6)Y /v 29k

From netcom.comlsegfault!rfg Thu Oct 28 02:54:04 1993 remote from uune’r X J T /// A -072
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Thu, 28 Oct 93 07:36:10 EST
Received: from netcomsv.netcom.com (via uucpd.netcom.com) by relay1.UU.NET with
SMTP
5.61 /UUNET internet-primary) id AA17693; Thu, 28 Oct 93 02:54:04 -0400
Received: from segfault. UUCP by netcomsv.netcom.com with UUCP @.1/sM1-4.1)
id AA03280; Wed, 27 Oct 93 23:53:50 PDT
From: uunetinetcom.comlsegfaultirfg
Received: from segfault (localhost) by segfault. (5.0/SMI-4.1)
id AA28280; Wed, 27 Oct 93 23:51:31 PDT
To: plaugerlpjp (P.J. Plaugen)
Subject: ANSI/ISO C Defect report #rfg1
Reply-To: uunetinetcom.comlsegfault!irfg
Date: Wed, 27 Oct 1993 23:51:30 -0700
Message-ld: <28279.751791090@segfault>
Content-Length: 1341

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #1fg1:

There appears to be an inconsistancy between the constraints on ‘passing”
values versus "returning" values.

The constraints for function calls clearly indicate that a diagnostic is

required if any given actual argument is passed (to a prototyped function)
into a corresponding formal parameter whose type is not assignment compat-
atable with respect to the type of the passed value.

In the case of values returned by a return statement however, there seems
to be no such compatability constrain imposed upon the expression given
in the return statement and the corresponding (declared) function return
type.

A new constraint should be added to the standard like:

If present, the expression given in a return statement shall have
a type such that its value may be assigned to an object with the
unquchfled ver5|on of The refurn 'rype of The com‘oumng func’non

-- Ronald F. Guilmette
------ domain address: fg@netcom.com

e UUCP addréss: ..luUNeHNStCOM. COMI —mrmiiis it i e v e

Guilmette, Page 2

[X]
From netcom.comlsegfaultirfg Thu Oct 28 03:41:53 1993 remote from uunet
Recelved: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Thu, 28 Oct 93 07:36:11 EST
Received: from netcomsv.netcom.com (via uucp5.netcom.com) by relay1.UU.NET with
SMTP
(5.61/UUNET-internet-primary) id AA02038; Thu, 28 Oct 93 03:41:53 -0400
Recelved: from segfault, UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AA03573; Thu, 28 Oct 93 00:42:26 PDT
From: uunetinetcom.comlsegfaultlrfg
Recelved: from segfault localhost) by segfault. (6.0/SMI-4.1)
id AA28373; Thu, 28 Oct 93 00:39:07 PDT
To: plaugeripjp (P.J. Plaugen
Subject: ANSI/ISO C Defect report #rfg2
Reply-To: uunetinetcom.comlsegfaultlrfg
Date: Thu, 28 Oct 1993 00:39:07 -0700
Message-ld: <28372.751793947@segfault>
Content-Length: 1426

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #1fg2:

There is an ambiguity with respect to the constraints which (or may not)
apply to initializations.

Section 3.5.7 of the (“classic”) ANSI C standard says:.

"...the same type constraints and conversions as for simple
assignment apply.”

Note however that this rule itself appears within a semantics section, thus
leading some implementors to feel that no diagnostics are required in cases
where an attempt is made to provide an initializer for a give scalar and
where the type of the initializer is NOT assignment compatible with the

type of the scalar object being initialized.

This ambiguity should be removed by adding an explicit constraint fo the
section covering inifializations, such as:

Each scalar initializer expression given in an initializer shall
. essmermeshave a type.such that its value may be assigned to an objec'r with - "
the unquadlified version of the corresponding scaral obJect to be
B 13111 (011705 0 8) 8 {10 104 TR 1000110 (18181011 =y A=, e i ottt i

(This roughly mirrors the existing consfronn’r on poromefer mo’rchlng imposed

S »upoﬂcells 1o prototyped functions.) = RS Sl

SR TR R R I £ RSt A

-- Ronald F Guﬂmeh‘e

; _‘_Wbeobsolu‘rel NO volldwq ofsecn‘ym% any array fype where the element

Guilmette, Page 3

------ domain address: fg@netcom.com
------ uucp address: ...luunetinetcom.com!rfg
(X]

[X]
From netcom.comlsegfault!rfg Thu Oct 28 04:32:39 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Thu, 28 Oct 93 07:36:12 EST
Received: from netcomsv.netcom.com (via uucpé.netcom.com) by relay1.UU.NET with
SMTP
(5.61/UUNET-internet-primary) id AA15059; Thu, 28 Oct 93 04:32:39 -0400
Received: from segfault. UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AA19113; Thu, 28 Oct 93 01:33:18 PDT
From: uunetinetcom.comlsegfault!rfg
Received: from segfault (localhost) by segfault. (6.0/SMI-4.1)
id AA28432; Thu, 28 Oct 93 01:30:11 PDT
To: plauger!pjp (P.J. Plaugen
Subject: ANSI/ISO C Defect report #rfg3
Reply-To: uunetinetcom.comlsegfault!rfg
Date: Thu, 28 Oct 1993 01:30:10 -0700
Message-Id: <28431.751797010@segfault>
Content-Length: 1230

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg3:

Section 3.5.4.2 of the ("classic”) ANSI C standard fails to contain any
constraint which would prohibit the element type of an array type from
being either a function type or an incomplete type.

| believe that such a constraint is clearly needed.

This problem could be solved by adding an explicit constraint to the
section covering array declarators, such as:

The element type specified in an array type declaration shall be
an object type.

Note that some similar sort of constraint should also appear elsewhere,
e.g. in the section describing casts, so as to insure that there will

Fish -"l"o ln%‘rﬁ‘é‘?“"r.; i

- (FUNG.TYPE C5(10)) exprossion: i o s

Guilmette, Page 4

--Ronald F. Guilmette
------ domain address: fg@netcom.com
------ Uucp address: ...luunetinetcom.comlirfg

From netcom.comlsegfaultlrfg Thu Oct 28 13:21:41 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Thu, 28 Oct 93 18:41:57 EST
Received: from netcomsv.netcom.com (via uucpb.netcom.com) by relay1.UU.NET with
SMTP '
(6.61/UUNET-internet-primary) id AC28161; Thu, 28 Oct 93 13:21:41 -0400
Received: from segfault.UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AA24325; Thu, 28 Oct 93 10:22:12 PDT
From: uunetinetcom.comlsegfaultirfg
Received: from segfault (localhost) by segfault. (5.0/SMI-4.1)
id AA28786; Thu, 28 Oct 93 10:18:32 PDT
To: plaugerlpjp (P.J. Plauger)
Subject: ANSI/ISO C Defect report #rfg4
Reply-To: uunetinetcom.comlsegfault!fg
Date: Thu, 28 Oct 1993 10:18:32 -0700
Message-ld: <28785.7518287 12@segfault>
Content-Length: 1352

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg4:

Section 4.1.5 of the ("classic*) ANSI C standard fails to contain any
constraint which would prohibit the type argument given in an invocation
of the offsetof() macro from being an incomplete type.

This situation can arise in examples such as the following:

#include <stddef.h>

struct S
{

int member1;
In mebe(1+offseof(s‘rr’r erl); ‘

““Ibelieve that a constraint prohibiting the type argument fo offsetof(= =% F5 s s
from being an incomplete type is clearly needed.

*This problént could be soived by adding an explicit Cofstraint fo (*classie?y s
~Section 4.1.5;such'as: R e s e

Eatiin b s ; 2 AER DU

The type argument given in an invocation of ’rhe offsefof() rﬁécro

Guilmette, Page 5
shall be the name of a complete struct type or a complete union type.

(Note that this way of expressing the constraint also makes it completely

clear that diagnostics are required for cases where the type given in the

invocation is, for instance, a function type, an array type, an enum type,
a pointer type, or a built-in arithmentic type.)

-- Ronald F. Guilmette
------ domain address: fg@netcom.com

------ uucp address: ...luunetinetcom.com!rfg
[X)

(X)
From netcom.comisegfaultirfg Fri Oct 29 03:10:09 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Fri, 29 Oct 93 07:33:49 EST
Received: from netcomsv.netcom.com (via uucp4.netcom.com) by relay1.UU.NET with
SMTP
(5.61/UUNET-internet-primary) id AA14442; Fri, 29 Oct 93 03:10:09 -0400
Received: from segfault.UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AAD4927; Fri, 29 Oct 93 00:09:54 PDT
From: uunetinetcom.comlsegfault!rfg
Received: from segfault (localhost) by segfault. (6.0/SMI-4.1)
id AA29873; Fri, 29 Oct 93 00:07:21 PDT
To: plaugerlpjp (P.J. Plauger)
Subject: ANSI/ISO C Defect report #rfg5
Reply-To: uunetinetcom.comisegfault!rfg
Date: Fri, 29 Oct 1993 00:07:20 -0700
Message-Id: <29872.751878440@segfault>
Content-Length: 1635

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg5:

Section 3.3.3.4 of the (‘classic”) ANSI C standard provides the following
constraint:

‘The sizeof operator shall not be applied to an expression that has
function type or an incomplete type..."

TS ReTogical implication of this constraint I Tha RaTtRer furehion fypas
nor incomplete types have "sizes" per se... at least not as far as the
standard is concerned.

I have noted however that neither (‘classic") section 3.3.2.4 (Posfix

increment and decrement operators) nor ("classic") section 3.3.3.1
s o A INCTEMENT AN decrement operators) contain any constraints
~'Which would grohibit the incrementing or decrementing of &
to function types or pointers to incomplete types.

SRS RN 5 ¢ BB PRI e S T R MRTIBEW & PRS0 SR L L B RS SR - g
rementing of pointers ‘

,7,5’)‘,»,“ .

Guilmette, Page 6

| believe that this logical inconsistancy needs to be addressed (and
rectified) in the standard. It seems that the most appropriate way to
do this Is to add the following additional constraint to 3.3.2.4:

The operand of the posfix increment or decrement operd’ror
shall not have a type which is a pointer to incomplete type
or a polnter to function type.

Likewise, the following new constraint should be added to section 3.3.3.1:

The operand of the prefix increment or decrement operator
shall not have a type which is a pointer to incomplete type
or a pointer to function type.

-- Ronald F. Guilmette
------ domain address: fg@netcom.com

- uucp address: ...luunetinetcom.com!rfg
L X J

From netcom.comlsegfaultlfg Tue Nov 2 04:57:29 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Tue, 2 Nov 93 07:40:34 EST
Received: from netcomsv.netcom.com (via uucp5.netcom.com) by relay1.UU.NET with
SMTP
(5.61 JUUNET-internet-primary) id AA16525; Tue, 2 Nov 93 04:57:29 -0500
Received: from segfault.UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AA10822; Tue, 2 Nov 93 01:58:12 PST
From: uunetinetcom.comisegfault!fg
Received: from segfault (localhost) by segfault. (6.0/SMI-4.1)
id AAD9086; Tue, 2 Nov 93 01:54:59 PST
To: plaugerlpjp (P.J. Plaugern)
Subject: ANSI/ISO C Defect report #rfgbd
Reply-To: uunetinetcom.comisegfaultirfg
Date: Tue, 02 Nov 1993 01:54:58 -0800
Message-ld: <9085.752234098@segfault>
Content-Length: 3330

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #1fgb:

Section 3.2.1.5 of the (“classic”) ANSI C standard explicitly allows an
implementation to evaluate a floating-point expression using some type
which has MORE precision that the apparent type of the expression itself:

‘The values of floating operands and the results of floating

ERPrEssions may be represented in-greaterprecision dnd range ™ 5= o i
than that required by the type."

Guilmette, Page 7

A footnote on this rule also says explicitly that:

"Cast and assignment operators still must perform their specified
conversions, as described in 3.2.1.3 and 3.2.1.4."

As noted in the first of these two quotes (above) some compilers (most
notably for x86 and mx680x0 target systems) may perform floating-point
expression evaluation using a type which has more precision and/or range
that that of the "apparent type" of the expression being evaluated.

The clear implication of the above rules is that compilers must sometimes
generate code to implement narrowing of floating-point expression results,
when () those results were genereated using a format with more precision
and/or range than the "apparent type" of the expression would seem to call
for, and where (b) the expression result is the operand of a cast or is

used as an operand of an "assignment operator”.

My question is simply this: For the purposes of the above rules, does the
term "assignment operator’ mean exactly (and only) those operators listed
in ("classic") section 3.3.16, or should implementors and users expect that
other operations described within the standard as being similar to "assign-
ment" will also producing floating-point narrowing effects (under the right
conditions)?

Specifically, may (or must) implicit floating-point narrowing occur as a
result of parameter passing if the actual argument expression is evaluated
in a format which is wider than its "apparent type'? May (or must) implicit
floating-point narrowing occur as a result of a return statement if the
return statement contains a floating-point expression which is evaluated
in some format which is wider than its "apparent type"?

Here are two examples illustrating these two questions. Imagine that these
examples will be compiled for a type of target system which is capable of
performing floating-point addition ONLY on floating-point operands which
are represented in the same FP format normally used to hold type “long
double' operands in C:

extern void callee (); /* non-prototyped */

... double a, b;

void caller O
{

callee(a+b); /* evaluated in long double format then narrowed? */

Guilmette, Page 8

double a, b;

double returner O
{

re’rurn a+b; /* evaluated in long double format then narrowed? */

--Ronald F. Guilmette, Sunnyvale, California
------ domain address: fg@netcom.com
------ uucp address: ...luunetinetcom.comlrfg
[X J

(X]
From netcom.comlsegfaultirfg Tue Nov 2 05:41:55 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Tue, 2 Nov 93 07:40:36 EST
Received: from netcomsv.netcom.com (via uucpé.netcom.com) by relay1.UU.NET with
SMTP '
(56.61/UUNET-internet-primary) id AA26034; Tue, 2 Nov 93 05:41:55 -0500
Received: from segfault.UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AAO9581; Tue, 2 Nov 93 02:42:37 PST
From: uunetlinetcom.comisegfault!rfg
Received: from segfault (localhost) by segfault. (5.0/SMI-4.1)
id AA09212; Tue, 2 Nov 93 02:39:12 PST
To: plauger!pjp (P.J. Plauger)
Subject: ANSI/ISO C Defect report #1fg7
Reply-To: uunetinetcom.comisegfault!ifg
Date: Tue, 02 Nov 1993 02:39:10 -0800
Message-ld: <9211.752236750@segfault>
Content-Length: 1033

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg7:

In section 3.6.6.4 (The Return Statement) of the ("classic”) ANSI C standardxi
it says:

--Hif the expressionthas a type different from that-of the function
in which it appears, it is converted as if it were assigned to an
object of that type."

This Is nonsensical. The type of the containing function is a function
type... and that's different from an object type.

Guilmette, Page 9

"If the expression has a type different from that of the return type
of the function in which it appears, it is converted as if it were
assigned to an object having the same type as the return type of the
containing function."

-- Ronald F. Guilmette, Sunnyvale, California
------ domain address: fig@netcom.com
------ uucp address: ...luunetinetcom.com!rfg
[X J

(X]
From netcom.comlsegfaultirfg Tue Nov 2 05:42:05 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Tue, 2 Nov 93 07:40:37 EST
Received: from netcomsv.netcom.com (via uucpé.netcom.com) by relay1.UU.NET with
SMTP
(56.61/UUNET-internet-primary) id AA26125; Tue, 2 Nov 93 05:42:05 -0500
Received: from segfault.UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AA09592; Tue, 2 Nov 93 02:42:46 PST
From: uunetinetcom.comlisegfaultirfg
Received: from segfault (localhost) by segfault. (6.0/SMI-4.1)
id AA09220; Tue, 2 Nov 93 02:40:20 PST
To: plauger!pjp (P.J. Plauger)
Subject: ANSI/ISO C Defect report #rfg8
Reply-To: uunetinetcom.comlisegfaultirfg
Date: Tue, 02 Nov 1993 02:40:19 -0800
Message-ld: <9219.7522368 19@segfault>
Content-Length: 2030

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg8:

Section 3.3.2.2 (Function Calls) of the ("classic”) ANSI C standard says:

"If the expression that denotes the called function has a type
which includes a prototype, the arguments are implicitly converted,
as if by assignment, to the types of the corresponding parameters."

The problem with this statement is the phrase “as if by assignment’. The

above rule fails to yield an unambiguous meaning in cases where an assignment
of the actual to the formal would be prohibited by other rules of the

language, as in:

void callee (const int formal);
int actual;
void caller O { callee(actual); }

o (Here ’rhe name of the formal parameter “formal’ may be inifialized bUthor.

assigned to... because it is a non-modifiable Ivalue.)

e el cind.

e 2 e R

Guilmette, Page 10

A similar problem exists within section 3.6.6.4 (The Return Statement) of
the (“classic®) ANSI C standard. It says:

"If the expression has a type different from that of the fun'cﬂon
in which it appears, it is converted as if it were assigned to an
object of that type.”

This statement leaves the validity of the following code open to question:

const int returner O { return 99; }

Last but not least, section 3.5.7 (Initialization) of the ("classic”) ANSI
C standards says:

'The initializer for a scalar shall be a single expression, optionally
enclosed in braces. The initial value of the object is that of the
expression; the same type constraints and conversions as for simple
assignment apply.”

This statement leaves the validity of the following code open to question:
const Int I = 99;

(Note that *assignment* to the data object "I is not normally permitted, as
its name does not represent a modifiable Ivalue.)

-- Ronald F. Guilmette, Sunnyvale, California
------ domain address: fg@netcom.com
------ uucp address: ...luunetinetcom.comlrfg

From netcom.comisegfaultirfg Wed Nov 3 03:12:29 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Wed, 3 Nov 93 07:17:45 EST
Received: from netcomsv.netcom.com (via uucp5.netcom.com) by relay2.UU.NET with
SMTP
(5.61/UUNET-internet-primary) id AA28960; Wed, 3 Nov 93 03:12:29 -0500
Received: from segfault. UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AA25110; Wed, 3 Nov 93 00:10:42 PST
From: uunetinetcom.comlsegfaultirfg
Received: from segfault (localhost) by segfault. (6.0/SMI-4.1)
id AA10749; Wed, 3 Nov 93 00:05:13 PST
To: plauger!pjp (P.J. Plaugen)
Subject: ANSI/ISO C Defect report #rfg?
Reply-To: uunetinetcom.comlsegfaultirfg
Date: Wed, 03 Nov 1993 00:05:12 -0800
Message-ld: <10748.752313912@segfault>
Content-Length: 1438

T ———. //0,.,

Guilmette, Page 11
(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #1fg9:

Section 3.5 of the (“classic”) ANSI C standard (constraints subsection) says:

"If an identifier has no linkage, there shall be no more than one
declaration of the identifier (in a declarator or type specifier)

with the same scope and in the same name space, except for tags
as specified in 3.5.2.3."

Section 3.5.2.3 of the ("classic") ANSI C standard (semantics subsection)
says:

"Subsequent declarations {of a tag} in the same scope shall omit
the bracketed list."

Given that one of the above two rules appears in a constraints subsection,
while the other appears in a semantics subsection, it is ambiguous whether

or not diagnostics are strictly required in the following cases (in which

more than one defining declaration of each tag appears within a single scope):

void example O
{
struct S { int member; };
struct S { int member; }; /* diagnostic required? */

union U { int member; };
union U { int member; }; /* diagnostic required? */

enum E { member};
enum E { member}: /* diagnostic required? */

_.—Ronald F. Guilmette, Sunnyvale, California
------ domain address: fg@netcom.com:

------ uucp address: ...luunetinetcom.com!rfg
[X J

[X J
From netcom.comlsegfault!ifg Wed Nov 3 19:44:11 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)

from uunet with UUCP; Wed, 3 Nov 93 20:34:20 EST
Received: from netfcomsv.netcom.com (via uucp4.netcom.com) by relay1.UU.NET with
SMTP

(6.61/UUNET-internet-primary) id AA20803; Wed, 3 Nov 93 19:44:11 -0500
Received: from segfault.UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)

id AA13368; Wed, 3 Nov 93 16:43:53 PST
from: uunetinetcom.comisegfault!rfg ,
“Received: from segfault docalnosh by segrault. R S M e A RS

- id AA13077; Wed, 3 Nov 93 16:07:44 PST : o L R

e e

. | .
Nidhpefa e

Guilmette, Page 12

To: plaugerlpjp (P.J. Plauger)

Subject: ANSI/ISO C Defect report #1fg10
Reply-To: uunetinetcom.comlisegfaultlfg
Date: Wed, 03 Nov 1993 16:07:43 -0800
Message-ld: <13076.752371663@segfault>
Content-Length: 1503

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg10:

According to section 3.5 of the (“classic”) ANSI C standard:

'If an identifier for an object is declared with nvo linkage. the
type for the object shall be complete by the end of its declarator,
or by the end of its init-declarator if it has an initializer.”

Note that this rule appears in a semantics section, so it would seem that
comformant implementations are permitted but not strictly required to
produce diagnostics for violations of this rule.

Anyway, my interpretation of the above rule is that conformant implementations
are permitted (and even encouraged it would seem) to issue diagnostics for
code such as the following, in which formal parameters for functions (which,

by definition, have no linkage) are declared to have incomplete types:

typedef int AT();

void examplel (int arg()): // diagnostic permitted/encouraged?
void example2 (AT arQ); // diagnostic permitted/encouraged?

| believe that section 3.5 needs to be reworded so as to clarify that code
such as that shown above is perfectly valid ANSI/ISO C code, and that
conform‘qn’r impl_emen’rc:ﬂons should not reject such code out of hand.

-- Ronald F. Guilmette, Sunnyvale, California
------ domain address: fg@netcom.com
------ Uucp address: ...luunetinetcom.comlrfg

From netcom.comlsegfaultifg Wed Nov 3 19:59:49 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134)
from uunet with UUCP; Wed, 3 Nov 93 20:34:24 EST
Received: from netcomsv.netcom.com (via uucp5.netcom.com) by relay1.UU.NET with
SMTP
. (56]/UUNET-internet-primary) id AA27007; Wed, 3 Nov 93 19:59:49 -0500
ST ReCeVed: from SEGfAUt. UUCP By HETEOMsV.NefC Ol coMm With UUCP (4. T/SMIE4 Ty s s e
id AA25080; Wed, 3 Nov 93 17:00:31 PST

it S P e

e e e St T e g

Received: from netcomsv.netcom.com (via uucpa.n:

Guilmette, Page 13

From: uunetinetcom.comlsegfaultirfg

Received: from segfault (localhost) by segfault. (6.0/SMI-4.1)
id AA13427: Wed, 3 Nov 93 16:56:53 PST

To: plauger!pjp (P.J. Plaugen

Subject: ANSI/ISO C Defect report #rfg11

Reply-To: uunetinetcom.comlisegfault!rfg

Date: Wed, 03 Nov 1993 16:56:52 -0800

Message-Id: <13426.752374612@segfault>

Content-Length: 1358

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg11:

According to section 3.5 of the (“classic”) ANSI C standard:

"If an identifier for an object is declared with no linkage, the
type for the object shall be complete by the end of its declarator,
or by the end of its init-declarator if it has an initializer.”

It would appear that the above rule effectly renders the following code "not
strictly conforming" (because this code violates the above rule):

typedef struct incomplete_S ST;
typedef union incomplete_U UT;

void example1 (ST arQ); // diagnostic permitted/encouraged?
void example2 (UT arg); // diagnostic permitted/encouraged?

| have noted however that many/most/all "conforming" implementations do
in fact accept code such as that shown above (without producing any
diagnostics).

Is it the intention of X3J11 that code such as that shown above should be
considered 1o be "strictly conforming'? If so, then some change to the
wording now present in section 3.5 is in order (to allow for such cases).

-- Ronald F. Guilmette, Sunnyvale, California
------ domain address: fg@netcom.com
------ uucp address: ...luunetinetcom.comlirfg

From netcom.comlsegfault!rfg Thu Nov 4 00:44:37 1993 remote from uunet
Received: by plauger.UUCP (UUL1.3#20134

hu, 4 Noy .93 05:42:32 ES

SMTP

etcom.com) by relayl.UUNET with

Guillmette, Page 14

(5.61/UUNET-internet-primary) id AA10392; Thu, 4 Nov 93 00:44:37 -0500
Received: from segfault.UUCP by netcomsv.netcom.com with UUCP (4.1/SMI-4.1)
id AA26505; Wed, 3 Nov 93 21:44:17 PST
From: uunetinetcom.comlsegfault!rfg
Recelved: from segfault (localhost) by segfault. (6.0/SMI-4.1)
id AA13876; Wed, 3 Nov 93 21:25:12 PST
To: plaugerlpjp (P.J. Plaugen)
Subject: ANSI/ISO C Defect report #rfg12
Reply-To: uunetinetcom.comlsegfaultifg
Date: Wed, 03 Nov 1993 21:25:11 -0800
Message-ld: <13875.7523907 1 1@segfault>
Content-Length: 1890 '

(Please submit the following defect report for me. Thanks.)

ANSI/ISO C Defect report #rfg12:

Section 3.5 of the (“classic”) ANSI C standard says (in its constraints
section):

“All declarations in the same scope that refer to the same object
or function shall specify compatible types."

However in section 3.1.2.6 we have the following rule:

"All declarations that refer to the same object or function shall
have compatible type; otherwise the behavior is undefined.”

There is a conflict between the meaning of these two rules. The former rule
indicates declaring something in two or more incompatible ways (in a given
scope) *must* cause a diagnostic, while the latter rule indicates that

doing the exact same thign may result in undefined behavior (i.e. possibly
silent acceptance of the code by the implementation).

Furthermore, the use of the term "refer to" in both of these rules seems
both unnecessary and potentially confusing. Why not just talk instead
about declarations "declaring” things, rather than "referring to" those
things?

To eliminate the first problem | would suggest that the rules quoted above
from section 3.1.2.6 should be clarified as follows:

"If any pair of declarations of the same object or function
which appear in different scopes declare the object or function
in question to have two different incompatible types, the
behavior is undefined.”

(Actaaiy-therale regarding declarationcompatabllity which-now appears = === s

in 3.1.2.6 seems entirely misplaced anyway. Shouldn't it just be taken

174

Guilmette, Page 15
out of 3.1.2.6 and moved to the section on declarations, i.e. 3.57)

-- Ronald F. Guilmette, Sunnyvale, California
------ domain address: fg@netcom.com

------ uucp address: ...luunetinetcom.comlrfg

