Some of my review notes for the Normative Addendum neither appeared in the
final document nor did I get answers from PJP that I was happy with. Plus I
have spotted a few new typos.

Clive D.W. Feather

[Editorial]
Clause 1 page 2:
"new tokens k" -> "new tokens -".

[Minor]

Clause 3:

__STDC_VERSION___ has been added. However, I note it is an (int) on some
platforms and a (long) on others. Posix uses an L suffix for just this reason.

[Minor]

Clause 4:

"The identifiers with external linkage declared in either <wctype.h> or

" <wchar.h> are reserved ..." - insert ", and are not already reserved as
identifiers with external linkage by ISO/IEC 9899:1990," before the word
"are".

[Minor]

Append to footnote 2: "Note that including either of these headers in a
translation unit will affect other translation units in the same

program, even though they do not include either header."

[Major]
Subclause 4.5.2.1: replace the wording from "each of the following eleven
functions” to the end of the paragraph with the following:

if the argument is a wide character that corresponds (as if by a

call to the wctob function) to a character (byte), then each of the
following eleven functions shall return the same truth value (i.e. zero
or non-zero) as the corresponding character testing function from
ISO/IEC 9899:1990 subclause 7.3.1.

In footnote 8, after the first sentence add the sentence:

Similarly, if wctob(wc) is not EQF, then if iswalpha(wc) returns
true then isalpha(wctob(wc)) must also return true.

In other words, if a wide character is alphabetic AND has a corresponding
one-byte character, THEN the one-byte character should be alphabetic. If it
isn't, it isn't a "corresponding” character.

PJP says that Japan wanted to allow iswalpha(wc) to be true but isalpha(c)
to be false. However, I claim that, in this case, wctob(wc) should be EOF
(or at least not be c).

WG/ ¢ ///3 04

5]

Y3 ToddiGad -

L"ﬂ

J ISR

[Minor]
Subclause 4.6.2.1:
It should be noted explicitly in this subclause that each stream has a

associated mbstate_t object. ‘

[Major]

There is no way to access the mbstate_t object associated with a stream -
this makes it impossible to restore a specific state; for example, to
associate a state with with an fpos_t object. It would be preferable to be
able to obtain the address of this object, but, if this is viewed as
unacceptable, fsetpos should restore the state to that at the time of

the fgetpos.

PJP says that the latter option - fpos_t holds the state - has been taken, but
I can't find any wording to that effect.

[Major]

Subclause 4.6.2.3.2:

In the description of the [specifier, what is the definition of the
scanset when the 1 qualifier is present and bytes other than single-byte
Characters in the initial shift state follow the [? Examples might make
this clearer.

[Minor]
Append to footnote 14 "without the 1 qualifier".

[Minor]
Subclause 4.6.2.4.1:
In the example, change the two %s specifiers to %ls.

[Editorial]
Subclause 4.6.2.4.5:;
There are two typos in the first paragraph of the description.

[Editorial]
Subclause 4.6.2.5.7:
llnn" -> "an"

[Editorial]
Subclause 4.6.5.4.2;
There is some kind of font problem.

[Minor]

Subclause 4.6.5.1.1:

"valid multibyte character" -> "valid single byte character" in two
places.

[Minor]
Subclause 4.6.5.1.2:

Append "of that character” to the returns.

[Major]

Subclause 4.6.5.2.1:

Since this function describes a boolean test, it would better be named
"isinit" or "isinitstate" - the current name is misleading as it does

not even involve any wide characters.

[Major]

Subclause 4.6.5.3.2:

I made various comments, most of which have either been accepted, or I
withdraw. However, I still have one issue:

If the next n or fewer bytes consist of a shift sequence followed by a zero
byte (i.e. a "trailing shift sequence"), the present wording will lose the
effects of the shift sequence: it will return zero, set *pwc to a null wide
character, and change *ps to the initial shift state.

This means that the information in the trailing shift state is lost.

I propose that, if the next n or fewer bytes consist of a shift sequence

followed by a zero byte, but s does not point to a zero byte, then instead:

- the returned value is the number of bytes in the shift sequence, excluding
the zero byte

- a null wide character is stored in *pwc

- *ps represents the state immediately following the shift sequence

Note that is s is then advanced by the returned value, another call will see
the zero byte, and the effects of the two consecutive calls are the same as
that of a single call with the present proposal.

[Minor]
Subclause 4.6.5.4.2;

Add somewhere to the description: "If conversion stops because a terminating

null character has been reached, the bytes stored include those necessary to
reach the initial shift state immediately before the null byte".

