16y /129]
x351) /93437

- Floating-Point C Extensions

Numerical C Extensions Group / X3J11.1
FP/IEEE Subcommittee

Technical Report
Public Comment Draft (X3J11.1/93-001)

January 20, 1993 e

Foreword

NCEG, at its initial meeting in May 1989, identified support for IEEE floating-point
arithmetic as one of its focus areas and organized a subgroup to produce a technical
report. NCEG, now the ANSI working group X3J11.1, has had the benefit of both C
language expertise and also IEEE floating-point expertise. It has included individuals
with substantial experience with language extensions (albeit proprietary) for IEEE
floating-point. And, following the C language standardization, NCEG has had a stable,
well defined host for its extensions. Thus NCEG has had a unique opportunity to solve
this long-standing problem.

When IEEE binary floating-point standard 754 became an official standard in J uly 1985,
26 months before the radix-independent standard 854, several IEEE implementations
were already shipping. Now virtually all new floating-point implementations conform to
the IEEE standards—at least in format, if not to the last detail. Although these standards
have been enormously successful in influencing hardware implementation, many IEEE
features remain impractical or unavailable for use by programmers. The IEEE standards
do not include language bindings—part of the cost of delivering the basic standard in a
timely fashion. The ANSI C committee attempted to eliminate conflicts with IEEE
arithmetic, but did not specify IEEE support. In the meantime, particular companies have
defined their own IEEE language extensions and libraries [4, 8, 10]; not surprisingly,
lack of portability has impeded programming for these interfaces.

The initial version of this document, in August 1989, was organized foremost as a
specification for IEEE implementations, with notes for other implementations. However,
from the beginning, substantial portions of the specification were not specific to IEEE
floating-point. For broader utility the document was reorganized as a general floating-
point specification with additional specification for IEEE implementations.

NCEG mailings have included ten drafts of this document, which have been reviewed to
varying degrees by NCEG’s FP/IEEE subgroup, NCEG as a whole, and numerous other
interested parties. Proprietary extensions for IEEE support have provided prior art for
many features. Substantial portions of the specification have been implemented in both
developmental and commercial compilers and libraries.

The previous draft of “Floating-Point C Extensions” (X3J11.1/92-040) was distributed to
various professional organizations, including X3J11, WG14, X3J16/WG21, X3T2, and
X/Open, in an effort to obtain broader, but still limited, review. At its December 1992
meeting, NCEG, approved unanimously a number of minor changes (detailed in
X3J11.1/92-070 and X3J11.1/92-082), mostly in response to suggestions from the limited
review, and approved distributing for public comment this draft (X3J11.1/93-001) which
incorporates those changes.

People who have made especially substantial contributions to this document include, in
alphabetical order: Jerome Coonen, Bill Gibbons, David Hough, Rex Jaeschke,
W. Kahan, Clayton Lewis, Stuart McDonald, Colin McMaster, Rick Meyers, David
Prosser, and Fred Tydeman.

Others who have provided invaluable contributions, reviews, or administrative help
include, in alphabetical order: Joel Boney, Norris Boyd, Larry Breed, Walter Bright,
W.J. Cody, Elizabeth Crockett, Karen Deach, James Demmel, Fred Dunlap, Yinsun
Feng, James Frankel, Scott Fraser, David Gay, Eric Grosse, Ron Guilmette, Bill Homer,

Page i
o3 2

Kenton Hanson, Paul Hilfinger, Martha Jaffe, Bob Jervis, David Keaton, Earl Killian,
David Knaak, John Kwan, Roger Lawrence, Tom MacDonald, Randy Meyers, Jon
Okada, Tom Pennello, Tim Peters, Sanjay Poonen, Ali Sazegari, Roger Schlafly, Steve
Sommars, Richard Stallman, Linda Stanberry, Gordon Sterling, Bill Torkelson, and
Terrence Yee.

This document benefited from the author’s previous experience with Apple Computer,
Inc.’s numerics and languages groups, developing the Standard Apple Numerics
Environment (SANE) and its various language bindings.

Jim Thomas
January 20, 1993

Page ii

10

15

20

25

30

35

40

45

Floating-Point C Extensions
X3J11.1/93-001

Jim Thomas
Taligent, Inc.
10725 N. DeAnza Blvd.

Cupertino, CA 95014-2000
Jim_thomas@taligent.com

1. INTRODUCTION

1.1 Purpose

This document specifies:

1. asetof Standard C extensions, suitable for most implementations, and designed to
facilitate a wide range of numerical programming;

2. a further set of extensions and definitions, suitable for implementations that support
IEEE floating-point standards 754 and 854, and designed to provide full access to
the features of those standards—allowing access also to similar features in non-
IEEE implementations.

This document is intended for incorporation into a Technical Report of the Numerical C
Extensions Group (NCEG/X3]1 1.1).

1.2 Scope

The specifications of this document, while extending Standard C, still lie within the
scope of that standard ([17]1 §4.2; [1] §1.2).

This document does not:

1. describe Standard C, except where it relates to extensions or subtleties of
implementation, but instead refers implicitly to the Standard C documents [17], [1];

2. describe IEEE floating-point per se, but instead refers implicitly to the 754 and 854
standards documents; . :

3. address other NCEG areas, such as complex arithmetic, which are expected to
accommodate IEEE standard arithmetic.

January 20, 1993 DRAFT & e
o7

10

15

20

25

30

35

40

45

50

X37J11.1/93-001 Floating-Point C Extensions

10.

11.

12.

45

14.

15.
16.

75

Page 2

References

. American National Standard for Information Systems—Programming Language C

(X3.159-1989).

- IEEE Standard for Binary Floating-Point Arithmetic (ANSVIEEE Std 754-1985).

IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSI/IEEE Std
854-1987).

. Apple Numerics Manual, Second Edition, Addison-Wesley (1988).

. “Functions to Support the IEEE Standard for Binary Floating-Point Arithmetic”, by

W. J. Cody and Jerome T. Coonen (to appear, Transactions on Mathematical
Software).

. “Contributions to a Proposed Standard for Binary Floating-Point Arithmetic”, by

Jerome Coonen, PhD thesis, University of California, Berkeley (1984).

“Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing’s
Sign Bit”, by W. Kahan, Proceedings of the joint IMA/SIAM conference on The
State of the Art in Numerical Analysis, 14-18 April 1986, Clarendon Press (1987).

- Numerical Computation Guide, Sun Microsystems, Inc. (March 16, 1990).

“Enhanced Arithmetic for Fortran”, by R. P. Corbett, ACM Signum Newsletter,
Vol. 18, No. 1 (January 1983) and ACM Sigplan Newsletter, Vol. 17, No. 12
(December 1982).

UNIX System V/386 Release 4 Programmer’s Reference Manual, Prentice Hall
(1990). '

“A Proposed Radix- and Word-length-independent Standard for Floating-point
Arithmetic”, by W. J. Cody et al, IEEE Micro, Vol. 4, No. 4 (August 1984).

“Correctly Rounded Binary-Decimal and Decimal-Binary Conversion”, by David
M. Gay, Numerical Analysis Manuscript 90-10, AT&T Bell Laboratories
(November 30, 1990)—NCEG 91-019.

Numerics Programming Guide, Zortech C++ Compiler 3.0, Zortech Limited (May
1991). A pioneer implementation of substantial portions of this specification.

“Overloading Floating-Point Functions in C”, Bill Gibbons (November 1991)—
NCEG 91-047. '

“Generic Functions”, David Hough (November 1991)—NCEG 91-046.

American National Standard Programming Language FORTRAN (ANSI X3.9-
1978).

International Standard Programming Languages—C, (ISO/IEC 9899:1990 (E)).

DRAFT January 20, 1993

10

15

20

29

30

35

40

45

50

18.

19.
20.

21.

22,

23.

24.

1.4

X3J11.1/93-001
The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup,
Addison-Wesley (1990).
“Contracted Multiply-Adds”, W. Kahan (September 20, 1991)—NCEG 91-042.

“An Argument of Apple’s Support of the Extended Floating-Point Type”, Jim
Thomas and Jerome Coonen (September 14, 1989)—NCEG 89-037.

C* Language Reference Manual, James L. Frankel, Draft Technical Report,
Thinking Machines Corporation (May 16, 1991)—NCEG 91-023.

“Augmenting a Programming Language with Complex Arithmetic”’, W. Kahan and
J. W. Thomas (November 15, 1991)—NCEG 91-039.

“Algorithm XXX: Specfun—A Portable Package of Special Functions and Test
Drivers”, W. J. Cody (work in progress).

“Floating-Point C Extensions”, Jim Thomas (August 10, 1991)—NCEG 91-028.

Organization of Document

The major subsections are:

1

Ky

m U 0O W P ~ w0

this introduction;

characteristics of the translation and execution environments;
language syntax, constraints, and semantics;

library facilities;

summary of language syntax extensions;

optimization notes;

summary of library facilities;

implementation limits;

documentation guide for operators and functions;

specification of library facilities for IEEE implementations.

Sections that can be regarded as extending or modifying a particular section of the
Standard C documents are marked with the section numbers from the ISO C [17] and
ANSI C [1] documents, for example

3.1.2 Floating constants (ISO §6.1.3.1; ANSI §3.1.3.1)

Rationale, in smaller font size, accompanies sections that are controversial or where
further explanation seems needed. Subsections entitled “For IEEE Implementations”

January 20, 1993 DRAFT =7 Page3

07

10

15

20

i

30

33

40

45

50

X3J11.1/93-001 Floating-Point C Extensions

contain specification that applies specifically to implementations that support features of
the IEEE floating-point standards.

As in the IEEE floating-point standards, use of the word shall signifies that which is
obligatory for conformance; use of the word should signifies that which is strongly
recommended, though impractical for certain implementations.

1.5 Definition of Terms

* Double—the IEEE floating-point standards’ double data format. Written in
program-text style, double refers to the Standard C data type. Where noted,
double refers locally to both IEEE and also non-IEEE double precision formats.

* Double-based architecture—a floating-point architecture designed to produce
primarily double format results.

* Evaluation format—the format used to represent the result of an expression. It may
be wider than the semantic type of the expression.

* Exception flag—a flag signifying that a floating-point exception has occurred.
IEEE implementations support overflow, underflow, invalid, divide-by-zero, and
inexact exception flags.

* Expression evaluation method—a method for determining the evaluation formats
for expressions. 201670

* Extended—the IEEE floating-point standards’ double-extended data format.
Extended refers to both the common 80-bit and so-called quadruple 128-bit IEEE

formats. Where noted, extended refers locally to both IEEE and also non-IEEE

formats that are wider than double.

« Extended-based architecture—a floating-point architecture designed to produce
primarily extended format results.

* Flag—see exception flag.

* Floating-point environment—collectively all floating-point status flags and control
modes.

* Floating-point standards—specifically IEEE Standard for Binary Floating-Point
Arithmetic (ANSVIEEE Std 754-1985) and IEEE Standard for Radix-Independent
Floating-Point Arithmetic (ANSI/IEEE Std 854-1987).

¢ IEEE implementation—an implementation that conforms to one or both of the IEEE
floating-point standards. See floating-point standards.

L

* Implementation-defined behavior—behavior that depends on the characteristics of
the implementation and that each implementation shall document. (As in
Standard.C.)

* Mode—short for floating-point control mode.

Page 4 DRAFT January 20, 1993

)0

10

15

20

25

30

35

40

45

X3J11.1/93-001

NaN—in a floating-point format, an encoding that signifies Not-a-Number. In this
document the term NaN generally denotes quiet NaNs.

Normal number—a nonzero, finite number that is not subnormal. (As in IEEE
standard 854.) '

Quiet NaN—a NaN that propagates through almost every arithmetic operation
without raising an exception.

Rounding direction mode—a dynamic mode that controls the style of rounding used
by floating-point operations. For IEEE implementations the rounding directions are
upward, downward, toward zero, and to nearest.

Rounding precision mode—a dynamic or static mode that controls the precision to
which floating-point operations round their results.

Signaling NaN—a NaN that generally raises an exception when occurring as an
arithmetic operand. This specification does not cover signaling NaNs.

Single—the IEEE floating-point standards’ single data format. Where noted, single
refers locally to both IEEE and also non-IEEE single precision formats.

Single/double architecture—a floating-point architecture designed to produce with
like efficiency either single or double format results, with any extended arithmetic
being substantially slower.

Single/double/extended architecture—a floating-point architecture designed to
produce with like efficiency either single, double, or extended results.

Standard C—the C language standard, International Standard ISO/IEC 9899 and
American National Standard Programming Language C .

Subnormal number—a nonzero floating-point number whose exponent is the
format's minimum and whose leading significand digit is zero. (As in IEEE
standard 854.)

Undefined behavior—behavior, for an erroneous program or erroneous data, for
which this specification imposes no requirement. (As in Standard C.)

Unspecified behavior—behavior, for a correct program and correct data, for which
this specification imposes no requirement. (As in Standard C.)

Warning—a translation-time message alerting the user when reasonable or common
expectations for a formally correct program may not be met.

1.6 Compliance

In order to comply as an implementation supporting IEEE standard floating-point, an
implementation must conform to one, or both, of the IEEE standards 754 and 854—
which ones is implementation-defined.

January 20, 1993 DRAFT Page 5

10

15

20

25

30

9

40

45

50

X3J11.1/93-001 Floating-Point C Extensions

2. ENVIRONMENT

Any floating-point status flags and control modes supported by the implementation are
here referred to collectively as the floating-point environment. Programs that test flags
or run under non-default modes must do so under the effect of an enabling
fenv_access pragma.

#pragma fenv_access on-off-switch

on-off-switch: one of:
on (o} 2 default

can occur outside external declarations and takes effect from its occurrence until another
fenv_access pragma is encountered, or until the end of the translation unit. The effect of
this pragma appearing inside an external declaration is undefined. The behavior of a
program that tests flags or runs under non-default mode settings but that is not under the
effect of an enabling fenv_access pragma is undefined. The default state (on or off) for
the pragma is implementation-defined. (§4.4 specifies facilities for accessing the floating-
point environment.)

The floating-point environment as defined here includes only execution-time modes, not the
myriad of possible translation-time options that may affect a program's results. Examples
of such translation-time options include: chopped or rounded multiplication on CRAY Y-
MP systems, D or G format for VAX, and fast or correctly-rounded divide on the Intel 860.
Each option's implementation-defined or deviant properties, relative to this specification,
should be well documented.

The purpose of the fenv_access pragma is to allow certain optimizations, namely global
common subexpression elimination, code motion, and constant Jolding, that could subvert
the testing of flags and changing of modes. For example, in :

{
double x;
void f(double);
void g(double);

£ (' + 1)
g(x + 1);

}

the function £ might depend on status flags set as a side effect of the first x + 1. The
second x + 1 might depend on control modes set as a side effect of the function call £. The
imposed temporal ordering would require two evaluations of x + 1. This specification says
that if in fact the program tests flags or changes modes through the call to £, it must so
declare with an enabling fenv_access pragma. In general, if the state of fenv_access is
off then the translator can assume that default modes are in effect. '

The user model is supported by certain programming conventions;
1. A function call must not alter its caller’s modes, clear its caller’s flags, nor depend on

‘the state of its caller’s flags unless the function is so documented. (To do otherwise
would be extremely dangerous, irrespective of this specification.)

Page 6 h DRAFT - January 20, 1993

al&

10

15

20

25

30

£ %)

40

45

50

55

X3J11.1/93-001

2. A function call is assumed to require default modes, unless its documentation promises
otherwise, or unless the function is known not to use floating-point.

3. A function call is assumed to have the potential of raising floating-point exceptions,
unless its documentation promises otherwise, or unless the function is known not to use
floating-point.

With these conventions a programmer can assume default modes, or ignore them altogether,
safely and without code or intellectual overhead. Responsibilities, and ordinarily modest
overhead, associated with accessing the floating-point environment fall entirely on the
programmer or program that does so.

No standard library function, except those in <fenv.h>, tests or clears its caller's flags or
changes its caller's modes.

Libraries are encouraged to document their use, or non-use, of floating-point and their
raising of floating-point exceptions.

The performance of code under the effect of an enabling fenv_access pragma may well be
important; in fact, an algorithm may access the floating-point environment specifically for
performance. The implementation should optimize as aggressively as the fenv_access
pragma allows. (See §B.1.)

An implementation could simply honor the floating-point environment in all cases and
ignore the pragma.

Dynamic vs static modes

Dynamic modes are potentially problematic because

1. the programmer may have to defend against undesirable mode settings—which imposes
intellectual, as well as time and space, overhead.

2. the translator may not know which mode settings will be in effect or which functions
change them at execution time—which inhibits optimization.

This proposal attempts to address these problems without changing the dynamic nature of
the modes.

An alternate approach would have been to present a model of static modes, with explicit
utterances to the translator about what mode settings would be in effect. This would have
avoided any uncertainty due to the global nature of dynamic modes or the dependency on
unenforced conventions. However, some essentially dynamic mechanism still would have
been needed in order to allow functions to inherit (honor) their caller’s modes. The [EEE
standards require dynamic rounding direction modes. For the many architectures that
maintain these modes in control registers, implementation of the static model would be
more costly. Also, Standard C has no facility, other than pragmas, for supporting static
modes.

An implementation on an architecture that provides only static control of modes, for
example through opword encedings, still could support the dynamic model, by generating
multiple code streams with tests of a private global variable containing the mode setting.
Only modules under an enabling fenv_access pragma would need such special treatment.
To further limit the problem, the implementation might employ additional pragmas
specifically to indicate where non-default modes would be admissible.

January 20, 1993 DRAFT Page 7

3

10

15

20

25

30

35

40

45

50

X3J11

.1793-001

For IEEE Implementations

2.1

An implementation should provide a warning for each translation-time floating-point
exception, other than inexact. The implementation shall document all mode settings that

The IEEE floating-point standards require that an implementation support certain status
flags and control modes.

The exception flags—invalid, overflow, underflow, divide-by-zero, and inexact—can be
queried at execution time to determine whether a floating-point exception has occurred since
the beginning of execution or since its flag was explicitly cleared. (The flags are sticky.)

The rounding direction modes—to-nearest, toward-zero, upward (toward +), and downward
(toward -eo)—can be altered at execution time to control the rounding direction for floating-
point operations.

The rounding precision modes cause a system whose results are always double or extended
to shorten the precision of its results, in order to mimic systems that deliver results to
single or double precision. Some systems need not implement rounding precision modes—
see §4.4.2.

The traps recommended by the IEEE floating-point standards require modes for enabling and

disabling. Trap-enable modes, which will be covered by a separate NCEG/X3J11.1
subgroup focusing on exception handling, lie outside the scope of this document.

Translation

affect the behavior of translation-time arithmetic.

For IEEE Implementations

During translation the IEEE standard default modes are in effect:

2.2

2.2.1

At program startup any floating-point modes are initialized as for translation-time
arithmetic. The implementation shall document all s

rounding direction: to-nearest
rounding precision: results not shortened
trapping: all traps disabled

An implementation is not required to provide a facility for altering the modes for
translation-time arithmetic, or for making exception flags from the translation available to
the executing program. The language and library provide facilities to cause floating-point
operations to be done at execution time, when they can be subjected to varying dynamic
modes and their exceptions detected. The need does not seem sufficient to require similar
facilities for translation.

Execution

Startup

behavior of arithmetic.

Page 8

This promotes consistency between translation- and execution-time computations.

DRAFT ' January 20, 1993

Floating-Point C Extensions

tartup mode settings that affect the

/9

10

15

20

25

30

35

40

45

50

X3J11.1/93-001

For IEEE Implementations

At program startup the floating-point environment is initialized as prescribed by the
IEEE floating-point standards:

exception flags: all clear
rounding direction: to-nearest
rounding precision: results not shortened
trapping: all traps disabled

2.2.2 Changing the environment

Operations defined in ISO §6.3 (ANSF §3.3) and functions and macros defined for
standard libraries change flags and modes just as indicated by their specification (which
may include conformance to standards); they do not change flags or modes (so as to be
detectable by the user) in any other cases.

2.3 Environmental Limits

2.3.1 Characteristics of floating types (150 §5.2.4.2; ANsI §2.2.4.2)
The value of the Standard C macro
FLT_ROUNDS
is dynamically determined to represent the effective rounding direction.
Thus IEEE implementations, and any others that allow changing the rounding direction at
execution time, must implement FLT_ROUNDS as an execution-time inquiry, not as a

constant (when the state of fenv_access is on).

This specification augments <float.h> with two macros that characterize the
evaluation method (§3.2.3.1) for evaluating floating-point expressions. The minimum
evaluation format is characterized by the value of _MIN_EVAL_FORMAT:

0 float
1 double
2 long double

Whether widest-need evaluation is performed is characterized by _WIDEST NEED_EVAL:

0 no
1 vyes

If the minimum evaluation format is long double then the value of _WIDEST NEED_EVAL
is irrelevant.

The values _MIN_EVAL_FORMAT and _WIDEST_NEED_EVAL need not be constants.

January 20, 1993 DRAFT Page 9

X3J11.1/93-001 Floating-Point C Extensions

An implementation that provides alternate expression evaluation methods must assure that

translation-time evaluation of _MIN_EVAL_FORMAT and _WIDEST_NEED_EVAL reflects the
current one.

Page 10 DRAFT January 20, 1993 A

5

10

15

20

23

30

35

40

45

50

X3J11.1/93-001

3. LANGUAGE

3.1 Lexical Elements aso s6.1; ANsI 3.1

3.1.1 Types (SO §6.1.2.5; ANSI §3.1.2.5)

The 1ong double type should have strictly more precision than double which should
have at least twice the number of digits of precision as float. If not, the
implementation should emit a warning when processing a translation unit that uses
distinct floating types with the same precision.

This facilitates porting code that, intentionally or not, depends on differences in type widths.
Many results are exact or correctly rounded when computed with twice the number of digits
of precision as the data. For example, the calculation

float d; X, Y. 2, W;
d = (double) x * y - (double) z * w;

yields a correctly rounded determinant if double has twice the precision of float and the
individual operations are correctly rounded. (The casts to double are unnecessary if the
minimum evaluation format is double Or long double—see §3.2.3.1))

For IEEE Implementations

The C floating types match the IEEE standard floating-point formats as follows:

C type IEEE format

float single

double double

long double extended, else a non-IEEE extended format, else
double

Any non-IEEE extended format, used as the long double format for an IEEE
implementation, has more precision than IEEE double and at least the range.

Minimal conformance to the IEEE floating-point standards does not require a format wider
than single. The narrowest C double type allowed by Standard C (ISO §5.2.4.2; ANSI
§2.2.4.2) is wider than IEEE single, and wider than the minimum [EEE single-extended
format. (IEEE single-extended is an optional format intended only for those
implementations that don’t support double; it has at least 32 bits of precision.) Both
Standard C and the IEEE standards would be satisfied if £1oat were IEEE single and double
were an IEEE single-extended format with at least 35 bits of precision. However, this
specification goes slightly further by requiring double to be IEEE double rather than justa
wide [EEE single-extended.

The primary objective of the IEEE part of this specification is to facilitate writing portable
code that exploits the IEEE floating-point standards, including their standardized single and
double data formats. Bringing the C data types and the IEEE standard formats into line
advances this objective.

This specification accommodates what are expected to be the most important IEEE floating-
point architectures for general C implementations—see §3.2.3.

January 20, 1993 DRAFT Page 11

sl AR el

10

15

25

30

35

40

45

50

55

X3J11.1/93-001 Floating-Point C Extensions

Because of Standard C’s bias toward doubl e, extended-based architectures might appear to be
better served by associating the C double type with IEEE extended. However, such an
sasass-APRrRach. would.not.allow. standard.C.types for both JEEE.double- and. single.and.would g0...
. GRINSE CurTENt industry naming, in addition to undermining this specification’s portability
- goal. Other features in this document, for example the type definitions float_t and
double_t (defined in §4.3), are intended to allow effective use of architectures with more

efficient, wider formats.

The 1ong double type is not required to be IEEE extended because

1. some of the major IEEE floating-point architectures for C irriplementations do not
support extended,

2. double precision is adequate for a broad assortment of numerical applications, and

3. extended is less standard than single or double in that only bounds for its range and
precision are specified in IEEE standard 754.

For implementations without extended in hardware, non-IEEE extended arithmetic written in
software, exploiting double in hardware, provides some of the advantages of IEEE extended
but with significantly better performance than true IEEE extended in software. [20] explains
advantages of extended precision.

Specification for a variable-length extended type—one whose width could be changed by the
user—was deemed premature. However, not unduly encumbering experimentation and
future extensions, for example for variable length extended, is a goal of this specification.

Narrow-format Implementations

Some C implementations, namely ones for digital signal processing, provide only the IEEE
floating-point standards’ single format, possibly augmented by single-extended, which may
be narrower than IEEE double or Standard C double, and possibly further augmented by
double in software. These non-conforming implementations might generally adopt this
specification, though not matching its requirements for types.

One approach would be: match Standard C float with single; match Standard C double
with single-extended, else single; and match Standard C long double with double, else
single-extended, else single. Then most of this specification could be applied
straightforwardly. Users should be clearly warned that the types may not meet expectations.

Another approach would be to refer to a single-extended format as long float and then not
recognize any C types not truly supported. This would provide ample warning for programs
requiring double. The translation part of porting programs could be accomplished easily
with the help of type definitions. In the absence of a double type, most of this specification
for double could be adopted for the long float type. Having distinct types for
long float and double, previously synonyms, requires more imagination.

3.1.1.1 NaNs

Floating types may support NaN (Not-a-Number) values, which do not represent
numbers. A NaN that generally raises an exception when encountered as an operand of

arithmetic operations is called a signaling NaN, and the operation is said to zrigger the

signaling NaN; this document does not define the behavior of signaling NaNs. A NaN
that behaves predictably and does not raise exceptions in arithmetic operations is called
a quiet NaN; this document uses the term Nad to denote quiet NaNs.

Page 12 DRAFT January 20, 1993

A

10

15

20

25

30

35

40

45

50

X3J11.1/93-001

The IEEE floating-point standards specify quiet and signaling NaNs, but these terms can be
applied for some non-IEEE implementations as well—for example, the VAX reserved
operand and the CDC and CRAY indefinite qualify as signaling NaNs. In IEEE standard
arithmetic, operations that trigger a signaling NaN argument generally return a quiet NaN
result provided no trap is taken; neither traps nor any other facility for signaling NaNs is
required. True support for signaling NaNs implies restartable traps, such as the optional
traps specified in the IEEE floating-point standards.

The primary utility of quiet NaNs—*“to handle otherwise intractable situations, such as
providing a default value for 0.0/0.0” [11]—can be supported through straightforward
extensions to C. See §3.3.2,4.2.1.2, 4.2.2.1-2, 4.3, 4.3.9.2.

Other applications of NaNs may prove useful. Available parts of NaNs have been used to
encode auxiliary information, for example about the NaN's origin [4]. Signaling NaNs are
good candidates for filling uninitialized storage; and their available parts could distinguish
uninitialized floating objects. IEEE signaling NaNs and trap handlers potentially provide
hooks for maintaining diagnostic information or for implementing special arithmetics.

However, C support for signaling NaNs, or for auxiliary information that could be encoded
in NaNs, is problematic. Trap handling varies widely among implementations.
Implementation mechanisms may trigger signaling NaNs, or fail to, in mysterious ways.
The IEEE floating-point standards require that NaNs propagate, but not all implementations
faithfully propagate the entire contents. And even the IEEE standards fail to specify the
contents of NaNs through format conversion, which is pervasive in some C implementation
mechanisms. For these reasons this document does not define the behavior of signaling
NaNs nor specify the interpretation of NaN significands.

[24], a previous version of this document, contains specification for signaling NaNs. It
could serve as a guide for implementation extensions in support of signaling NaNs.

3.1.2 Floating constants (ISO §6.1.3.1; ANSI §3.1.3.1)

Floating constants are converted to their internal representation at translation time. Each
constant is represented in a format (perhaps wider than required by the constant's type)
determined by the effective expression evaluation method (§3.2.3.1). The resulting
values from translation-time conversion of (valid) floating constants match those from
execution-time conversion with default rounding modes by library functions, like
strtod. See §4.2.1.2.

Note that since floating constants are converted to appropriate internal representations at
translation time, default rounding direction and precision will be in effect and execution-time
exceptions will not be raised, even under the effect of an enabling fenv_access pragma.
Library functions, for example strtod, provide execution-time conversion of decimal
strings.

3.1.2.1 Hexadecimal floating constants (ISO §6.1.3.1, 6.1.8; ANSI §3.1.3.1,
3.1.8)

The Standard C floating-constant syntax is augmented to include hexadecimal floating
constants.

January 20, 1993 DRAFT Page 13

10

15

20

25

30

35

40

45

50

X3J11.1/93-001 Floating-Point C Extensions

Syntax
floating-constant:
h.e.x-adecinml-ﬂoating-constant

hexadecimal-floating-constant:
0x hexadecimal-fractional-constant binary-exponent-part floating-suffixopy
0x hexadecimal-fractional-constant binary-exponent-part floating-suffixopy
0x hexadecimal-digit-sequence binary-exponent-part floating-suffixopt
0x hexadecimal-digit-sequence binary-exponent-part floating-suffixopt

hexadecimal-fractional-constant:
hexadecimal-digit-sequence, pt - hexadecimal-digit-sequence
hexadecimal-digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

binary-exponent-part:
p Signopt digit-sequence
P signop digit-sequence

The binary exponent gives a decimal integer representing a power of 2. If FLT RADIX
is a power of two, hexadecimal floating constants are correctly rounded. The
implementation shall emit a warning if a hexadecimal constant cannot be represented
exactly in its evaluation format (see §3.2.3.1). Further accuracy specification for the
conversion of hexadecimal floating constants to internal format is implied by the
specification for the strtod functions (§4.2.1.2).

In order to accommodate hexadecimal floating constants, the Standard C syntax for
preprocessing numbers (ISO §6.1.8; ANSI §3.1.8) is augmented to include

pp-number:
pp-number p sign
pp-number P sign

Example

<float.h> for an IEEE 754 implementation might contain:

#define FLT_MAX Ox1.FFFFFEpl27f /* or OxF.FFFFFpl24f */
#define FLT_EPSILON 0x1lp-23f
#define FLT_MIN 0x1lp-126f£

Example

The constant -0x1.0000000000001p0 represents the largest IEEE 754 double
precision value less than -1.

Hexadecimal more clearly expresses the significance of floating constants.

Page 14 DRAFT January 20, 1993

ey 5]

X3J11.1/93-001

The binary-exponent part is required to avoid ambiguity from an f suffix (being mistaken as
a hexadecimal digit).

Constants of long double type are not generally portable, even among IEEE
implementations. '

Unlike integers, floating values cannot all be represented directly by hexadecimal constant
syntax. A sign can be prefixed for negative numbers and -0. Infinities might be produced
by hexadecimal constants that overflow. NaNs require some other mechanism. Note that
0x1.FFFFFEp128f, which might appear to be an IEEE single-format NaN, in fact overflows
to an infinity in the single format (and causes a translation-time warning).

Infinity and NaN constants, useful for static and aggregate initialization, should be
considered for future extensions.

An alternate approach might have been to represent bit pattemns. For example

#define FLT_MAX 0x.7F7FFFFF

This would have allowed representation of NaNs and infinities. However, numerical values
would have been more obscure owing to bias in the exponent and the implicit significand
bit. NaN representations would not have been portable—even the determination of IEEE
quiet NaN vs signaling NaN is implementation-defined. NaNs and infinities are provided
through macros in §4.3.

The straightforward approach of denoting octal constants by a o prefix would have been
inconsistent with allowing a leading o digit—a moot point as the need for octal floating
constants was deemed insufficient.

The caret ~ was ruled out as a character to introduce the exponent because doing so would
have used up a potential operator.

3.2 Conversions

3.2.1 Floating and integral (1ISO §6.2.1.3; ANSI §3.2.1.3)

For conversion from floating to integer type, if the floating value is infinite or NaN or if
the integral part of the floating value exceeds the range of the integer type then the
invalid exception, if available, is raised and the value of the result is unspecified.

For IEEE Implementations

Whether conversion of nonintegral floating values whose integral part is within the
range of the integer type raises the inexact exception is unspecified.

Conversion from floating to integral rounds toward zero, consistent with Standard C. IEEE
rounding is provided by the library function rinttol.

IEEE standard 854, though not 754, directly specifies that floating-to-integral conversion
raise the inexact exception for nonintegral in-range values. In those cases where it matters,
library functions can be used to effect such conversions with or without raising the inexact
exception. See rint, rinttol, and nearbyint in §F.6.

Conversion from integer to floating type is an IEEE standard floating-point operation,
rounding according to the current rounding direction mode.

January 20, 1993 DRAFT Page 15
oz /

5

10

15

20

25

30

35

40

45

50

23

X3J11.1/93-001 Floating-Point C Extensions

Note that rounding indeed will be required if an integer is too wide to represent exactly in
the floating-point format.

3.2.2 Floating types (IS0 §6.2.1.4; ANSI §3.2.1.4)

For IEEE Implementations

Conversions between floating types are specified by the IEEE floating-point standards.

3.2.3 Expression evaluation (SO §6.2.1.5; ANSI §3.2.1.5)

This specification recognizes five distinct expression evaluation methods. A floating-
point expression has both a semantic type and an evaluation format. Each evaluation
format is the format of one of the floating types. The result of the expression is
represented in the expression’s evaluation format. An expression evaluation method
determines the evaluation formats for expressions. Which expression evaluation
methods are provided is implementation-defined.

For most floating operations Standard C defines the semantic type of the operation to be the
widest type of its operands, but gives explicit license to represent the operation’s result in a
format wider than its type.

The use here of the term method is unrelated to its use in Smalltalk.

Although specifying just one method would have facilitated porting code, any one method
would have been unacceptably inefficient on some important architectures. On the other
hand, still other expression evaluation methods are conceivable, for example evaluating
float operations to float format, and all others to long double. The expression
evaluation methods described in this section comprise an intentionally small set with at
least one method that is efficient for any of the existing or anticipated, commercially
significant, floating-point architectures: '

Floating-point architectures

In the following description of floating-point architectures, the terms extended, double, and
single have a slightly broader meaning than in the rest of this document. They still refer to
floating formats, but apply to both IEEE and non-EEE systems. Generally, extended is
wider than double which is wider than single.

Extended-based. The arithmetic engine is extended. Source operands can be single, double,
or extended, though generally arithmetic with single and double types is less efficient,
requiring extra conversions. Examples include Intel 80x87, Cyrix 3D87, Motorola 6888x,
and AT&T WE 32x06. The Motorola 88110 and Intel 960 can be used as extended-based
architectures, or altematively as single/double/extended ones (see below). -

Double-based. The arithmetic engine is double. Source operands can be single or double,
though generally arithmetic with the single type is less efficient, requiring extra
conversions. Extended may be available, but implemented in software. Examples include
IBM RISC System/6000, PDP-11 in double mode, CRAY, and CYBER 180. On CRAY
and CYBER, single and double may be the same format. The CYBER provides some
hardware support for extended. ;

Single/double. These provide orthogonal operations for single and double arithmetic,
Single is typically faster than double. Extended may be available, but implemented in

Page 16 DRAFT January 20, 1993

07 2—

10

15

20

25

30

35

40

45

50

55

X3J11.1/93-001

software. Examples include MIPS, SPARC, HP PA-RISC, Motorola 88100, Intel 860,
and systems assembled with Weitek or BIT processors. The MIPS, SPARC, and HP PA-
RISC architectures specify extended, though it is not yet in hardware.

Single/double/extended. These provide orthogonal operations for single, double, and
extended arithmetic. Single is faster than double, which is faster than extended. Examples
include Motorola 88110, Intel 960, IBM S/370, and VAX.

3.2.3.1 Methods

The five expression evaluation methods are characterized by two properties: (1) the
minimum-width format for expression evaluation, and (2) whether determination of the
evaluation format is affected by the context of the operation according to the rules for
widest-need evaluation. (Widest-need is irrelevant if the minimum width format is
long double.)

Minimum evaluation format. The minimum evaluation format may be float, double,
or long double. The evaluation format for operations subject to the usual arithmetic
conversions and for floating constants is at least this wide, even if the semantic type is
less.

The early C implementations provided just the float and double floating-point types and
evaluated all floating expressions to double. Intentional or not, some C programs have
relied on extra precision for their computation with float operands. A minimum
evaluation format of double is a natural choice for double-based architectures.

Implementations for single/double and single/double/extended architectures may find a
minimum evaluation format of float compellingly more efficient, despite potential
problems of conformity to expectations based on C’s tradition of wide evaluation.

Even on a single/double or single/double/extended architecture, an implementation might
provide double as a minimum evaluation format, for compatibility reasons. Common
statements of the form

f1 = £2 op £3; /* where f1, f2, f3 are of type float */

can be done optimally by many such implementations, including all IEEE ones, where
rounding the result to double and then to float is equivalent to rounding to float
direcdy.

A minimum evaluation format of long double is common on extended-based architectures.
Programs that run under one of the other expression evaluation methods generally run at
least as well when all expressions are evaluated to long double. Most program failures
due to extra precision arise from its inconsistent use (see §B.5).

Representation of constants in a format commensurate with expression evaluation, not a
traditional practice, better meets certain expectations than would representation strictly
according to semantic type—for example, 0.1f == 1.0£/10.0f. Viewed as translation-
time operations that convert decimal strings to internal floating representations, literal
floating constants naturally follow the method of expression evaluation.

Widest-need evaluation. Without widest-need the evaluation format for an operation or
constant is simply the wider of its semantic type and the minimum evaluation format.
With widest-need, the evaluation format for an operation is the widest of the semantic
types appearing in a certain enclosing expression and at least as wide as the minimum
evaluation format. More precisely, the evaluation format for an operation subject to the

January 20, 1993 DRAFT Page 17

10

15

20

25

30

33

40

45

50

55

60

X3J11.1/93-001

Floating-Point C Extensions

usual arithmetic conversions, or for an assignment (including the assignment of
function arguments to parameters, but not cast conversions), is propagated to its
operands (or arguments): if an operand is a variable or an operation not subject to the
usual arithmetic conversions it is converted to the evaluation format; if the operand is
an operation subject to the usual arithmetic conversions, or a floating constant, the
evaluation format is imposed recursively.

Examples

With the declarations

float f;
double d;
long double 14;

double dd(double) ;
double fd(float);

widest-need with a minimum evaluation format of float implies:

Quter-most expression Operation
1d + (f * f) *
+
1d + £A(f * f) *
"
1d + dd(f * f) X
-
1d + (d = £ * f) *
@
£+ (d=1d * 14) *
5
1d + (double) (f * f) *
+
1d + (d -= £ * f) *
s
1d + (f£++ * --4d) ++
+
1d == £ * f *
£/ (d+d, £*f) i
/
(A A R el oy sy =
/
+
1d + 0.1f 0.1f
: +
DRAFT

Page 18

long double
long double

float
long double

double
long double

double
long double

long double
double

float
long double

double
double
long double

float

double
long double
long double

long double

double
float
float

float
long double
long double

long double
long double

Evaluation format

January 20, 1993

/7Y

10

15

20

25

30

35

40

45

50

55

X3J11.1/93-001

f + 0.1 0.1 double
+ double

The definition of widest-need is based on a widest need evaluation for Fortran presented in
[9]. It does not affect integer expression evaluation, which is covered by Standard C.

As computer speed and memory size increase, so will the number of problems attempted and
the size of data sets. Thus, the likelihood that a program will suffer serious roundoff error
for some actual data will increase. Wider precision, not for the entire computation but just
for expressions containing certain variables, often will fix the problem, without unduly
affecting performance, and without requiring costly error analysis. With widest-need, an
expression is automatically evaluated to the format of its widest component. To achieve the
same effect without widest-need expression evaluation, the programmer must add or delete
casts and constant suffixes throughout the program.

Widest-need expression evaluation is a particularly attractive compromise for architectures
whose wider formats are significantly slower. It offers the accuracy of wide evaluation
where likely needed and also the speed of narrow evaluation where clearly intended. Note
that casts can be used to inhibit widest-need widening, even within a wide expression.

Previous drafts defined a #pragma evaluate which allowed switching expression
evaluation methods between external declarations. This facility was believed to be without
sufficient utility and somewhat error prone. Implementations that support multiple
expression evaluation methods can supply translation options.

3.2.3.2 Contraction operators

A floating-point engine may provide an atomic operation for multiple binary operators.
Such an atomic operation is referred to here as a contraction operator and the multiple
binary operators as contracted, because rounding errors or side effects from their
computation may be omitted. Contracted operators should incur no greater-magnitude
rounding error than if they were not contracted. Whether contraction operators are
employed is implementation-defined.

An implementation that is able to multiply two double operands and produce a float
result in just one machine instruction might contract the multiplication and assignment in:

float £;
double di1, d2;

f =d1l * 42;

Other examples of potential contraction operators include:

compound assignments +=, -=, etc.;
ternary add X + Yy + z}
multiply-add X *y + z

Contractions can lead to subtle anomalies even while increasing accuracy. The value of
expressions like a * b + ¢ * d <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>