu)
1195-€89-C19  wodAwi@)eeu)y PineQ “yeeuy
$885-€89-219 wodAo@.exoeq PpiaeQ “Jexoeg
[ | | | | ] uyor ‘iyes Risieajun jlewo)
[ | | | | | 8cev-Lé¥-vie 1S8E-€80S. X1 "uospieydiy
WO09°X8AUOD @ Y0} 1S8e€8 xo8 ‘O'd g ‘uosjerio} *di109 Jejndwio) xeauon
TEREE SR PR TR | 9806 VO 'e[eAkuung .
Ll2p-96%-80p  WOJ'OPI’'|Ns @6z 01004 xog 'O'd Jezy ‘jweyseH *d10) ®jBQ |sjU0)
X T T M TR GNVION3
o€ 289 ebpuquied
jea)s ejaiqued
6)IS swnesnjy meN
Aiojmuoqe Buyndwo) MOIN ‘uessjoBpy Aysienun eBpuquiey
O T R e R | eijensny
1092 10V ‘mueque) ‘p xog Od9
$63Uedg [BORBWEYIBY JO j00YIS
uopeindwo) pesusApy uj wesbaid plAeQg ‘Uemels "Alu() [euogBN uejjesSNY
#2620 N “IH Aeunpy
B R L N £15-0T wy'enueAy uiglunop 009 sjuueq ey
= | | 1 | 10620 (N ‘Nwwng
1229-225-806 woo'ish @ djp 92€-4 ‘WY ‘peoy JeAH 06 piaeQ ‘1e6sald seuojeloqe jeg |91V
V/INN v]|€]e]| 1| 3NOHd UVN-3 ss3daav 330N ANVdIWOD

¢L

ﬂvk



PR (i ;o [ | S

V5120 VIN "WSWEMm
euu] Jeorl) 0/}

wy| ‘siejed

"2Uj ueesey ‘bg yepuey

(AL T _TATA

]
S |

—4L 66189644

Uab -L8S-€QE  wodwpe wp

“S551-89908 0O Iped-RUBIPOONT
|QEQ8 Q@3 S9P"°) —sse1x080d-
IE 33 g39E JE9)

piAeQ ‘uojpey

Buginsuo) uojee)

TR A | A [ | ——.

16¥9-¥21L6 HO "0I0qsiiH
femjred Bunop we|3 3N 0025
St-€dH

peuoy| ‘&)

"dioQ jeyu)

puepu3
0S¥ 2isa (aisug ‘Aingspuowly
1SeM 2012y 0004

douo) ‘jileN.0

PY1SONNI

020€-2¥04L X1 ‘uojsnoH
‘PAIE 186MAID 0052
euQIemo| 1seped 0058

yd ‘Yws

1]

ZeLT-8YY-91LY
Wo9"Wqyjeun‘zqe|aio} @ ojiiq

6L2v-8¥¥-9iLp

wod'wqy’ | snuyy'6qe|oi0) @ Bpuejow

VAVNVO

OMIOEN OUBIUQD YOA YUON
peoy sjii uog s68

v68/28

PIN speUED NEI

VAvVNVO

LAl DB WO "“OA YUON
285 ideq ‘2z uonels
‘peoy siiiy uoQ #¥8

e ‘ueued,0

jemed ‘epuejopy

qe quaio) wa)

P BpBUBD Wa-

ccee-8£8-21S
wod wqi'edpme edwq) @ uswephy

yi8i-L228L X1 ‘upsny
PpeoY sejqoy (eg L1 LE

peuq ‘uswepA]

Eoo.a;%u.lo ueay|
no

#1056 vO ‘ouiedn)
onueay eBpueunid Lyp6l

uyor ‘uemy)

‘0D PIBNORd-HepmeH

000.-6.€-80¥ wod'jey @ Aeuoq

80056 VO ‘lleqdwe)
‘eAY l1eg SIEL

leor ‘Aeuog

Jeyndwio) ey

6€120 VIV 'ebpuquie)
€0/ wooy'asenbg ABojouipe) Svs

PieyalY ‘uewyels

UORBPUNO eJBM}OS el

hayonlgaT—1

S091-65L-21C xej
00.Lv-98¥-CiC Wod'eduBiB)@)usl)

0S10-#¥00L AN DHOA MeN
10e4s uel S5
luepiseld

yuely ‘eousiey

*9u| ‘eduese

s~y lele] s
vy e[z ]

3NOHd V-3

( <SS3Haav

33A0dN3

ANVdINOD
(

\

L7



0008-24522 ON 'Kieg
0008 Xxog ‘ejpuI) Sys

lenjQ ‘Aejpeig

"au| ‘eimasy| SyS

6€120 VW 'ebpuquied
leens wogsQ |2
Ishuejog [edjouud

weljim ‘Buipenep

uogeiodio) piolejog

0L.€-126-609

wod'jleywnid @ wnid

ueuurey)

sewoy] i1q ‘wnig

IreH winig

SONVTIH3HLIN 3HL
Ylea gy se9e
18 ueejsexjno4

luepise.d

qoy ‘“4eAiny|

10vd

Buo'jso @ieussiew

2¥120 VYN 'ebpuquied
Jejue) ebpuque) ||

1eByOIN ‘seussiop

uojjepuno4 esemyos uedp

9028-56922 ON'yblejey

9028 xog
edueps Jeindwo) jo ‘Jdeq

uepe|y “§nop

Aysienun eyeis oN

Nvdvr 801 ofjo)
‘Ny-ojBUIy BWoYD- wINBqIYS
‘¢2-v16uiping |yoews) ojeq

01040 ‘epoN

‘di0g D3N

40€08 0D “1epjnog
000€ Xxog Od

euusep ‘swepy

uaszxo wn

PiojXO
Peoy] |iH uepiop
SNOH UosUD|IM

yeys ‘suipieeq

‘P ‘OYN

wooYosaidjul gdojbioeb

sojfioe) "sojnodoyeuueizedeg

}osoiopy

00€€E-9€L-80¥
wov'Jedsew @ wedje

9806 VO ‘eje Aluung
'0Ay Al °N 6L

Piaeq ‘wedly

"d10Q Jeindwiog sedsepy

SCo¥6 VO Hyed ojuepy
S jeine] LoL

Kuep ‘ziemydg

"2u| ‘pron]

LAl

| Y VAl
= 7

9006-227-015
A0B'juj)'jo0°rewjo0 @ BpUY

05Sv6 VO "elouueAn)
00€-1 ‘808 xog ‘'0O°'d

epup ‘Auequeis

$qQE7 @IouLeAl] eoueIme]

viNv]efz|]

3NOHd NVN-3

§s3daav

J3A0TdNT

ANVdNOD

gt 4



L_1 T T T | wseisc-zeee-c09 npeyunsogyd 280 HN 'weying
weH AingsBury
eouepsg sejndwo) jo deq Iiyd ‘JeyoreH esjysdweH mep Jo ‘Auq
[ R ] 02L¥6 VO 'Kejexieg
IleH suea3-1deq SO pue 33 "M ‘jaid ‘ueye)| BlWOHBD JO "Alq
LAy %t S]i %} ] SpuspeeN ey]
'S 860} IN wepiejswy
60F ues|sSinu)|
swejsAg seyndwio) jo ‘yJdeq snuopoey) ‘iq ‘Jexpieq wepuejswy Jo ‘Aun
Ll | ] 1 | Ausunen
} eyruspey 005.-Q
0869 Yoepsod'z|) essensies|e)|
"W eypusmeBuy Joj IMASU]  You|N “joid ‘Ydsiiny eyruspe)| 1EsIeAun
ST R e e [ ecez-vee-L19 ¥921-2r120 VIN 'ebpHque]
woo YU @ A1eB jeeus 18114 Spe Aien Yoqeg
vSle-vee-L19 ¥92i-2r120 VW 'eBpuqued
LA | | IATA ] Wod"juil @ [eyuel) leens 1614 S¥2 sewer ‘|exuely "di0D seujyoep Bunjuy)
7 7
| | | | | | €p¥i-1S2LL X1 "uoysnoH
1E¥9 SW 'E¥Pl Xog 'O'd pley ‘eBje)
L1 | L1 ] EPPI-1SSLL X1 ‘uoisnoy
10L SN .n:w Xxog Od E .._G_Em 2:05235 sexe|.
B R TRRS T | ] 2¥616 VO 'ssepy 8]
10E eung
‘hemyieg Jeydje|4 S9/8 oy ‘g uogeiodio) auepyne)
LAL [ 1Z21 4] Ghaseusmeer PEOE¥1056 VO 'oupiednd
Eoo.-:.u__SQQIEOEIE__ ?:—nw BZuyeg YUON } wir .QGEOF_. -cou B8
99hS -LLL-30h e ey
1 1 L&} | 0S5¥6 VO 'elouLieAr]
10} ®)NS ‘UN0Y seyisod $¥] 1202 YO ‘plogeay  'ou] ‘sweisAg seyndwoaiedng
1 | | [ cozz-see-Siv 09156 VD 'eso[ ueg
woo-ybpjeA @ ybp 0.€02 Xog "O'd PiAeQ ‘yBnoH *2u| ‘sweisAsaioy ung
JO sseusng v ‘aid ung
T O S B | 86220 VN 'eBpuquie)
6¥¢ Xog Od uyor ‘euiae eremyos enbeg
vaiylefz[1 | anowd UVW-3 ss3yaav 33A0WdVN3
_,

ANVdAINOD
(

-
I~

N



f—— Loasr-¢s((%0))
\qM Ql NT, \E fau.\ﬁc\uzv@}_‘ 7 2272 ®2 4
IROIPEN T 802D Fyvpou

7 EE ¥ \>,...3_\N..

o) '$8 vy .3%\%8».43o o 21”2 28 Suoyy b/ \\.J\vmm f&w*..imh .k..oU sAs VY)

N §~. M.NMMSSV ¥1@72 AW 1y |3¢g .<m£msna :\%Simv
N..E.h&._n.?m@:?sm AD M2Ysey 1-1@ hwoy sd4R4S p21iuy)

e e - - ———— e R —
& = ——— o s n o © e mmiemiie amete - - ——

: i 91956 4D * SINOQ
N T ﬂvr\] wws 4 ap

v g
I |l 2 buayy - fooy wmekey o ay
jv.m%s@aﬂ_aﬁi yeumpay Joogdaq 0 H H it 6% |9 o I
- ERLIL 1H T .
S521- %% s.&.&(ﬁ:a\“ o17hf, *°8 o/ .c:.:.:\_ \:&.E %\«\.\ wi :&
NY , ..“\/,\HM.J = AL Vavhvo
— \\*\ — — ZXE 12N U0 ‘oopeisp

loas duiyd siy
Qsy o J0p0eaQ pes4 1666u) '0U| ‘swejsAg woojep

VINv]|€e|z]| ]| 3NoHd UVIN-3 ssadaav 33A0 NS ANVdWOD






