Fat Pointers w@(‘-{//v 3/2
Michael Meissner
XRiy /83 - oS

Open Software Foundation
= 11 Cambridge Center
Cambridge, MA., 02142
meissner@osf.org

is is an alternate proposal to the Cray Research 'Arrays of
farggblelLength' proposag tgat merges the Fat pointer proposal from
JSL with variable length arrays. The main difference between the
wo is that Fat Pointers encode the array information within an
2xtended pointer (usually called a dope vector in the programming
.anguage literature), while the Cray proposal deals with passing
rariably sized arrays. The portion of the Cray proposal that deals
'ith creating variably sized arrays is identical to the current
>roposal.

3.1.2.4 Storage Duration of Objects

An Object whose identifier is declared with no linkage and without
he storage-class specifier static has automatic storage duration.
torage is guaranteed to be reserved for a new instance of such an
bject on each normal entry into the block with which it is
l8sociated. If the block with which the object is associated is
ntered by a jump from outside the block to a labeled statement in
he block or in an enclosed block, then the storage is guaranteed to
e reserved provided the object does not have a variable length array
ype. 1If the object is variably qualified and the block is entered by
- Jump to a labeled statement, then Lhe behavior is undefined. 1If an
pitialization is specified for the wvalue stored in the object, it is
| >rmed on each normal entry, but not if the block is entered by a
r to a labeled statement. Storage for the object is no longer
uaranteed to be reserved when execution of the block ends in any way.
(Entering an enclosed block suspends but does not end execution of
he enclosing block. Calling a function suspends but does not end
xecution of the block containing the call.) The value of a pointer
hat referred to an object with automatic storage duration that is no
onger guaranteed to be reserved is indeterminate.

grward references: variably qualified (3.5), variable length array
.5.4.2).

A

.2.2.3 Pointers

A pointer to void may be converted to or from a pointer to any
ncomplete or object type. A pointer to any incomplete or object type
ay be converted to a pointer to void and back again; the result
hall compare equal to the original pcinter,

For any qualifier q, a pointer to a non-g-qualified type may be
onverted to a pointer to the g-qualified version of the type; the

alufs stored in the original and converted pointers shall compare
qual.

_An integral constant expression with the value Qs
tpreéssion cast to type void *, is called a null pointer constant. 1If
1l pointer constant is assigned to or compared for equality to a
-er, the constant is converted to a pointer of that type. Such a
inter, call a null pointer, is . guaranteed to compare unequal to a

inter to any object or function. Iwo null pointers, converted

or such an

RS Z0'd LED90S80TORTE £89 50S 4B:81 £661/90/21

TN A - - - -, = —— . - - -
3 - V- - - - B i e,
- - Sl el -

W

oy .y "

: X371/ 93-059
hrough possibly different sequences of casts to pointer types, shall
ompare equal.

be converted to a fat pointer. The Dbase pointer to
heAgrgg;azngagll bounds specified by *, are stored in the fat
ointer. Nonarray types, except for a null pointer may £°t be
onverted to a fat pointer, since the bounds would not be nogn.h
ull pointer converted to a fat polnter stores 0 for each of the
ounds, and a null pointer into the base pointer to the variable
ength array. A fat pointer converted Lo any other pointer to object
r incomplete type, or integer uses the base pointer to the variable
ength array , discarding the array bounds.

A

orward references: cast operators (3.3.4), equality operators (3.3.9),
imple assignment
3.3.16.1), fat pointers (3.5.4.2).

.3.3.4 The sizeof operator

emantics

When applied to an operand that has array type, the result is the
otal number of bytes in the array. For variable length array types
he result is not a constant expression and is computed at program
xecution time.

When applied to an operand that has fat pointer type, the result is
' if a null pointer was assigned to the pointer, or the total number
f bytes in the array pointed to by the pointer, If the fat pointer
as never assigned to, the result is undefined. The result is not a
onstant expression, and is computed at program execution time.

'grwardzreference: variable length array (3.5.4.2), fat pointer
3.3.4.2).,

.4 Constant Expressions

k!

emantics

An integral constant expression shall have integral type and shall
nly have operands that are integer constants, enumeration constants,
haracter constants, sizeof expressions whose operand does not have a
ariable length array type, and floating constants that are the
mmediate operands of casts. An arithmetic constant expression shall
ave arithmetic type and shall only have operands that are integer
onstants, floating constants, enumeraticn constants, character
onstants, and sizeof expressions whose operand does not have a
ariable length array or fat pointer type.

.5 Declarations

emantics

If the sequence of specifiers in a declarator contains a variable

ength array type, the type specified by the declars . .
arfably qualif ad. B y rator is said to be

orward reference: variable length array '{(3:/504.2).

€A d LE@ODRATSATS £89 20S 302:87 £661,90.27

,'L

/
.5.2 Type Specifiers wG/Y/N312 .
= SIS ISEE TS XSI'I/%3"O.§7

onstraints

\\ly identifiers with automatic storage duration can have a
. ably qualified type.

ers (as defined in 3.1.2.3) with automatic

rdinary identifi .
Only ordinary declared with a variable length array type.

torage duration may be

.5.2.1 Structure and Union Specifiers

onstraints

A structure or uniocn shall not contain a member with a variable
ength array type.

orward reference: specifiers for variably qualified types are
escribed in 3.5.4.2.

.5.4.2 Array declarators

onstraints
The [and] shall delimit an expression or *, If [and] delimit an
expression (which specifies the size of an array), it shall be an

ntegral type. If the expression is a constant expression then it
hall have a value greater than zero.

itics
If, in the declaration "T D1," D1 has the form
D[assignment-expressionopt]
or
D(*]

nd the type specified for ident in the declaration "T D" is "derived-
eclarator-type-list T," then the type specified for ident in "T D"

s "derived-declarator-type-list array of T." If the size
xpression is not present the array type is an incomplete type. If
he size expression is a constant expression, the array type is a
ixed length array type. Otherwise, the size expression (which may

ontain side effects), is evaluated at program execution time, shall
valuate to a value greater than zerc, and the array type is a
ariable length array type.

If any sequence of array declarators, contain *, all of the array
eclarators in the sequence are treated as a fat pointer to a
equence of variable length arrays. The fat pointer includes a base
cinter to the start of the array, and for each bound specified by *,
he corresponding array bound.

For two fixed length array types to b e compatible, both
ﬂAmpayible element types and if both size spegifiers'are pr§§2§% higz
ifiers shall have the same constant value. For two array tyﬁes'
, »€ compatible when at least one is a variable length array or fat
Oointer type, both shall have compatible element types. Furthermore
f two types are required to be compatible then the dimension size

vB°'d JLB@SOSBTIVTS £89 88s 68:87 £661/90-C1 23

WO I J/J N & 7 &

X371/ 92-05 9

a variable length array Type must evaluate, at program
al to the value of the other dimension specifier.
if these corresponding dimension size

1 values at execution time.

S@°'d WioL

pecifier of
xecution time, as equ
t+ is undefined behavior

pecifiers produce unequa

oY

