wel7/ N3°’7’
}55!)/ jz-o5Y

Why Infix Relational Operators

X3J11/?7?, WG14/22??

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim_thomas@taligent.com

This is a summary of arguments for infix relational operators as proposed in “Floating-
Point C Extensions” (X3J11.1/93-028).

The primary goals of the proposal for infix relational operators are (1) to meet the need to
modify programs and to write new programs that deal with NaNs and (2) to cause

minimal perturbation to the C language and libraries.

The IEEE floating-point standards specify NaNs as a way of dealing with domain
errors—other than the old alternatives of preflighting or crashing. (Domain errors are not
an invention of the IEEE standard.) Some codes, for example solvers, written specially
for IEEE systems directly exploit NaNs for robustness and efficiency. More generally,
robust functions written for (or ported to) IEEE machines will be expected to deal with
invalid and NaN input in a predictable way consistent with built-in IEEE operators. Thus
programmers’ consideration of NaNs will be somewhat common.

The intention of the IEEE standard is that NaNs should pass through many calculations
without requiring special code. Hence the ordinary infix arithmetic operators (+, *, etc.)
propagate NaNs in a predictable fashion. The case of NaN comparisons is slightly more
complicated but the approach should be consistent: the programmer needs to be able to
direct NaNs through branches, of which there are many, without having to resort to
awkward or inefficient code. Preferably code would not be obfuscated to handle NaNs,
which, though useful, are not usually the most interesting aspects of the code.

The current proposal extends the allowable combinations of ordering symbols to include
<>= and extends the notion of negated operators, previously only ! =, to the rest of the
comparison operators, !<, etc. With the understanding that ! indicates an awareness of
the unordered case (hence requires no exception) this small extension handles the entirety
of floating-point representations, runs unexceptional old code as before, supports
exceptional old code by raising exceptions where crashes might be anticipated, and
provides exception free comparisons for new code. On systems without NaNs the new
operators can be viewed as notational alternatives (like !=). All new operators have the
precedence of relational operators. They have been implemented without complication in
one shipping compiler (Zortech C++) and in others under development.

The full set of comparison operators have further advantages for C++, where they provide
a general facility for partially ordered sets (subsets, substrings, outline items, etc.). As
infix operators they all have the same style and overloading properties.

The approach of using an explicit symbol for unordered (provided an appropriate one
exists—2 and @ seem not to work), instead of the negation () notion, would be equally

December 1, 1993 Page 1

/

o~

(s

_ WGy /N3 e
X3J11/777, WG14/277 KBTI L9z =08

good in most respects. It would be more direct, but would require more explanation on
systems without NaNs.

A Boolean macro such as

isrelation(x, FPUNORD | FPLESS | FPEQUAL, y)
instead of x !> y would provide equivalent functionality without change to the language,
but would be arguably more awkward, would still require compiler changes if it were to

be efficient, would weaken programmer expectations of efficiency, and would intrude on
name space. Other function/macro approaches are less conducive to efficient code.

Page 2 December 1, 1993
/e

