Record of Responses #1

This document presents all the responses to date of ISO committee JT C1/SC22/WG14 (Programming
language C) to Defect Reports #001 through #059 for International Standard ISO/IEC 9899:1990. As a
Record of Responses, this document is no normative; rather, it provides guidance on how to interpret the
ISO C Standard.

That guidance was crafted by technical experts from a number of ISO member nations. In particular, WG 14

solicited, and received, extensive assistance from the ANSI authorized committee X3J11, which developed
the ANSI C Standard that became the ISO C Standard.

To form a coherent history of Defect Reports and their disposition, this Record of Responses also records
a number of responses that call for normative changes to the ISO C Standard. A separate document, called
a Technical Corrigendum, makes those normative changes. In this Record of Responses, such an item from
the Technical Corrigendum is identified as a Correction.

WG14 has developed no response yet for Defect Report #056. At the request of X3J11, and others, WG14
has elected to allow additional time for technical experts to consider the issues. Nevertheless, that Defect
Report is also included in this document, again in the interest of completeness. It is labeled as an Open
Issue.

Every other committee interpretation is labeled as a Response in this document.

This Record of Responses includes a Summary of Issues, to assist the reader in locating areas of particular
interest.

ISO JTC1/SC22/WG14

Defect Report #001 Page 2 Question 1

Defect Report #001

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-009 (Paul Eggert)
Question 1

Do functions return values by copying?

The standard is clear (in subclause 6.3.2.2) that function arguments are copied, but is not clear (in subclause
6.6.6.4) whether a function’s returned value is also copied. This question becomes an issue in the assignment
statement s=£ () ; where £ yields a structure: is the result defined when the structure s overlaps the
structure that £ obtained the returned value from?

I ask this question because the GNU C compiler does not copy the structure in this case. When I filed the
enclosed bug report [omitted from this document], Richard Stallman, the author of GNU C, replied that he
didn’t think that Standard C required the extra copy. I sympathize with Stallman’s desire for efficient code,
and I also would prefer that the standard did not require the extra copy here, but the point should be made
clear in the standard.

Correction

Add to subclause 6.6.6.4, page 80, the following:

The overlap restriction in subclause 6.3.16.1 does not apply to the case of function return.

Example

In:

struct s {double i;} f£(wvoid):;

union {struct {int f£1;
struct s £2;} ul;
struct {struct s £3;
int £4;} u2;

} gi
struct s £(void)
{

return g.ul.£2;
}
/* ... %/

g.u2.£f3 = £();
the behavior is defined.

ISO JTC1/SC22/WG14

Question 1 Page 3 Defect Report #002
Defect Report #002

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-010 (Terence David Carroll)

Question 1
Subclause 6.8.3.2: Semantics of #

A minor detail in the semantics is that it does not explicitly state that a \ character will be inserted before
a \ character that.occurs within a macro actual parameter, only when the \ character occurs within a string
literal or character constant within the actual parameter.

I can see that there is an argument concerning the systems where \ is a valid part of a path name and where
#include path names are desired to be built dynamically and then #ed.

Would it not be better, however, to escape all \ within actual parameters and require either
a) thatsystems using \ in path names escape them within #include strings, or perhaps better require

b) that during macro processing of #include parameters the # operator will not cause \ characters to
be escaped at all or will be implementation defined?

This second case b) is better, as strings for #include directives are already a special case (no escape
processing, etc.), so should not the # operator also be special for #include directives?

Response

The Committee reasserts that the grammar and/or semantics of preprocessing as they appear in the standard
are as intended.

We are attaching a copy of the previous response to this item from David F. Prosser (Editor of the standard).
The Committee endorses the substance of this response, which follows:

The rules in subclause 6.8.3.2 regarding \ were discussed in the Committee and the result is as intended.
The Committee’s charter was to standardize prior art where such was clear, and the behavior of those C
preprocessing phases that allowed tokens such as \ left them alone, even when inserting them into strings.
However, the Committee also had license to fix or add to the language where it was judged to be deficient.
Since none of the existing stringizing preprocessing phases correctly handled string literals and certain
character constants, the special rules for these were chosen.

Subclause 6.8.3’s examples (page 92, lines 3-31) include a \ that is outside of a string literal or character
constant, If the rules were to be modified along the lines of your proposal, the intended effect would not
happen.

One of the main points in your argument is that uncontained \s are only critical in path names that use \
as a special character, and that this is only needed when #include filenames are constructed via macro
replacement. I agree that the current rules do allow this sort of use without too much trouble, but I don’t
see this as being a main motivation for this feature. By default, the rules for stringizing were that the original
spelling of the invocation argument is placed into a string literal. The only exceptions made to this were
those that were valid C tokens that could not be simply inserted between a pair of "s. The rules for \ and
" within string literals and character constants were derived from that need only. Furthermore, a lone \ is
a preprocessing token due to the “some other character” rule of the syntax from subclause 6.1. This would
be the only place where special constraints were placed on one of this type of preprocessing token.

Finally, solution b) of your discussion involves context-dependent rules for the stringizing operation. While
there is a minor context dependency regarding macro replacement and the defined unary operator on
#if and #elif directive lines, this is the only context dependency in the whole set of macro replacement
rules. Moreover, this dependency is at the topmost level only. Solution b) would require a flag noting
whether the result of the replacement was to be used within a #include directive. Therefore, the same
macro invocation would produce different results at different invocations. (At the least, debugging and/or
testing of a tricky macroized #include directive would be more difficult.)

In conclusion, to the best of my knowledge, the Committee wants to keep the behavior here as currently
described, and made this choice intentionally.

ISO JTC1/SC22/WG14

Defect Report #003 Page 4 Question 1

Defect Report #003

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/90-011 (Terence David Carroll)
Question 1

Subclause 6.1.8: Preprocessing numbers

I'note from the rationale document of November 1988, X3J11 Document Number 88-151, that the following
problem has been observed. I am surprised at the Committee’s decision to allow such a loose description.

Under the grammar given for a pp-number
0xEE+23 0x7E+macro 0x100E+value-macro

are preprocessing numbers and as such a conforming C compiler would be required to generate an error
when it failed to successfully convert them to actual C language number tokens.

The solution is simply to restrict the inclusion of [eE][+~] within a pp-number to situations where the
e or E is the first non-digit in the character sequence composing the preprocessing number. This can
be easily implemented in a variety of methods; the informal description above gives perhaps a better guide
to efficient implementation than the following revised grammar:
pp-number:

pp-float

pp-number digit

pp-number . 3

pp-number non-digit // A non-digit is a letter or underscore

pp-float:
pp-real
pp-real E sign
pp-real e sign

pp-real:
digit

pp-real digit
pp-real .

It is unbelievable that a standards Committee could so lose sight of its objective that it would, in full
awareness, make simple expressions illegal.

To illustrate the absurdity of the rationale document’s claim that the faulty grammar was felt to be easier
to implement, why not adopt the following grammar for a pp-number and really make life simple; after
all, who wants to have their preprocessor slowed down by checking whether the + or - was preceded by
an e oran E?
pp-number:

digit

pp-number digit

pp-number .

pp—number non-digit

pp-number sign
Response

The Committee reasserts that the grammar and/or semantics of preprocessing as they appear in the standard
are as intended.

We are attaching a copy of the previous responses to this item from David F. Prosser. The Committee
endorses the substance of these responses, which follow:

ISO JTC1/SC22/WG14

Question 1 Page 5 Defect Report #003

Inresponse to your first suggested grammar: This grammar doesn’t include all valid numeric constants and
exclude other important tokens. For example, . is derivable. But let’s assume that you intended something
like :
pp-number:

pp-float

digit

pp-number digit

pp-number non-digit

pp-float:
pp-real
pp-float E sign
pp-float e sign
pp-float digit

pp-float . pp-float non-digit
pp-real:

digit

. .digit

pp-real digit

pp-real .

This grammar is certainl more complicated than the one-level construction in the proposed standard, and
consequently harder to understand. That’s a strike against it.

Another strike is that, while it does mimic the two major numeric categories, it still doesn’t include all
sequences covered by the existing grammar, save those that would otherwise be valid by the stricter
tokenization rules. For example, 0b0101le+17 might be someone’s future notion of a binary floating
constant.

Finally, it suffers from a great deal of reduce/reduce conflicts, making the implementation and specification
less likely to be understood and implemented as intended.

In response to your second suggested grammar: This could have been done. But the Committee chose a
compromise at a different point — one that restricts the inappropriate gobbling of characters to + and -
immediately after E or e. This was all that was necessary to cover all valid numeric constants in as simple
a grammar as was possible.

For more background, you’d need to know the state of the proposed standard a few years before this grammar
was voted in. The Committee had stated its intent that “garbage” character sequences that began like a
numeric constant were to be tokenized as a single sequence. This was to prevent situations in which this
“garbage” would be turned into valid C code through obscure macro replacements, among more minor
reasons. This was, unfortunately, very poorly stated in the draft. As Irecall, it was placed in the constraints
for subclause 6.1. It was something like “Each pair of adjacent tokens that are both keywords, identifiers,
and/or constants must be separated by white space.” [As “improved” for the May 1, 1986 draft proposed
standard, subclause 6.1 Constraints consisted of the single sentence: “Each keyword, identifier, or constant
shall be separated by some white space from any otherwise adjacent keyword, identifier, or constant.”]

As you can see, this constraint neither presented the intent of the Committee nor caused implementations
to behave in any sort of consistent manner with respect to tokenization.

Finally a letter writer understood the issue well enough to suggest a grammar along the lines of the current
subclause 6.1.8. It, contrary to your opening remarks on this topic, is not a “loose description,” and it finally
stated in a precise way the intent of the tokenization rules.

The benefits of this construction were that all tokenization for all implementations would now be the same,
no “garbage” character sequences would be able to be converted to valid C code, skipped blocks of code
could silently be scanned without generating needless and unnecessary tokenization errors, the preprocess-
ing tokenization of numeric tokens would be greatly simplified, and room for future expansion of C’s
numeric tokens was reserved.

That’s a lot of good. The down side was that certain sequences now would require some white space to
cause.them to be tokenized as the programmer intended. As noted in the rationale document, there are other
parts in C that require white space for tokenization to be controlled, and this was found to be one more.

ISO JTC1/SC22/WG14

Defect Report #003 Page 6 Question 2

Since the “mistokenization” of such sequences must result in some diagnostic noise from the compiler, and
since the fix is so mild, the Committee agreed that the proposed standard is still much better with this
grammar than with any of the other suggestions.

Personally, I think that the biggest surprise “win” was the reservation of future numeric token “name space.”
I would not be at all surprised to find binary constants (that begin with 0b) in newer C implementations.

Question 2
Subclause 6.8.3: Macro substitutions, tokenization, and white space

In general I think it is a good guiding principle that a C implementation should be able to be based around
completely disjoint preprocessing and lexical scanning parses of the compiler. As such the rules on
tokenizing need to be emphasized with the following paragraphs (possibly placed after paragraph 1 of
subclause 6.8.3.1):

All macro substitutions and expanded macro argument substitutions will result in an additional
space token being inserted before and after the replacement token sequence where such a space
token is not already present and there is a corresponding preceding or subsequent token in the
target token sequence.

The last token of every macro argument has no subsequent token at the time of its initial macro
argument expansion, and similarly a macro parameter that is the last token of a replacement
token list has no subsequent token at the time of that parameter’s substitution. Similarly for first
tokens and preceding tokens.

Naturally such a step can be treated as purely conceptual by a tokenized implementation with combined
preprocessing and lexical analysis, except for the purposes of argument stringizing where the added spacing
may be essential for unambiguous identification of the preprocessing tokens involved.

Such a statement is not a substantive change, as it is merely clarifying the tokenization rules, and given that
Standard C has changed the definition of the preprocessor substantially from K&R already (re macro
argument expansion before substitution) such an additional explicit change from K&R C should cause
comparatively little difficulty except to those who had not appreciated just how different the preprocessing
rules are already.

Examples which are clarified by this change are:

#define macro +
+macro
macro+

#define mac () +

#define ro +
mac () ro

all of which unambiguously result in lines with two + operator tokens, in strict accordance with the draft
standard’s tokenization rules, and not, as was formerly the case with traditional text oriented preprocessors,
in single ++ operators.

Examples which are changed by this statement are:

#define mac () +
#define ro +
#define str(s) # s
#define eval (m, e) m(e)

eval(str, mac()ro)
which produces the string "+ +" and not the string "++" as it would do with the draft’s current wording.

Response

The Committee reasserts that the grammar and/or semantics of preprocessing as they appear in the standard
are as intended.

We are attaching a copy of the previous responses to this item from David F. Prosser. The Committee
endorses the substance of these responses, which follow:

K&R never spegified the macro replacement algorithm to the extent that any such conclusion is possible.
The widest range of implementation choices were present in this area of the language. The eventual choice
of a macro replacement algorithm was one that did not match any existing implementation, but one that
tried to include the behavior of all major variants.

ISO JTC1/SC22/WG14

Question 3 Page 7 Defect Report #003

You agree that the proposed standard is clear that once a token is recognized, it is never retokenized unless
subjected to a # or ## operation. The behavior described is that which was chosen by the Committee. Your
proposal would cause, as you note, certain created string literals to include white space not present in the
original text. This runs counter to the # operator’s goal of producing a string version of the spelling of the
invocation arguments.

The proposed standard allows an implementation that uses a text-to-iext separate preprocessing stage the
option to use white space as necessary to separate tokens when it produces its output. However, this insertion
“of white space must not be visible to the program. The proposed extra white space would probably be a
surprise to the programmer as well. Finally, this proposal would require those implementations that have a
built-in preprocessing stage to add extra code to insert white space in special circumstances. This is counter

to the goal of having both built-in and separate implementations be purely an implementation choice.
Question 3
Subclause 6.8.3: Empty arguments to function-like macros

I would like to make a request for clarification and a request for a stronger statement of standardization.
Given

#define macro(xx) xx
macro ()
is this a constraint violation of subclause 6.8.3 Constraints paragraph 4:
The number of arguments in an invocation of a function-like macro shall agree with the number
of parameters in the macro definition, ...
or is this an undefined, implementation-dependent program — subclause 6.8.3, Semantics paragraph 5:
If (before argument substitution) any argument consists of no preprocessing tokens, the
behavior is undefined.

In connection with the above I would request that the Committee make a much stronger statement as to
whether empty arguments are to be treated as valid arguments or are to be treated as errors. They can have
their uses, but if that is recognized then it should be standardized; if not, it should not be allowed.

Response
If one takes the general case, empty arguments in invocations of function-like macros are easy to recognize:
#define f£(a,b,c) whatever

£(,,)

These empty arguments all have “shadows” that cause the sentence you reference in subclause 6.8.3 (page
90, lines 4-5) to be clearly in effect.

The only uncertain case is one in which an empty argument in an invocation of a one-parameter function-like
macro mimics a “no arguments” invocation. (It should also be noted that the definition of a macro argument
from clause 3 does not preclude an empty sequence.)

Thus the standard is clear that the behavior is undefined in the example from your request. If an
implementation does not choose to allow empty arguments, a diagnostic will probably be emitted; otherwise,
the invocation will most likely be replaced by a preprocessing token sequence in which the parameter is
replaced with no tokens. But because the standard does not define this, other than as a common extension,
there are no guarantees.

Question 4
Subclause 6.8.3: Preprocessor directives within actual macro arguments

Itis a guiding principle that a macro function and an actual function should be invokable in as similar fashion
as possible. In the latter case, it is not uncommon to find code with variations of arguments subject to
conditional compilation. This should also compile correctly if an appropriate macro definition is made for
the function.

While conditional compilations within function arguments is not necessarily a programming style that I
would condone, I feel that itis in the interests of the C programming community at large for such constructs
to be well formed, even if forbidden, and as such make the following requests:

ISO JTC1/SC22/WG14

Defect Report #003 Page 8 Question 4

I would like the Committee to change subclause 6.8.3 to state that #if, #ifdef, #ifndef, #else,
#elif, and #endif preprocessing directives are allowed within actual macro arguments (not necessarily
cleanly nested).

Conversely, I would like #define and #undef to be formally forbidden within macro invocations, as
these can result in effects that are dependent on the particular implementation of the macro expansions.

Response

~The Committee reasserts that the grammar and/or semantics of preprocessing as they appear in the standard -
_ are as intended.

A SRS R M TS S e AN

Weare attachmg a copy of the previous response to this item from David F. Prosser. The Committee endorses
the substance of this response, which follows:

The equivalent of your proposal was rejected a couple of years ago. Certain Committee members felt that
requiring all preprocessors to recognize these lines as directives was too much. Those that felt that these
lines must be recognized were finally convinced that it was enough to allow implementations the right to
behave in the more orthogonal manner. (Maybe they figure that the next version of the standard will have
to require this sort of behavior, as all “reasonable” implementations already will have it by then.)

ISO JTC1/SC22/WG14

Question 1 Page 9 Defect Report #004

Defect Report #004

Submission Date: 10 Dec 92
Submittor: wG14
Source: X3J11/90-012 (Paul Eggert)
Question 1

_ Are multiple definitions of unused identifiers with external linkage permitted?

The wording in subclause 6.7 permits multiple definitions of identifiers with external linkage, so long as
the identifiers are never used. For example, the following program is “strictly conforming” if you read the
wording in subclause 6.7 literally:
int F() {return 0;}
int F() {return 1;}
int v = 0;
int V= 1;
int main() {return 0;}
This must be a bug in the wording of subclause 6.7. It cannot have been the Committee’s intent, since it
prohibits the most commonly encountered linker model. For example, most linkers will flatly refuse to link
the following “strictly conforming” program
x.c: int F() {return 0;}

int G(int i) {return i;}

y.c: int F() {return 1;}
int G(int);
int main() {return G(0):}

because F is defined twice.

Response
This Defect Report referred to an earlier draft of the Standard, and was already corrected in the Standard.

ISO JTC1/SC22/WG14

Defect Report #005 Page 10 Question 1

Defect Report #005

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/90-020 (Walter J. Murray)
Question 1

.....According to subclause 6.8.6, a pragma directive “causes the implementation to behave in an implementa- -
" tion-defined ‘manner.” May a conforming implementation” definé and tecognize a pragma which would "
change the semantics of the language? For example, might a conforming implementation recognize and
honor the directive

#pragma UNSIGNED PRESERVING
as a way for a program to request non-standard integral promotions?

I also pose the corollary question. May a strictly conforming program contain a pragma directive? According
to subclause 4, a strictly conforming program “shall use only those features of the language ... specified in
this standard. It shall not produce output dependent on any unspecified, undefined, or implementation-de-
fined behavior...”

If there is no constraint on how a conforming implementation may behave when encountering a pragma
directive, would it not follow that a strictly conforming program may not contain a pragma directive?

Response
The relevant citations are subclause 6.8.6:
A ... pragma ... causes the implementation to behave in an implementation-defined manner.

and clause 4:

A strictly conforming program ... shall not produce output dependent on any ...
implementation-defined behavior ...

In response to each question:

1) Yes, a conforming implementation may define and recognize a pragma which would change the
semantics of the language.

2) Yes, for example, it might honor UNSIGNED PRESERVING.
3) No, a strictly conforming program may not contain a pragma directive.

4) We agree with your conclusion, reasserting answer number 3.

ISO JTC1/SC22/WG14

Question 1 Page 11 Defect Report #006
Defect Report #006

Submission Date: 10 Dec 92
Submittor: wWG14
Source: X3J11/90-020 (Walter J. Murray)

Question 1

It is unclear how the st rtoul function behaves when presented with a subject sequence that begins with
a minus sign. The strtoul function is described in subclause 7.10.1.6, which contains the following
statements. ,
If the subject sequence begins with a minus sign, the value resulting from the conversion is
negated.

If the correct value is outside the range of representable values, ULONG_MAX is returned, and
the value of the macro ERANGE is stored in errno.
Assume a typical 32-bit, two’s-complement machine with the following limits.

LONG MIN -2147483648
LONG MAX 2147483647
ULONG MAX 4294967295

Assuming that the value of base is zero, how should st rtoul behave (return value and possible setting
of errno) when presented with the following sequences?

Case 1: "-2147483647"

Case 2: "-2147483648"

Case 3: "-2147483649"

Response

The relevant citations are the ones supplied by you from subclause 7.10.1.6:
If the efiubject sequence begins with a minus sign, the value resulting from the conversion is
negated.

If the correct value is outside the range of representable values, ULONG_MAX is returned, and
the value of the macro ERANGE is stored in errno.

The Committee believes that there is only one sensible interpretation of a subject sequence with a minus
sign: If the subject sequence (neglecting the possible minus sign) is outside the range [0, ULONG_MAX],
then the range error is reported. Otherwise, the value is negated (as an unsigned long int).

The answers to your numeric questions are:
Case 1: 2,147,483,649
Case 2: 2,147,483,648
Case 3:2,147,483,647

ISO JTC1/SC22/WG14

Defect Report #007 Page 12 Question 1
Defect Report #007

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-043 (Paul Eggert)

Question 1
Are declarations of the form struct-or-union identifier ; permitted after the identifier
tag has already been declared? Here are some examples of the problem:
/*1*%/ struct s;
/*2%/ struct s;
/*3%/ struct s {int a;};
/*4*/ struct s;

/*5%/ struct t {int a;}:;

/*6*/ struct t;

Subclause 6.5 says “A declaration shall declare at least a declarator, a tag, or the members of an
enumeration.” In this sense, does /*2*/ also declare the tag s? If so, then surely all of the above lines are
conforming. But if not, then in what sense does /*3*/ declare a tag and thus satisfy subclause 6.5’s
constraint?

The example at the end of subclause 6.5.2.3 says “To eliminate this context sensitivity, the otherwise
vacuous declaration struct s2; may be inserted ...” This seems to imply that /*2*/, /*4%/, and
/*6%*/ are not conforming, because they are vacuous. But how can this be reconciled with the above
argument?

Response

The declaration

struct s;

declares the tag s. It need not be the first or only declaration of the tag s within a given scope to qualify as
a declaration of s, just as

int i;

declares i however often it is repeated. The applicable constraint is in subclause 6.5: “A declaration shall
declare at least a declarator, a tag, or the members of an enumeration.” Clearly,

struct s;

declares the tag s.

Subclause 6.5.2.3, in the examples, characterizes a declaration of this form as “otherwise vacuous” in the
draft you read. The words “otherwise vacuous” were an editorial comment that was omitted from the
International Standard. These words were intended to mean “other than declaring s2 to be an (incomplete)
struct type,” and should not be read as saying that the declaration fails to declare the tag.

We believe that this interpretation is consistent with the intent of the Committee, and that a reasonable
reading of the standard supports this interpretation.

ISO JTC1/SC22/WG14

Question 1 Page 13 Defect Report #008

Defect Report #008

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-021 (Otto R. Newman)

Question 1

Could you tell me if it is legitimate for a conforming C compiler to perform what’s commonly referred to
as dead-store elimination for the first assignment in the following code fragment:

auto int flag; /* non-volatile */

flag = 1;
flag = £();
If it is valid to do so, then consider

auto int flag; /* non-volatile */
if (setjmp (buf))

{
if (flag == 1)
}

flag = 1;

flag = £();

where function £ invokes longjmp. Is the result of the relational expression defined? A solution might
be to define £lag as volatile, but £lag is not really volatile, and the programmer may not wish to
degrade all references to £1ag nor to locate all such possible £1ags and lie about their volatility.

A related issue is that in many existing applications, users have coded set jmp-like mechanisms based on
a particular operational environment. The functions do not have the name “set jmp,” but essentially
establish an externally accessible entry point within the containing function. Sometimes, pointers are set to
reference such functions, even though the standard precludes this from being done with set jmp itself since
it is allowable that it only be provided as a macro.

There are a number of additional optimizations which must be inhibited across the actual invocation of
setjmp, or a set jmp-like function. Always avoiding these optimizations as well as the dead-store
elimination shown in the example may make the program safe for non-local jumps, but unnecessarily
penalizes programs that don’t use set jmp. To circumvent this problem, some implementors have defined
a pragma which is included in set jmp . h to identify “set jmp” as having the property of establishing an
externally accessible entry, i.e., defining an otherwise non-obvious point of control flow. Other implemen-
tations have hard-coded tests for the name “set jmp.”

...would you please respond to the question regarding the legitimacy of the optimization in the first example?

Response
The relevant citation is subclause 7.6.2.1:

All accessible objects have values as of the time Longjmp was called, except that the values
of objects of automatic storage duration that are local to the function containing the invocation
of the corresponding set jmp macro that do not have volatile-qualified type and have been
changed between the set jmp invocation and Longjmp call are indeterminate.

In response to your question about the effect on optimizations of set jmp: Yes, itis legitimate for acompiler
to perform optimizations that eliminate dead stores to local, non-volatile, automatic variables when set jmp
is used. Subclause 7.6.2.1 makes the values of all such variables indeterminate after the Long jmp is called.
This grants a compiler the liberty to perform dead-store elimination as well as several other optimizations.

Question 2

What is happening is that, since the standard has not provided a mechanism to describe a very recognizable
and very important property of a function, such mechanisms are by necessity being provided in non-standard

ways. My understanding is that a pragma should never be required for a program to execute correctly as
defined by the standard.

ISO JTC1/SC22/WG14

Defect Report #008 Page 14 Question 2

The existing situation serves to reduce portability of C programs. We believe the Committee should address
this problem and would like to offer a suggestion which seems rather attractive.

Currently, defining an object as volatile indicates to the compiler that its contents may be altered in
ways not under control of the implementation. This is meaningless with function declarations since a
function doesn’t have alterable contents (i.e., is not an lvalue). Instead, it may be possible to utilize this
otherwise syntactic no-op by defining a “volatile function” to be one whose return may not necessarily occur
sequentially at the point of the invocation, but possibly at some other point where the state of the calling
program is unknown. In other words, invocation of such a function results in the state of the program
becoming volatile.

Now, I admit that this is not a perfectly “clean” extrapolation of the use of the type qualifier volatile,
but it is rather compelling, having the following advantages:

1) Itsolves the described problem in a general way that can be used with functions not necessarily named
“set jmp.” Implementations defining set jmp as a function in set jmp . h would simply declare

int volatile setjmp (jmp_buf env);

2) It utilizes an existing keyword and gives meaning to its use in a context which would be otherwise
meaningless.

3) It is consistent with the type specifier syntax to distinguish between volatile pointers and pointers to
volatile objects. For example,

int volatile setjmp();

defines set jmp to be a volatile function (i.e., a function whose invocation must inhibit certain
optimizations).

int volatile (*maybe setjmp_ptr) ();
defines a pointer to such a function, while
int (*mustnotbe_setjmp_ptr) ();
defines a pointer to a normal function.
int (* volatile vol mustnotbe_setjmp ptr) ()
defines a volatile pointer to a normal function.
int volatile (* volatile vol maybe setjmp ptr) ():;
defines a volatile pointer to a volatile function, and so on ...
4) Type consistency rules are already in place and make sense. For example,
maybe setjmp ptr = mustnotbe setjmp_ptr;
is okay with no type-checking violation, whereas
mustnotbe setjmp ptr = maybe setjmp ptr;
is diagnosed. It would require casting such as
mustnotbe setjmp ptr = (int (*) ())maybe_setjmp ptr;

5) Since no new syntax or keywords are required, the impact of this change is very small to both the
document defining the standard and to compilers which support it.

If there is enough Committee interest in this sort of solution, I would be glad to draft a formal proposal.
Response

The Committee reasserts that the current semantics for type qualifiers as they appear in the standard are as
intended.

ISO JTC1/SC22/WG14

Question 1 Page 15 Defect Report #009

Defect Report #009

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/90-023 (Bruce Blodgett)
Question 1

Use of typedef names in parameter declarations

A syntactic ambiguity exists in the draft proposed C standard for which there appears to be no semantic
disambiguation. A sequence of examples should explain the ambiguity. This matter needs interpretation by
the X3J11 Committee.

For these examples, let T be declaration specifiers which contain at least one type specifier, to satisfy the
semantics from subclause 6.5.6:

If the identifier is redeclared in an inner scope ..., the type specifiers shall not be omitted in the
inner declaration.

Let U be an identifier which is a typedef name at outer scope and which has not (yet) been redeclared at
current scope. A caret indicates the position of each abstract declarator. Consider this declaration:

declaration-specifiers direct-declarator (T~ (U));

Here U is the type of the single parameter to a function returning type T, due to a requirement from subclause
6.54.3:

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses around
the identifier for a declarator.
Consider this declaration:
declaration-specifiers direct-declarator
(T~ (U~ (parameter-type-list)));
In this example, U could be the type returned by a function which takes parameter-type-1ist. This
in turn would be the single parameter to a function returning type T.

Alternatively, U could be a redundantly parenthesized name of a function which takes parameter-
type-1list and returns type T.

Given the spirit of the requirement from subclause 6.5.4.3, the former interpretation seems to be that
intended by X3J11. If so, the requirement may be changed to something similar to:

In a parameter declaration, a direct declarator which redeclares a typedef name shall not be
redundantly parenthesized.

Of course, parentheses must not be disallowed entirely... [The original had more, but this will suffice.]
Correction
In subclause 6.5.4.3, page 68, replace:

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract declarator that
specifies a function with a single parameter, not as redundant parentheses around the identifier for a
declarator.

with:
If, in a parameter declaration, an identifier can be treated as a typedef name or as a parameter name, it shall
be taken as a typedef name.

ISO JTC1/SC22/WG14

Defect Report #010 Page 16 Question 1

Defect Report #010

Submission Date: 10 Dec 92
Submittor: wWG14
Source: X3J1190-044 (Michael S. Ball)

Question 1
Consider:
typedef int tablel[]; /* line 1 */
table one =‘{1}; /* line 2 */
table two = {1, 2}; /* line 3 */

First, is the typedef to an incomplete type legal? I can’t find a prohibition in the standard. But an incomplete
type is completed by a later definition, such as line 2, so what is the status of line 3?

The type, of which table is only a synonym, can’t be completed by line 2 if it is to be used in line 3. And
what is sizeof (table) ? What old C compilers seem to do is treat the typedef as some sort of textual
equivalent, which is clearly wrong.

Response

A typedef of an incomplete type is permitted.

Regarding objects one and two, refer to the standard subclause 6.1.2.5, page 24, lines 8-9: “An array of
unknown size is an incomplete type. It is completed, for an identifier of that type, by specifying the size in
a later declaration ...” [emphasis added]. The types of objects one and two are completed but the type
table itself is never completed. Hence, sizeof (table) is not permitted.

An example very similar to that submitted is shown in example 6, subclause 6.5.7 on page 74, lines 16-23.

ISO JTC1/SC22/WG14

Question 1 Page 17 Defect Report #011

Defect Report #011

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-008 (Rich Peterson)

Question 1
Merging of declarations for linked identifier
When more than one declaration is present in a program for an externally-linked identifier, exactly when
do the declared types get formed into a composite type?

Certainly, if two declarations have file scope, then after the second, the effective type for semantic analysis
is the composite type of the two declarations (subclause 6.1.2.6, page 25, lines 19-20). However, if one
declaration is in an inner scope and one is in an outer scope, are their types formed into a composite type?
In particular, consider the code:

{

extern int i[];

{

/* a different declaration of the same object */
extern int i[10];

}
/* Is the following legal?

That is, does the outer declaration

inherit any information from the inner one? */
sizeof (i)
}
Similar situations can be constructed with internally linked identifiers. For instance:
/* File scope */
staticainted{d

main ()

{

/* a different declaration of the same object */
extern int i[10];

}

/* Is the following legal? That is, does the outer declaration\
inherit any information from the inner one? */

int j = sizeof (i);

Further variants of this question can be asked:

{

extern int i[10];

{
/* a different declaration of the same object */
extern int i[];

/* Is the following legal?
That is, does the inner declaration
inherit any information from the outer one? */
sizeof (i);
}
}

Correction
Add to subclause 6.1.2.6, page 25, the Jollowing:

ISO JTC1/SC22/WG14

Defect Report #011 Page 18 Question 2

For an identifier w1t.h internal or external linkage declared in a scope in which a prior declaration of that
identifier is visible®, if the prior declaration specifies internal or external linkage, the type of the identifier
at the latter declaratlon becomes the composite type. [Footnote *: As specified in 6.1.2.1, the latter
declaration might hide the prior declaration.]

: Question 2
Interpretation of extern
Consider the code:

/* File scope */
static int i; /* declaration 1 */

main ()
{

extern int i; /* declaration 2 */

{

}
}

A literal reading of subclause 6.1.2.2 says that declarations 1 and 2 have internal linkage, but that declaration
3 has external linkage (since declaration 1 is not visible, being hidden by declaration 2). (This combination
of internal and external linkage is illegal by subclause 6.1.2.2, page 21, line 27.)

Is this what is intended?

Correction
Add to subclause 6.1.2.2, page 21, the following:

For an identifier declared with the storage class extern in a scope in which a prior declaration of that
identifier is visible®, if the prior declaration specifies internal or external linkage, the hnkage of the identifier
at the latter declaratlon becomes the linkage specified at the prior declaration. If no prior declaration is
visible, or if the prior declaration specifies no linkage and the latter declaration is otherwise valid, then the
identifier has external linkage. [Footnote *: As specified in 6.1.2.1, the latter declaration might hide the
prior declaration.]

extern int i; /* declaration 3 */

Question 3
Initialization of tentative definitions
If the file scope declaration
int i[10];
appears in a translation unit, subclause 6.7.2 suggests that it is implicitly initialized as if
int i[10] = O;
appears at the end of the translation unit. However, this initializer is invalid, since subclause 6.5.7 prescribes
that the initializer for any object of array type must be brace-cnclosed. We believe that the intention of

int 1[10] = {0};

Is this true?

Response

Subclause 6.7.2 External object definitions contains the following excerpt:

If a translation unit contains one or more tentative definitions for an identifier, and the translation
unit contains no external definition for that identifier, then the behavior is exactly as if the
translation unit contains a file scope declaration of that identifier, with the composite type as
of the end of the translation unit, with an initializer equal to 0.

This statement describes an effect and not a literal token sequence. Therefore, this example does not contain
an error.

Question 4
Tentative definition of externally-linked object with incomplete type
If one writes the file-scope declaration

ISO JTC1/SC22/WG14

Question 4 Page 19 Defect Report #011

int i[];

then subclause 6.7.2 suggests that at the end of the translation unit the implicit declaration

int i[] = {0}; -

or equivalently

int i[1] = {0},

appears. This seems peculiar, since subclause 6.7.2, (page 83, lines 35-36) specifically forbids this case for
internally linked identifiers.

Is this what is intended?

Correction

Add to subclause 6.7.2, page 84, the following:

Example

If at the end of the translation unit containing

int I

the array i still has incomplete type, the array is assumed to have one element. This element is initialized
to zero on program startup.

ISO JTC1/SC22/WG14

Defect Report #012 Page 20 Question 1

Defect Report #012

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/90-046 (David F. Prosser)
Question 1

Bug in Standard C

I was asked a question about the validity of various expressions. Among the list there was the following:
void *p; &*p;

After doing a quick pass through the standard, I found nothing that disallowed such. Moreover, back in
September 1987’s meeting (I didn’t just recall the date ... it took a while to find when it occurred), I distinctly
remember a Committee discussion that involved the validity of the expression above. It was as a result of
this discussion and vote that the draft was changed to allow the above.

Anyway, I wrote back that the expression was valid. This was eventually followed by a letter from Dennis
[Ritchie] pointing out the mistake I made. As it turns out, the definition of lvalue makes at least the unary
& part of the above a constraint violation. (As Bill [Plauger] would say, “I know what the standard was
supposed to specify.”)

This would be just another, “Oops, well I guess I can live with it” surprise in the standard, except that it
turns out that unary & of a void type is useful! What it provides is a construction that gives C a notion of
an address symbol. You are familiar with the symbols that are created by the UNIX linker: etext, edata,
and end, which designate special addresses within the a . out’s address space. Of these, the last is most
useful (it gives the beginning of the dynamically allocated data space). However, the type for these symbols
was always pretty fuzzy. But, consider a declaration of end as

extern void end;

What this gives is a name that only has an address — exactly what these symbols do, and nothing more.
They can only be used in C as the operand of unary &, and the address must be converted to something else
(say, char *)even to do address calculation, making the special nature of the symbol clearly evident.

What I'd like is a vote of the interpretations group that notes that the intent of the Committee was that “void
*p; &*p;” was supposed to be valid, even though a conforming implementation must diagnose the
expression. This means that I can continue to suggest the “extern wvoid” approach to address symbols
in C.

P.S.: The following is my reply to Dennis’s mail that pointed out the error with my original interpretation.
The indented parts are from Dennis’s mail.

I don’t agree with Dave P’s answer about “void *vp; &*vp;.” There is not a constraint
on *, but the subclause 6.3.3.2 semantics say, “... if it [the operand of *] points to an object,
the result is an Ivalue designating the object.” Does vp point to an object? An object is “aregion
of data storage ... the contents of which can represent values” (clause 3). Dicey at best.

I took some time looking into my records of the Committee’s thoughts on this very issue. Back in 87, based
on a proposal by Plauger, the Committee voted 27 to 3 that “* (void *) was not to be an error. This was
when the unary * constraint was simplified to the current form. Since void is a special instance of an
incomplete object type, it can be thought of as pointing at an object whose size we do not know, but I agree
that the argument is strained. I would still recommend that the compiler not produce a hard error in this
situation.

Moreover, the operand of & must be an lvalue, and *vp is certainly not an lvalue (subclause
6.2.2.1): “An Ilvalue is an expression (with an object type or an incomplete type other than
void)...”

Oops. In this case, I completely agree with Dennis: the standard does say that unary & should not be applied
to an expression with type void since such cannot be an lvalue. Unfortunately, this means that the standard
is “broken,” at least according to the Committee’s decisions. One of the major arguments presented as part
of the September 1987 meeting for allowing “* (void *)” was that it could then be immediately used as
the operand of unary &!

ISO JTC1/SC22/WG14

Question 1 Page 21 Defect Report #012

Therefore, I can state that back in 1987, the Committee’s intent was that the examples you gave were valid
Standard C, but that the standard as written does not allow the second half of the construction for void!
Nevertheless, I'd still suggest allowing the code to successfully compile, with at most a warning.
Response
The relevant citations are subclause 6.3.3.2 (page 43, lines 36-38):
The operand of the unary & operator shall be either a function designator or an lvalue that
designates an object that is not a bit-field and is not declared with the registexr storage-class
specifier.
and the one supplied by you from subclause 6.2.2.1 (page 36, lines 3-4):
An Ivalue is an expression (with an object type or an incomplete type other than void) that
designates an object.
Given the following declaration:
void *p;
the expression &*p is invalid. This is because *p is of type void and so is not an lvalue, as discussed in
the quote from subclause 6.2.2.1 above. Therefore, as discussed in the quote from subclause 6.3.3.2 above,
the operand of the & operator in the expression &*p is invalid because it is neither a function designator
nor an lvalue. _
This is a constraint violation and the translator must issue a diagnostic message.
The desired effect can be obtained by using the declaration
extern const void end;
(where end denotes an object of unknown size) since const void typeisnot void type and thus &end
does not violate the constraint in subclause 6.3.3.2.
Informal discussion:
The following notes are an unofficial summary of discussion.

Footnote 6 (page 6), which is not part of the standard, provides a suggestion for implementors who may
wish to assign a meaning to the above expression. It says “An implementation may also successfully
translate an invalid program.” Therefore, as long as a diagnostic message is issued, a translator may assign
a meaning to the expression &*p discussed above. Conforming programs shall not use this expression,
however.

ISO JTC1/SC22/WG14

Defect Report #013 Page 22 Question 1

Defect Report #013

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-047 (Sam Kendall)
Question 1

Compatible and composite function types

A fix to both problems Mr. Jones raises in X3J11 Document Number 90-006 is: In subclause 6.5.4.3 on
page 68, lines 23-25, change the two occurrences of “its type for these comparisons” to “its type for

compatibility comparisons, and for determining a composite type.” This change makes the sentences pretty
awkward, but I think they remain readable.

This change makes all three of Mr. Jones’s declarations compatible:
int £(int a[4]):

int £(int a[5]):;

int £(int *a);

This should be the case; it is consistent with the base document’s idea of “rewriting” the parameter type
from array to pointer.

Correction

In subclause 6.5.4.3, page 68, lines 23-25, change the two occurrences of:

its type for these comparisons

to

its type for compatibility comparisons, and for determining a composite type.
Question 2

“Compatible” not defined for recursive types

The term “compatible” is not completely defined. Consider the following two file-scope declarations in
separate translation units:

extern struct a { struct a *p; } x;
struct a { struct a *p; } x;

Are these two declarations of x compatible? Obviously they should be, but subclause 6.1.2.6 does not say
SO.

Because subclause 6.1.2.6 does not say how to terminate the recursion in testing for compatibility of two
recursive types, either interpretation is possible. In other words, it is consistent with the rules in subclause
6.1.2.6 to decide that the two declarations are compatible; but it is also consistent to decide that they are
incompatible.

We can solve the problem roughly as follows: append the following draft sentence to the first paragraph of
subclause 6.1.2.6 (page 25, line 8):

If two types declared in separate translation units admlt the possibility of being either compatible
or incompatible, the two types shall be compatible.” [Footnote *: This case occurs with recursive
types.]
This sentence is not satisfactory; perhaps another Committee member can state this rule better.
Response

We agree that the C Standard can be read in a way that it “loops.” Our intent, and we feel the only reasonable
solution, is that the recursion stops and the two types are regarded as compatible.

Question 3
Composite type of enum vs. integer not defined

There is one case where two types are compatible, but their composite type is not defined. To fix this
problem, in subclause 6.1.2.6 insert after page 25, line 17:

— If one type is an enumeration and the other is an integer type, the composite type is the enumeration.
There may be other cases where “compatible” is not defined. I made a cursory search and did not find any.

ISO JTC1/SC22/WG14

Question 4 Page 23 Defect Report #013

Response
The issue is that in
enum {r,w,b} x;
and
some-int-type x;
where some-int-type happens to be the type that by subclause 6.5.2.2, page 61, line 40 is compatible
with the type of the enum, what is the resultant composite type?
Subclause 6.1.2.6 on page 25, lines 11-12 says “a type that ... satisfies the following conditions” (added
emphasis on “a”). The composite type of two compatible types is not necessarily unique. In this case both
the enumtype and the some-int -type satisfy the definition of “composite” type. This refutes Kendall’s
claim that the “composite type is not defined;” the point is that the standard does not guarantee a unique
composite type.
As an example, in the following declarations:
enum {r, w, b} x;
some_int type x;
provided the enumeration type is compatible with the type of some_int_type, itis unspecified whether
the composite type of x is the enumeration type or some_int_type.
Question 4

When a structure is incomplete
Reference subclause 6.5.2.3, page 62, lines 25-28:

If a type specifier of the form
struct-or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an incomplete

type.
In the following example, neither the second nor the third occurrence of struct foo seem adequately
covered by this sentence:

struct foo {
struct foo *p;
} a[sizeof (struct £foo0)];

In the second occurrence £oo is incomplete, but since the occurrence is within “the declaration that defines
the content,” it cannot be said to be “prior” that declaration. In the third occurrence £oo is complete, but
again, the occurrence is within the declaration.

To fix the problem, change the phrase “prior to the declaration” to “prior to the end of the st ruct -dec-

laration-list or enumerator-1list.

Correction

In subclause 6.5.2.3, page 62, line 27, change

occurs prior to the declaration that defines the content

to:

occurs prior to the } following the struct-declaration-1list that defines the content
Question 5

Enumeration tag anomaly

Consider the following (bizarre) example:

enum strangel {

a = sizeof (enum strangel) /* line [2] */
};
enum strange2 ({

b = sizeof (enum strange2 *) /* line [5] */

ISO JTC1/SC22/WG14

Defect Report #013 Page 24 Question 5

The respective tags are visible on lines [2] and [5] (according to subclause 6.1.2.1, page 20, lines 39-40,
but there is no rule in subclause 6.5.2.3, Semantics (page 62) that governs their meaning on lines [2] and
[5]. Footnote 62 on page 62 seems to be written without taking this case into account.

The first declaration must be illegal. The second declaration should be illegal for simplicity.

Perhaps these declarations are already illegal, since no rule gives them a meaning. To clarify matters, I
suggest in subclause 6.5.2.3 appending to page 62, line 35:

A type specifier of the form
enum identifier

shall not occur prior to the end of the enumerator-1ist that defines the content.
If this sentence is not appended, something like it should appear as a footnote.
Correction
Add to subclause 6.5.2.3, page 63, the following:
Example

An enumeration type is compatible with some integral type. An implementation may delay the choice of
which integral type until all enumeration constants have been seen. Thus in:

enum £ { ¢ = sizeof(enum £f)};

the behavior is undefined since the size of the respective enumeration type is not known when sizeof is
encountered.

ISO JTC1/SC22/WG14

Question 1 Page 25 Defect Report #014
Defect Report #014

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-049 (Max K. Goff)
Question 1
X/Open Reference Number KRT3.159.1

There are conflicting descriptions of the set jmp () interface in ISO 9899:1990. In subclause 7.6 on page

118, line 8, it is stated that “It is unspecified whether set jmp is a macro or an identifier declared with

external linkage.” Throughout the rest of the standard, however, it is referred to as “the set jmp macro™;

in addition, the rationale document states that set jmp must be implemented as a macro. Please clarify

whether set jmp must be implemented as a macro, or may be a function as well as a macro, or may just

be a function.

Response

The standard states that set jmp can be either a macro or a function. It is referred to as “the set jmp

macro” just to avoid longwindedness. The rationale document is incorrect in saying that it must be a macro.
Question 2

X/Open Reference Number KRT3.159.2

Subclause 7.9.6.2 The £scanf£ function states:

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any characters matching the current input directive have been read (other than leading white
space, where permitted), execution of the current directive terminates with input failure;
otherwise, unless execution of the current directive is terminated with a matching failure,
execution of the following directive (if any) is terminated with an input failure.

How should an implementation behave when end-of-file terminates an input stream that satisfies all
conversion specifications that consume input but there is a remaining specification request that consumes
no input (e.g. $n)? Should the non-input-consuming directive be evaluated or terminated with an input
failure as described above?

Correction

Add to subclause 7.9.6.2, page 138, the following example:
Example

In:

#include <stdio.h>

V£ AP
int d1, d2, nl, n2, i;

i = sscanf("123", "$d%n%n%d", &dl, &nl, &n2, &d2);

the value 123 is assigned to d1 and the value 3 to n1. Because $n can never get an input failure the value
of 3 is also assigned to n2. The value of d2 is not affected. The value 3 is assigned to i.

ISO JTC1/SC22/WG14

Defect Report #015 Page 26 Question 1
Defect Report #015

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-051 (Craig Blitz)

Question 1
This question concerns the promoted type of plain int bit-fields with length equal to the size of an object
of type int. I am interested in implementations which have chosen not to regard the high-order bit as a
sign bit.
The question is: What is the promoted type of such an object?
Subclause 6.5.2.1 states:

A bit-field shall have a type that is ... int,unsigned int,or signed int.

The intent of this, I believe, is that the type of a plain int bit-field is int.

Subclause 6.2.1.1 states:
A char,a short int, oran int bit-field, or their signed or unsigned varieties, ... may be
used in an expression wherever an int or unsigned int may be used. If an int can

represent all values of the original type, the value is converted to an int; otherwise it is
converted to an unsigned int...

The integral promotions preserve value including sign.

Tracing this through, then, the type of any promoted plain int bit-field is int, since int can hold all the
values of the original type, which is int. However, not all values of the bit-field, which may be regarded
as non-negative, can be represented by an int. By value-preserving promotion rules, I would expect the
type of the promoted bit-field to be unsigned int.

Can you clarify this?

Response v

Bit-fields that are being treated as unsigned will promote according to the same rules as other unsigned
types: if the width is less than int,and int can hold all the values, then the promotionis to int. Otherwise,
promotion is to unsigned int.

ISO JTC1/SC22/WG14

Question 1 Page 27 Defect Report #016

Defect Report #016

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/90-052 (Sam Kendall)
Question 1
I can find no prohibition of the following translation unit:
struct foo x;
struct foo { int i; };
What I was lookirig for, but didn’t find, was a statement that an implicitly initialized declaration of an object
with static storage duration must have object type. Is this translation unit legal?
Response
The translation unit cited is valid. It falls into the same category of construct as

int arrayl]:;
int array[17]:;

Objects may be declared without knowing their size. However, the standard is clear in what cases such an
object may or may not used, prior to the actual definition of the object.
Question 2

This one is relevant only for hardware on which either null pointer or floating point zero is not represented
as all zero bits.

Consider this sentence in subclause 6.5.7 (starting on page 71, line 40);
If an object that has static storage duration is not initialized explicitly, it is initialized implicitly
as if every member that has arithmetic type were assigned 0 and every member that has pointer
type were assigned a null pointer constant.
This implies that you cannot implicitly initialize a union object that could contain overlapping members
with different representations for zero/null pointer. For example, given this translation unit;
union { char *p; int i; } x;
If the null pointer is represented as, say, 0x80000000, then there is no way to implicitly initialize this

object. Either the p member contains the null pointer, or the 1 member contains 0, but not both. So the
behavior of this translation unit is undefined.

This is a bad state of affairs. I assume it was not the Committee’s intention to prohibit a large class of
implicitly initialized unions; this would render a great deal of existing code nonconforming.

The right thing — although I can find no support for this idea in the draft — is to implicitly initialize only

the first member of a union, by analogy with explicit initialization. Here is a proposed new sentence; perhaps
it can be saved for the next time we make a C standard. (This sentence also tries to get around the difficulty
of the old “as if ... assigned” language in dealing with const items; Dave Prosser tipped me off there.)

If an object that has static storage duration is not initialized explicitly, it is initialized implicitly
according to these rules:

1) if it is a scalar with pointer type, it is initialized implicitly to a null pointer constant;
2) if it is a scalar with non-pointer type, it is initialized implicitly to zero;
3) if it is an aggregate, every member is initialized (recursively) according to these rules;
4) if it is a union, the first member is initialized (recursively) according to these rules.
Correction
In subclause 6.5.7, pages 71-72, replace:

If an object that has static storage duration is not initialized explicitly, it is initialized implicitly as if every
member that has arithmetic type were assigned 0 and every member that has pointer type were assigned a
null pointer constant.

with:

ISO JTC1/SC22/WG14

Defect Report #016 Page 28 Question 2

If an object that has static storage duration is not initialized explicitly, it is initialized implicitly according
to these rules:

1) if it has pointer type, it is initialized implicitly to a null pointer constant;

2) if it has arithmetic type, it is initialized implicitly to zero;

3) ifitis an aggregate, every member is initialized (recursively) according to these rules;

4) if it is a union, the first named member is initialized (recursively) according to these rules.

ISO JTC1/SC22/WG14

Question 1 Page 29 Defect Report #017

Defect Report #017

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/90-056 (Derek M. Jones)
Question 1

New-line in preprocessor directives

Subclause 5.1.1.2, page 5, line 37 says: “Preprocessing directives are executed and macro invocations are
expanded.”

Subclause 6.8, page 86, lines 2-5 say: “A preprocessing directive ... and is ended by the next new-line
character.”

Subclause 6.8.3, page 89, lines 38-39 say: “Within the sequence of preprocessing tokens ... new-line is
considered a normal white-space character.”

These three statements are not sufficient to categorize the following:
#define f£(a,b) a+b
#i€ £y

2)

It should be defined whether the preprocessing directive rule or macro expansion wins, i.e. is this code
fragment legal or illegal?

In translation phase 4 “preprocessing directives are executed and macro invocations expanded.”

Now do macro invocations get done first, followed by preprocessor directives? Does the macro expander
need to know that what it is expanding forms a preprocessing directive?

Subclause 6.8, page 86, lines 2-5 suggest that the preprocessor directive is examined to look for the new-line
character. But how is it examined? Obviously phases 1-3 happen during this examination. So why shouldn’t
part of phase 4?
Correction
Add to subclause 6.8, page 86, the following:
Any new-line character occurring within the argument list of a function macro invocation ends the
preprocessing directive.

Question 2
Behavior if no function called main exists

According to subclause 5.1.2.2.1, page 6, it is implicitly undefined behavior if the executable does not
contain a function called main.

It ought to be explicitly undefined if no function called main exists in the executable.
Correction
Add to subclause G.2, page 204, the following:
— A program contains no function called main.
Question 3
Precedence of behaviors

Refer to subclause 6.1.2.6, page 25, lines 9-10 and subclause 6.5, page 57, lines 20-21 The constructs
covered by these sentences overlap. The latter is a constraint while the former is undefined behavior. In the
overlapping case who wins?

Correction
Add to subclause 5.1.1.3, page 6, the following:

If a construct violates a constraint and is also specified as having undefined or implementation-defined
behavior the constraint takes precedence.

Example
An implementation shall issue a diagnostic for the translation unit:

ISO JTC1/SC22/WG14

Defect Report #017 Page 30 Question 4

char i;

int 3

because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

. Question 4
Mapping of escape sequences

Refer to subclause 6.1.3.4, page 29, line 12 and line 16. Are these values the values in the source or execution
character set?

When subclause 6.1.3.4, page 29, line 24 says: “The value of an ...,” is this “value” the value in the source
character set of the escape sequence or the value of the mapped escape sequence? I would have said that
the “value” is the value in the execution environment since in the source environment \x123 is a token.

Itmight be argued that characters in the source character set do not have values and thus no misinterpretation
of “value” can occur. Subclause 5.2.1, page 10, lines 25-26 refer to the value of a character in the source
basic character set.

Response

The values of octal or hexadecimal escape sequences are well defined and not mapped. For instance, the
value of the constant * \x12" is always 18, while the value of the constant * \34" is always 28.

The mapping described in subclause 6.1.3.4 on page 28, lines 35-39 only applies to members of the source
character set, of which octal and hexadecimal escape sequences clearly are not members.

Question 5
Example of value of character constants

Refer to subclause 6.1.3.4, page 29, lines 24-25 and page 30, lines 9-10. Both of these statements cannot
be true.

1) If the constraint is violated, end of story. There is no implementation-defined value.

2) The implementation-defined behavior may be referring to the mapping of the escape sequence to the
basic character set, in which case subclause 6.1.3.4, page 29, lines 24-25 should be changed to mention
that it will violate a constraint if the mapped value is outside the range of representable values for the
type unsigned char.

Response

The values of octal or hexadecimal escape sequences are well defined and not mapped. For instance, the
value of the constant * \x123/ has the value 291.

The mapping described in subclause 6.1.3.4 on page 28, lines 35-39 applies only to members of the source
character set, of which octal and hexadecimal escape sequences clearly are not members.

The constraint in subclause 6.1.3.4 on page 29, lines 24-25 will be violated only if the implementation uses
characters of eight bits.

The text of the example in subclause 6.1.3.4 on page 30, lines 8-10 s slightly opaque, but the parenthesized
comment is meant to be subject to the words “Even if eight bits are used ...” The value is implementation-
defined only in that the implementation specifies how many bits are used for characters and whether type
char is signed or not.

This example could be worded a little more clearly to indicate what is implementation-defined about the
constant, and that it “violates the above constraint” only if eight bits are used for objects that have type
char, but we believe that this interpretation is consistent with the intent of the Committee, and that a
reasonable reading of the standard supports this interpretation.

Question 6
register on aggregates
void £ (void)
{
register union{int i;} wv;
&v; /* Constraint error */

ISO JTC1/SC22/WG14

Question 7 Page 31 Defect Report #017

&(v.i); /* Constraint error or undefined? */
}

In subclause 6.3.3.2 on page 43, lines 37-38 in a constraint clause, it says “... and is not.declared with the
register storage-class specifier.” But in the above, the field i is not declared with the register
storage-class specifier.

Footnote 58, on page 58, states that “... the address of any part of an object declared with storage-class

specifier register may not be computed ...” Although the reference to this footnote is in a constraints
clause I think that it is still classed as undefined behavior.

Various people have tried to find clauses in the standard that tie the storage class of an aggregate to its
members. I would not use the standard to show this point. Rather I would use simple logic to show that if
an object has a given storage class then any of its constituent parts must have the same storage class. Also
the use of storage classes on members is syntactically illegal.

The question is not whether such a construction is legal but the status of its illegality. Is it a constraint error
or undefined behavior?

It might be argued that although registex does not appear on the field i, its presence is still felt. I would
point out that the standard does go to some pains to state that in the case of const union{...} the
const does apply to the fields. The fact that there is no such wording for register implies that
register does not follow the const rule.

Correction
Add to subclause 6.5.1, page 58, the following:
A declaration of an aggregate or union with a storage-class specifier implicitly causes all of its members
without the storage-class specifier to be given the storage-class specifier.
Question 7
Scope and uniqueness of size t

Subclause 6.3.3.4 on page 45, lines 1-2 says: “... and its type (...) is size_t defined in the <stddef.h>
header.” This line could be read as either of the following:

1) “..andits typeis size_t which happens to be defined in <stddef.h>.”
2) “..anditstypeisthe size_t defined in <stddef.h>.”
So what does the compiler do?

In 1) the compller has to define a size t in some outer scope. This definition does not make size t
visible, but gives a type to the return value of sizeof. Now if the programmer defines a typedef makmg
size_t synonymous with £1loat (say) then the compiler now has to use this new type. This interpretation
does not require the programmer to include <stdde£ .h> in order to use sizeof.

In 2) the compiler picks up the type size_t from <stdde£f.h> (assuming that the user included this
header). Should the compiler give a diagnostic if this header was not included and sizeof was used? A
subsequent typedef for size t does not affect the type of the result of sizeof.

These problems do not arise with int, et. al. because they are keywords. Thus “typedef float int”
would give a syntax error and need not be considered semantically.

According to subclause 6.3.3.4, page 45, sizeof hastype size t.What happens if the typeof size t
does not match what the compiler thinks is the type of sizeo£?

Response
The relevant citations are subclause 6.3.3.4

The value of the result is implementation-defined, and its type (an unsigned integral type) is
size_t defined in the <stddef.h> header.

and subclause 7.1.6
The types are ...
size t
which is the unsigned integral type of the result of the sizeo£ operator; ...

These sections, both separately and together, define the relationship between the result type of sizeof
and the type size_t defined in <stddef£.h>. Theresult type of sizeof and the type size t defined

ISO JTC1/SC22/WG14

Defect Report #017 Page 32 Question 8

in <stddef£ . h> are an unsigned integral type, and size_t defined in <stddef.h> is identical to the
result type of sizeof£. To restate, in a conforming implementation, the result type of sizeof will be the
same as the type of size_t defined in <stddef.h>.

Since these two types are the same, there need be no mechanism for a compiler to discover the type of
size t defined in <stddef.h>. A compiler’s private knowledge of the result type of sizeof is as
good as <stddef£ .h>’s private knowledge of the type of size t.

Note that the result of sizeof has the same type as not just any size t, butthe size_t defined in
<stddef.h>.
Question 8
Compatibility of pointer to void with storage class
Refer to subclause 6.3.9, page 49, lines 24-25. Do these lines make the following legal?
register void *p;
char *q;
if (p==q) /* legal */

The wording on line 25, “... version of void; or” does not talk about the “void type.” This sentence could
be taken as simply referring to the occurrence of a qualified or unqualified occurrence of void.

Should the wording on line 25 be changed to “... version of the type void; or” and thus cause the storage
class to be ignored, or does the above example fall outside the scope of the constraint?

Response
The relevant citation is subclause 6.3.9:

one operand is a pointer to an object or incomplete type and the other is a pointer to a qualified

or unqualified version of void; or
The Committee believes that the current wording of the standard is clear, and it is not changed in meaning
by changing “version of void” in the quoted section to “version of the void type.”

The standard uses the word “void” in two contexts: the keyword itself and the type that the keyword names.
The context that the word is used in adequately distinguishes between the two. In the section quoted, which
discusses type compatibility, a misreading of “void” as meaning the keyword quickly results in nonsense.

As to the qualification discussed in the quoted passage, it is type qualification, defined in subclause 6.5.3 .
The standard only uses the words “qualified” and “unqualified” when discussigg type qualification and
never uses them when discussing storage classes. Thus, storage classes have no place in the discussion of
the quoted passage.

Question 9
Syntax of assignment expression

In subclause 6.3.16.1 on page 53, lines 31-32 there is a typo: “... of the assignment expression ...” should
be “... of the unary expression ...”

In subclauuse 6.3.16 on page 53, lines 3-5 we have
assignment-expression:

unary-expression assignment-operator assignment-expression
Now the string “assignment-expression” occurs twice.

The use of “assignment expression” in subclause 6.3.16 on page 53, line 12 refers to the first occurrnce (the
one to the left of the colon).

We suggest changing the use of “assignment expression” in subclause 6.3.16.1 on page 53, line 32 in order
to prevent confusion. The fact that any qualifier is kept actually makes more sense, since this qualifier has
to take part in any constraint checking.

Correction

Add to subclause 6.3.16.1, page 54, the following:
Example

In the fragment:

ISO JTC1/SC22/WG14

Question 10 Page 33 Defect Report #017

char c;

int S 45

long 1;

l=(c=1i);
the value of i is converted to the type of the assignment-expression ¢ = i, that is, char type. The value
of the expression enclosed in parenthesis is converted to the type of the outer assignment-expression, that
is, long type.

Question 10

When is sizeof needed?

Refer to subclause 6.5.2.3, page 62, lines 28-29. When is the size of an incomplete structure needed? An
interpreter may not need the size until run time, while some strictly typed memory architecture may not
even allow pointers to structures of unknown size.

In subclause 6.5.2.3, Footnote 63 starts off as an example. The last sentence contains a “shall.” Does a
violation of this “shall” constitute undefined behavior?

Even though an interpreter may not need the size of a structure until run time its compiler still has to do
some checking, i.e. an unexecuted statement may contain sizeof an incomplete type; even though the
statement is unexecuted the constraint still has to be detected.

Response

Whether the language processor is an interpreter or a true compiler does not affect the lan guage rules about
when the size of an object is needed. Both a compiler and an interpreter must act as if the translation phases
in subclause 5.1.1.2 were followed. This is a requirement that an implementation act as if the entire program
is translated before the program’s execution. '

The “shall” in Footnote 63 in subclause 6.5.2.3 carries no special meaning: this footnote, like all other
footnotes in the standard, is provided to emphasize the consequences of the rules in the standard. The
footnote is not part of the standard.

The Committee believes that a careful reading of the standard shows all of the places that the size of an
object is needed, and that the translation phases prevent those requirements from being relaxed by an
implementation.

Question 11
Clarification of incomplete st ruct declaration
Referring to subclause 6.5.2.3, page 62:

struct t;
struct t; /* Is this undefined? */

People seem to think that the above is undefined.
The problem arises because no rules exist for compatibility of incomplete structures or unions.
Response A
The proposed example is valid. Nothing in the standard prohibits it.
The relevant citation is subclause 6.5.2.3 Semantics, paragraph 2:
A declaration of the form
struct-or-union identifier

specifies a structure or union type and declares a tag, both visible only within the scope in which
the declaration occurs. It specifies a new type distinct from any type with the same tag in an
enclosing scope (if any).

Question 12
Ambiguous parsing of typedefs in prototypes
On page 67 in subclause 6.5.4.3, an ambiguity needs resolving in the parsing of the following:
a) int x(T (U));

b) int x(T (U (int a, char BN
In a) U is the type of the parameter to a function returning type T. From subclause 6.5.4.3, page 68, line 2:

ISO JTC1/SC22/WG14

Defect Report #017 Page 34 Question 13

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses around
the identifier for a declarator.
Thus in the case of b):
1) U could be a redundantly parenthesized name of a function which takes a parameter-type-list
and returns type T, or

2) U could be the type returned by a function which takes a parameter-type-1ist, which in turn is
the single parameter of a function returning type T.

Response
See Defect Report #009, Question 1 for a clarifying correction in this area.
Question 13
Compatibility of functions with register on parameters
Reference subclause 6.5.4.3, page 67. :
£1 (int) ;
fl (register int a) /* Is this function compatible with the above? */

{
}

Subclause 6.5.4.3, page 68, lines 5-7 were presumably intended to make sure that the register storage
class got kept in the case of a definition so that the appropriate constraints applied, i.e., it is not allowed to
take its address, etc. But the further implication of the wording is that the occurrence of register lingers
on for other uses — but there are no other uses.

Suggest a clarification on this point.
Response
The function is compatible. Storage class is not part of the type.

The relevant citation, as given, is subclause 6.5.4.3, page 59, lines 5-7, but it does not imply any “other
uses.” -

Question 14

const void type as a parameter

Refer to subclause 6.5.4.3, page 67, line 37. £(const void) should be explicitly undefined; also

f (register void), £(volatile void), and combinations thereof.

Correction

Add to subclause G.2, page 204, the following:

— A storage-class specifier or type-qualifier modifies the keyword void as a function parameter-type-list.
Question 15

Ordering of conversion of arrays to pointers

In subclause 6.5.4.3 on page 68, line 22 there is a sentence in parentheses. Does the sentence refer to the
whole paragraph or just the preceding sentence?

int £(int a[4]):

int f£(int a[5]):

int £(int *a);

1) TItrefers to the whole paragraph. This makes all of the above three declarations compatible.
2) It does not refer to the whole paragraph. This makes all three declarations incompatible.

Response

Regarding page 68, line 22: There are two sentences in parentheses. They apply to the entire paragraph. The
declarations are all compatible. (See Defect Report #013, Question 1 for a clarifying correction in this area.)

Question 16
Pointer to multidimensional array
Given the declaration:

ISO JTC1/SC22/WG14

Question 17 Page 35 Defect Report #017

char a[3][4], (*p)[4]=all];
Does the behavior become undefined when:
1) p no longer points within the slice of the array, or

2) p no longer points within the object a?

This case should be explicitly stated.

Arguments for/against:

The standard refers to a pointed-to object. There does not appear to be any concept of a slice of an array
being an independent object.

Correction

Add to subclause G.2, page 204, the following:

— For an array of arrays, the permitted pointer arithmetic in subclause 6.3.6, page 47, lines 12-40 is to be
understood by interpreting the use of the word “object” as denoting the specific object determined directly
by the pointer’s type and value, not other objects related to that one by contiguity. Therefore, if an expression
exceeds these permissions, the behavior is undefined. For example, the following code has undefined
behavior:

int a[4]([5]:

a[l][7] = O; /* undefined */

Some conforming implementations may choose to diagnose an “array bounds violation,” while others may
choose to interpret such attempted accesses successfully with the “obvious™ extended semantics.

Question 17
Initialization of unions with unnamed members

Subclause 6.5.7 on page 71, line 38 says: “All unnamed structure or union members are ignored ...” On
page 72, lines 22-23, it says: “... for the first member of the union.” Subclause 6.5.2.1, page 60, line 40 and
Footnote 60 say that a field with no declarator is a member.

union {
dintr ~neisi
float £;} u = {3.4};
Should page 72 be changed to refer to the first named member or is the initialization of a union whose first
member is unnamed illegal?
It has been suggested that the situation described above is implicitly undefined.
I think that it is a straightforward ambiguity that needs resolution one way or the other.
Correction
Replace subclause 6.5.7, page 72, lines 4-5:
The initial value of the object is that of the expression:
with:
The initial value of the object, including unnamed members, is that of the expression:
Add to subclause 6.5.7, page 72, the following:

Except where explicitly stated otherwise, for the purposes of this subclause unnamed members of objects
of struct and union type do not participate in initialization. Unnamed members of struct objects
have indeterminate value even after initialization. A union containing only unnamed members has
indeterminate value even after initialization,

Question 18
Compatibility of functions with void and no prototype
£2 (void) ;
£2(); /* Is this function compatible with the one above? */

Now subclause 6.5.4.3, page 68, line 1 says that the first declaration of £1 specifies that the function has
no parameters.

ISO JTC1/SC22/WG14

Defect Report #017 Page 36 Question 19

No rules are given in the subsequent paragraphs to say that a function declaration with a parameter type list,
with no parameters, is compatible with a function declaration with an empty parameter list.

If we treat the void as a single parameter then page 59, lines 15-18 would make the above two functions
incompatible. void is not compatible with any default promotions. subclause 6.5.4.3, page 68, lines 18-22
cover the case for declaration and definition.

Thus I think that in the above example the behavior is implicitly undefined.

Response

Subclause 6.5.4.3, page 67, line 37 and page 68, line 1 state, “The special case of void as the only item in
the list specifies that the function has no parameters.” Therefore, in the case of £2 (void) there are no
parameters just as there are none for £2 (). Since both functions have the same return type, these
declarations are compatible.

Question 19
Order of evaluation of macros
Refer to subclause 6.8.3, page 80. In:
#define f(a) a*g
#define g(a) £(a)
£(2) (9)
it should be defined whether this results in;
1) 2%£(9)
or
2) 2*9*g ,
X3J11 previously said, “The behavior in this case could have been specified, but the Committee has decided
more than once not to do so. [They] do not wish to promote this sort of macro replacement usage.”
Iinterpret this as saying, in other words, “If we don’t define the behavior nobody will use it.” Does anybody
think this position is unusual?
People seem to agree that the behavior is ambiguous in this case. Should we specify this case as undefined
behavior?
Correction
Add to subclause G.2, page 204, the following:

— If a fully expanded macro replacement list contains a function-like macro name as its last preprocessing
token, it is unspecified whether this macro name may be subsequently replaced. If the behavior of the
program depends upon this unspecified behavior, then the behavior is undefined.

Example

Given the definitions:
#define f(a) a*g
#define g(a) £(a)

the invocation:
£(2) (9)
results in undefined behavior. Among the possible behaviors are the generation of the preprocessing tokens:
2*%£(9)
and
2%9%g
Question 20
Scope of macro parameters

Refer to subclause 6.8.3 on page 89, line 16; the scope of macro parameters should be defined in the section
on scope.

The idea is to enable all references to the scope of names to be under one heading. This is not really a
significant issue.

ISO JTC1/SC22/WG14

Question 21 Page 37 Defect Report #017

Response

Subclause 6.1.2 on page 20, line 5, states “Macro names and macro parameters are not considered further
here.” This approach was intentionally adopted to avoid explicitly having to mention exceptions of using
identifiers, for example in the sections on scope, linkage, name spaces, and storage durations, none of which
applies to macros. The proposed change does not clarify the standard and may even obscure it.

Question 21
Self references in translation phase 4
The following queries arise because of the imprecise way in which phase 4 interacts with itself. While
processing a token within phase 4 it is sometime necessary to get the following tokens from the input, i.e.
reading the arguments to a function-like macro. But when getting these tokens it is not clear how many
phases operate on them:
1) Do the following tokens only get processed by phases 1-3?

2) Do the following tokens get processed by phases 1-4?

When an identifier declared as a function-like macro is encountered, how hard should an implementation
try to locate the opening/closing parentheses?

In:

#define lparen (
#define £ m(a) a
f m lparen "abc")

should the object-like macro be expanded while searching for an opening parenthesis? Or does the lack of
a readily available left parenthesis indicate that the macro should not be expanded?

Subclause 6.8.3, on page 89, lines 34-35 says “... followed by a (as the next preprocessing token ...” This
sentence does not help because in translation phase 4 all tokens are preprocessing tokens. They don’t get
converted to “real” tokens until phase 7. Thus it cannot be argued that 1paren is not correct in this situation,
because its result is a preprocessing token.

In:

#define i(x) 3

#define a i(yz

#define b)

ab) /* goes to 3) or 3 */

does b get expanded to complete the call i (yz, or does the parenthesis to its right get used?

Response

Concerning the first example:

#define lparen (

fidefine £ m(a) a

f m lparen "abc")

According to subclause 5.1.1.2 Translation phases, page 5, lines 25-39, the translation phases 1-3 do not
cause macros to be expanded. Phase 4 does expand. To apply subclause 6.8.3 Macro replacement page
89, lines 34-35 to the example: Since lparen is not (in “£ m lparen "abc"),” this constructis
not recognized as a function-like macro invocation. Therefore the example expands to

£ m("abc")

The same principle applies to the second example:

#define i(x) 3

#define a i(yz

#define b)

ab) /* expands via the following stages: */

i(yz b) /*) delimits the argument list before b is
expanded */

i(lyz) 1)

ISO JTC1/SC22/WG14

Defect Report #017 Page 38 Question 22

3

This is how we interpret subclause 6.8.3, page 89, lines 36-38: The sequence of preprocessing tokens is
terminated by the right-parenthesis preprocessing token.

. Question 22
Gluing during rescan
Reference: subclause 6.8.3.3, page 90. Does the rescan of a macro invocation also perform gluing?

#define hash hash # ## #

#define mkstr(a) # a

#define in between (a) mkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[2] = join(x, y):
Is the above legal? Does join expand to "xy" or "x ## y"?

It all depends on the wording in subclause 6.8.3.3 on page 90, lines 39-40. Does the wording “... before the
replacement list is reexamined ...” mean before being reexamined for the first time only, or before being
reexamined on every rescan?

This rather perverse macro expansion is only made possible because the constraints on the use of # refer to
function-like macros only. If this constraint were extended to cover object-like macros the whole question
goes away.

Dave Prosser says that the intent was to produce "x ## y". My reading is that the result should be "xy".
I cannot see any rule that says a created ## should not be processed appropriately. The standard does say
in subclause 6.8.3.3, page 90, line 40 “... each instance of a ## ...”

The reason I ask if the above is legal is that the order of evaluation of # and ## is not defined. Thus if # is
performed first the result is very different than if #3# goes first.

Correction
Add to subclause 6.8.3.3, page 90, the following:
Example

#idefine hash hash # ## #

#define mkstr(a) # a

#define in between (a) mkstr(a)

#define join(c, d) in _between(c hash_hash d)

char p[] = join(x, y); /* equivalent to char p[] = "x ## yv, */
The expansion produces, at various stages:

join(x, y)

in_between(x hash hash y)

in between(x ## y)

mkstr(x ## y)

Wy ## yu

In other words, expanding hash _hash produces a new token, consisting of two adjacent sharp-signs, but
this new token is not the catenation operator.

Question 23
How long does blue paint persist?
Consider the following code:

#define a(x) b
#idefine b(x) x

ISO JTC1/SC22/WG14

Question 24 Page 39 Defect Report #017

a(a) (a) (a)
The macro replacement for a (a) results in b.
First replacement buffer: b
Remaining tokens: (a) (a)
Inside the first replacement buffer, no further nested replacements will recognize the macro name “a.” The
name “a” is painted blue.

The firstreplacement buffer is rescanned not by itself, but along with the rest of the source program’s tokens.
“b (a) ” also causes macro replacement and becomes “a.”

Second replacement buffer: a

Remaining tokens: (a)
The second replacement buffer is rescanned not by itself, but along with the rest of the source program’s
tokens.

The “a” in the second replacement buffer did not come from the first replacement buffer. It came from three
of the remaining tokens which were in the source file following the first replacement buffer. Is this “a” part
of a nested replacement? Is it still painted blue?

Note that there are many “paths” that can be taken for a possible macro name to travel from a preprocessing
token (outside the replacement buffer) to one that is inside the replacement buffer. When do they stop getting
painted blue? If either too early or too late, they cause very surprising results.

Given the amount of discussion involving macro expansion that uses the concept of “blue paint,” why
doesn’t the standard tell the reader about this idea?

Everybody seems to agree that the above is undefined. Does anybody have a set of words to make this and
other cases explicitly undefined?

Response
The reference is to subclause 6.8.3.4, page 91.

#define a(x) b
#define b(x) x

a(a) (a) (a) /* may expand as follows: */
b(a) (a)

a’ (a) or a(a)

a(a) or b

/* a’ indicates the symbol a marked for non-replacement */

The Committee addressed this issue explicitly in previous deliberations and decided to say nothing about
the situation, understanding that behavior in such cases would be undefined.

The result, as with other examples, is intentionally left undefined.
Question 24

Improve English

Just a tidy up. Change subclause 7.1.2, page 96, line 34 from “if the identifier” to “if an identifier.”

Correction

Change subclause 7.1.2, page 96, lines 34-35 from:

However, if the identifier is declared or defined in more than one header,

to

However, if an identifier is declared or defined in more than one header,
Question 25

“Must” in footnotes

This change is not essential since footnotes have no status, other than creating explicitly undefined behavior.
But this change would cut down the number of occurrences of “shall” synonyms used where “shall” itself
could have be used.

ISO JTC1/SC22/WG14

Defect Report #017 Page 40 Question 26

Response
The standard is clear enough as is.

Question 26

Are unnamed union members required to be initialized?

Response

See Defect Report #017, Question 17 for a clarifying correction in this area.
Question 27

g conversions

Subclause 7.9.6.1 says on page 132, lines 42-43: “For g and G conversions, trailing zeros will not be removed
..., whereas on page 133, lines 37-39 it says: “Trailing zeros are removed ...”

It has been suggested that the italics on page 123, lines 42-43 gives this rule precedence. I don’t mind which
rule wins as long as the text says so. Do we add text to describe the italics rule or change the conflicting
lines?

Response

In the collision between the description of the # flag and the g and G conversion specifiers to fprintf,
which takes precedence?

The # flag takes precedence. Subclause 7.9.6.1, page 132, line 1 says, “Zero or more flags (in any order) ...
modify the meaning of the conversion specification,”

Question 28
Ordering of conditions on return

In subclause 7.9.9.1, subclause 7.9.9.3, and subclause 7.9.9.4, the words are “returns ... and stores an
implementation-defined positive value in errno.” This is a strange order of operations — shouldn’t the
wording be reversed?”

Response

No. In subclause 7.9.9.1, subclause 7.9.9.3, and subclause 7.9.9.4, the words “returns ... and stores an
implementation-defined positive value in errno” do not imply any temporal ordering. There are imple-
mentations that may perform these operations in either order and they still meet the standard.

Question 29
Conversion failure and longest matches

Consider 1.2e+4 with field width of 5. Is it input item 1. 2e+ that gives a conversion failure? What is
the ordering between building input items and converting them? Do they run in parallel, or sequential?

Refer to subclause 7.9.6.2 The £scanf£ function, page 135, lines 31-33 concerning the longest matching
sequence, and subclause 7.9.6.2, page 137, lines 15-16 concerning a conflicting input character.

Forl.2e-x,is1.20r1.2e-read?

The above questions all come about because of page 137, line 11: “If conversion terminates ...” In this
context the use of the word “conversion” could be referring to the process of turning a sequence of characters
into numeric form. I believe what was intended was “If a conversion specifier terminates ...”

Response
The relevant citations are subclause 7.9.6.2, page 137, lines 15-16:

If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream.

and subclause 7.9.6.2, page 135, lines 31-33:

An input item is defined as the longest matching sequence of input characters, unless that
exceeds a specified field width, in which case it is the initial subsequence of that length in the
sequence.

and subclause 7.9.6.2, page 138, lines 38-40:

If the input item is not a matching sequence, the execution of the directive fails: this condition
is a matching failure.

ISO JTC1/SC22/WG14

Question 30 Page 41 Defect Report #017

The “conversion” in the first quoted passage is the process of both forming an input item and converting it
as specified by the conversion specifier.

About your example: If the characters available for input are “1.2e+4” and input is performed using a
“%5e,” then the input item is “1 . 2e+" as defined by the second passage quoted above. That input item is
not a matching sequence, but only an initial subsequence that fails to be a matching sequence in its own
right. Under the rules of the third quoted passage, this is a matching failure.

Note that in this case, no characters were pushed back on to the input stream. There was no “conflicting
input character” that terminated the field, and so the first quoted passage does not apply.

Question 30
Successful call to ftell or f£getpos
In subclause 7.9.9.2 on page 145, lines 39-40, “... a value returned by an earlier call to the £tel1 function
... should actually read “... a value returned by an earlier successful call ...” Similarly for subclause 7.9.9.3.
Correction
In subclause 7.9.9.2, page 145, lines 39-40, change
a value returned by an earlier call to the £tell function
to
a value returned by an earlier successful call to the ££ell function
In subclause 7.9.9.3, page 146, lines 10-11, change
a value obtained from an earlier call to the £getpos function

fo

a value obtained from an earlier successful call to the £getpos function
Question 31

Size in bytes

References to the size of an object in other parts of the standard specify that size is measured in bytes. The
following lines do not follow this convention: subclause 7.10.3.1 on page 154, lines 26-27 and subclause
7.10.3.3 on page 155, line 8. '

Response

There are numerous piaces in the standard where “size in bytes” is used, and numerous places where “size”
alone is used. The Committee does not feel that any of these places need fixing — the meaning is everywhere
clear, especially since for sizeof in subclause 6.3.3.4 size is specifically mentioned in terms of bytes.

Question 32
char parameters to st xcmp and strncmp

Refer to subclause 7.11.4, page 164. If char is signed then char * cannot be interpreted as pointing to
unsigned char. The required cast may give undefined results. This applies to st remp and st rncmp.

Response

strcmp can compare two chaxr strings, even though the representation of char may be signed, because
subclause 7.11.4, page 164, line 7 says that the interpretation of bytes is done as if each byte were accessed
as an unsigned char. We believe the standard is clear.

Question 33
Different length strings
Refer to subclause 7.11.4, page 164, lines 5-7. What about strings of different length?
Perhaps the fact that the terminating null character takes part in the comparison ought to be mentioned.
Response

Subclause 7.1.1 on page 96, lines 5-6 says that a string includes the terminating null character. Therefore
this character takes part in the comparison. The standard is clear.

Question 34
Calls to strtok

In subclause 7.11.5.8 on page 167, line 36, “... first call ...” should read “... all calls ...”

ISO JTC1/SC22/WG14

Defect Report #017 Page 42 Question 35

I think that the current wording causes confusion. The first call is the one that takes a non-NULL “s1”
parameter. However, the discussion from line 36 onwards is describing the behavior for all calls.
Response }

The Committee felt that the suggested wording for the st rt ok function description is not an improvement.
The existing wording is clear as written.

Question 35
When is a physical source line created?
Is the output or input to translation phase 1 a physical source line?

Response

The use of the term “physical source line” occurs only in the description of the phases of translation
(subclause 5.1.1.2) and the question of whether the input or output of phase 1 consists of physical source
lines does not matter.

Question 36
Qualifiers on function return type
Refer to subclause 6.6.6.4, page 80, line 24: “... whose return type is void.”

The behavior of a type qualifier on a function return is explicitly undefined, according to subclause 6.5.3,
page 64, lines 24-25.

This creates a loophole.
Animplementation that supports type qualifiers on function return types is not required to flag the constraint
given on page 80.
Response
The Constraint on subclause 6.7.1 says “The return type of a function shall be void or an object type other
than array.”
Question 37
Function result type A
Reference: subclause 6.3.2.2, page 40, line 35. The result type of a function call is not defined.
Correction
In subclause 6.3.2.2, page 40, line 35, change:
The value of the function call expression is specified in 6.6.6.4.
to:

If the expression that denotes the called function has type pointer to function returning an object type, that
object type is the type of the result of the function call. The value of the function call is determined by the
return statement that executes within the called function, as specified in 6.6.6.4. Otherwise, the function
call has type void.

Question 38
What is an iteration control structure or selection control structure?

An “iteration control structure,” a term used in subclause 5.2.4.1 Translation limits on page 13, line 1, is
not defined by the standard.

Isit:

1) A for loop header excluding its body, e.g. foxr (;;),or

2) A for loop header plusits body, e.g. for (;;) {}?

Does it make a difference if the compound statement is a simple statement without the braces?

Correction
Change subclause 5.2.4.1, page 13, lines 1-2:

— 15 nested levels of compound statements, iteration control structures, and selection control structures
to:

— 15 nested levels of compound statements, iteration statements, and selection statements

ISO JTC1/SC22/WG14

Question 39 Page 43 Defect Report #017

Question 39
Header name tokenization

There is an inconsistency between subclause 6.1.7, page 33, line 8 and the description -of the creation of
header name preprocessing tokens.

The “shall” on page 32, lines 33 does not limit the creation of header name preprocessing tokens to within
#include directives. It simply states that they would cause a constraint error in this context.

Subclause 6.1.7, page 33, line 8 should read {0x3}{<1/a.h>}{1e2]}, or extra text needs to be added to
subclause 6.1.7.

I have not met anybody who expects 1f (a<b || c>d) toparseas {if} {(} {a} (b || &>} {4}
).

Correction

Add to subclause 6.1, page 18, the following:

There is one exception to this rule: a header-name preprocessing token is only recognized within a
#include preprocessing directive, and within such a directive, a sequence of characters that could be
either a header-name or a string-literal is recognized as the former.

Add to subclause 6.1.2, page 20, the following:

When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing token
could be converted to either a keyword or an identifier, it is converted to a keyword.

In subclause 6.1.7, page 32, delete:

Constraint

Header name preprocessing tokens shall only appear within a #include preprocessing directive.

Add to subclause 6.1.7, page 32, the following:

The header-name preprocessing token is recognized only within a #include preprocessing directive.

ISO JTC1/SC22/WG14

Defect Report #018 Page 44 Question 1

Defect Report #018

Submission Date; 10 Dec 92
Submittor: WG14
Source: X3J11/90-066 (Yasushi Nakahara)

Question 1

It is unclear how the £scan£ function shall behave when executing directives that include “ordinary
multibyte characters,” especially in the case of shift-encoded ordinary multibyte characters.

The following statements are described in subclause 7.9.6.2 The £scan £ function of the current standard:

A directive that is an ordinary multibyte character is executed by reading the next characters of
the stream. If one of the characters differs from one comprising the directive, the directive fails,
and the differing and subsequent characters remain unread.

Assume a typical shift-encoded directive: A\ *; in 7-bit representation. And consider two different encoding
systems, Latin Alphabet No.1 — 8859/1 and German Standard DIN 66 003. The codes are, for example,
A; in 8859/1: SO 4/4 ST

A; in DIN 66 003: ESC 2/8 4/11 5/11 ESC 2/8 4/2

where SOis a Shift-Out code (0/15 = 0xOF) and SI corresponds to a Shift-In code (0/14). “ESC 2/8 4/11”
is an escape sequence for the German Standard DIN 66 003, and “ESC 2/8 4/2” is for ISO 646 USA
Version (ASCII).

Assuming that a subject sequence includes A;, O;, and U; with the following 7-bit representations,

in 8859/1: SO 4/4 5/6 5/12 SI .
in DIN 66 003: ESC 2/8 4/11 5/11 5/12 5/13 ESC 2/8 4/2

does the “A; ” directive in the £scan£ format string match the beginning part of the“a; 0; U; ” sequence?
At what position of the target sequence shall the “A; ” directive fail?

One interpretation of this is that because the current standard defined the behavior of the directive in the
fscanf format based on the word “character” (byte), not using the term “multibyte character,” the
comparison shall be done on a byte-by-byte basis. One may conclude that the “A; ” directive never matches
the “A;0;U;” sequence in this case.

Another interpretation may lead to an opposite conclusion, saying that the current standard’s statements
quoted above do not necessarily mean that such comparison shall be done on a byte-by-byte basis. Instead,
it is read that the matching shall be done on a “multibyte character by multibyte character basis” or rather
“wide character by wide character basis.” Especially, a “ghost” sequence like “ESC .. .” and SI/SO
characters should not be regarded as independent ordinary multibyte characters in this case.

Which is a correct interpretation of the current standard?

These different interpretations are caused by the ambiguity of the descriptions in the current standard. Also,
it should be pointed out that the major problem here is usage of the word “character.” The generic word
“character” and the specific word “character(=byte)” should be properly discriminated in the standard.

Response

Subclause 7.9.6.2 says, “A directive that is an ordinary multibyte character is executed by reading the next
characters ...” [emphasis added]. Consistently throughout the standard, plain “characters” refers to one-byte
characters. (See clause 3 for the definition of “character.”)

ISO JTC1/SC22/WG14

Question 1 Page 45 Defect Report #019

Defect Report #019

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/91-014 (Richard Wiersma)
Question 1

Background:

Subclause 7.3.1.5 states that “the isgraph function tests for any printing character except space.”
Subclause 7.3.1.7 states that “the isprint function tests for any printing character including space.”

The third paragraph of subclause 7.3 defines the term printing character as “a member of an implementa-
tion-defined set of characters, each of which occupies one printing position on a display device.”

Subclause 5.2.1 defines the source and execution character sets and provides a list of characters which must
be contained in both sets.

Question for interpretation: Are the isprint and isgraph functions required to return a non-zero value
for all of the characters defined in subclause 5.2.1?

A scenario for use of isprint/isgraph that depends on the interpretation is: A developer may wish to
use these functions to determine whether a particular character can be displayed as itself (e.g., whether a
square bracket is actually displayed as a square bracket). This could be useful for formatting output in a
device-independent manner, since the application could substitute some other character for ones that do not
print “correctly.”

If isprint and isgraph are required to return non-zero for all characters in subclause 5.2.1, developers
cannot use them for this purpose.

This problem has occurred in a real implementation. The most commonly used terminals and printers for
IBM System/370 computers do not support all of the characters listed in subclause 5.2.1. For example, most
IBM printers and terminals do not print the square brackets.

The SAS/C implementation of isprint and isgraph assumes that subclause 7.3 controls the behavior
of these functions, and returns non-zero only for those characters that print “correctly.” The Plum Hall test
suite, however, assumes that isprint and isgraph return non-zero for all characters listed in subclause
5.2.1.

Response

Subclause 7.3, page 102, line 8 says that printing character is implementation-defined. In particular, the
value (zero or non-zero) of isprint (’ [/) is implementation-defined, even in the "C" locale.

ISO JTC1/SC22/WG14

Defect Report #020 Page 46 Question 1

Defect Report #020

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-006 (Bruce Lambert)
Question 1
Is a compiler which allows the Relaxed Ref/Def linkage model to be considered a conforming compiler?
That is, can a compiler that compiles the following code with no errors or warnings

filea.c: .
#include <stdio.h>
void foo(wvoid) ;
int age;
void main ()

{

age = 24;

prin?f("my age is %d.\n", age):
foo (),

printf("my age is %d.\n", age);
return 0;

}

fileb.c:
#include <stdio.h>
int age;
void foo()
{
age = 25;
printf("your age is %d.\n", age);

}

and which produces the following output
my age is 24

your age is 25

my age is 25

be called a standard-compliant compiler?
Response

Yes, a compiler that allows the Relaxed Ref/Def model can be standard conforming. See subclause 6.7,
page 81, lines 23-25. The code is conforming but not strictly conforming. The behavior is undefined.

ISO JTC1/SC22/WG14

Question 1 Page 47 Defect Report #021

Defect Report #021

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-001 (Fred Tydeman)
Question 1
What is the result of: print £ ("$#.40", 345);?Isit0531 orisit 00531?

Subclause 7.9.6.1, on page 132, lines 37-38 says: “For o conversion, it increases the precision to force the
first digit of the result to be a zero.”

Is this a conditional or an unconditional increase in the precision if the most significant digit is not already
a 0? Which is the correct interpretation?

Correction

In subclause 7.9.6.1, page 132, lines 37-38, change

For o conversion, it increases the precision to force the first digit of the result to be a zero.

to:

For o conversion, it increases the precision, if and only if necessary, to force the first digit of the result to
be a zero.

ISO JTC1/SC22/WG14

Defect Report #022 Page 48 Question 1
Defect Report #022

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-002 (Fred Tydeman)

Question 1
What is the result of: strtod ("100exrgs™, &ptr);?Isit100.0orisit0.0?

Subclause 7.10.1.4 The st rtod function on page 150, lines 36-38 says: “The subject sequence is defined
as the longest initial subsequence of the input string, starting with the first non-white-space character, that
is of the expected form.” In this case, the longest initial subsequence of the expected formis 100,s0100.0
should be the return value. Also, since the entire string is in memory, st rtod can scan it as many times
as need be to find the longest valid initial subsequence.

Subclause 7.9.6.2 The £scanf function on page 136, lines 17-18 says: “e,f,g Matches an optionally
signed floating-point number, whose format is the same as expected for the subject string of the strtod
function.” Later, page 138, lines 6, 16, and 25 show that 100exgs fails to match % £. Those two show that
100exgs is invalid to £scan£ and therefore, invalid to strtod. Then, subclause 7.10.1.4, page 151,
lines 11-12, “If no conversion could be performed, zero is returned” indicates for an error input, 0.0 should
be returned. The reason this is invalid is spelled out in the rationale document, subclause 7.9.6.2 The
£scanf function, page 85: “One-character pushback is sufficient for the implementation of £scanf.
Given the invalid field - . x, the characters - . are not pushed back.” And later, “The conversions performed
by £scanf are compatible with those performed by strtod and strtol.”

So, do strtod and £scanf act alike and both accept and fail on the same inputs, by the one-character
pushback scanning strategy, or do they use different scanning strategies and strtod accept more than
fscanf?

Correction
In subclause 7.9.6.2, page 135, change:

An inputitem is defined as the longest matching sequence of input characters, unless that exceeds a specified
field width, in which case it is the initial subsequence of that length in the sequence.

to

An input item is defined as the longest sequence of input characters which does not exceed any specified
field width and which is, or is a prefix of, a matching input sequence.

In subclause 7.9.6.2, page 137, delete the sentence:

If conversion terminates on a conflicting input character, the offending input character is left unread in the
input stream.

Add to subclause 7.9.6.2, page 137, the following:

£scanf£ pushes back at most one input character onto the input stream.” Therefore, some sequences that

are acceptable to strtod, strtol,or strtoul are unacceptable to £scane£. [Footnote *: If conversion
terminates on a conflicting input character, the offending input character is left unread in the input stream.]

ISO JTC1/SC22/WG14

Question 1 Page 49 Defect Report #023

Defect Report #023

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-003 (Fred Tydeman)

Question 1
Assuming that 99999 is larger than DBL. MAX 10_EXP, what is the result of:
strtod("0.0e99999", &ptr);

Isit 0.0, HUGE_VAL, or undefined?

Subclause 6.1.3.1 Floating constants on page 26, lines 30-32 says: “The significand part is interpreted as
a decimal rational number; the digit sequence in the exponent part is interpreted as a decimal integer. The
exponent indicates the power of 10 by which the siggiﬁcand part is to be scaled.” In this case 0. 099999
means 0.0 times 10 to the power 99999, or 0.0x1077999, which has a scaled value of 0.0; therefore, return
0.0.

Subclause 7.10.1.4 The strtod function on page 151, lines 12-14 says: “If the correct value is outside
the range of representable values, plus or minus HUGE_VAL is returned (according to the sign of the value),
and the value of the macro ERANGE is stored in exzno.” Since the exponent (99999 in this case) is larger
than DBL. MAX 10_EXP, the value is outside the range of representable values (overflow). Therefore,
return HUGE VAL,

Subclause 5.2.4.2.2 Characteristics of floating types <f1loat . h>, pages 14-16, describes the model that
defines the floating-point types. The number 0. 099999, as written, is not part of that model (it cannot
be represented since the exponent is larger than emax). From subclause 6.2.1.4 Floating types page 35,
lines 11-13, “.. if the value being converted is outside the range of values that can be represented, the
behavior is undefined.” Therefore, since this number, as written, has no representation, the behavior is
undefined.

Response

According to our response to Defect Report #025, Question 1, the result of strtod ("0.0e99999",
&ptr) isexactly representable, i.e., it lies within the range of representable values. Therefore, by subclause
7.10.1.4, Returns, the value zero shall be returned in this case, and errno shall not be set. (This means
that implementations have to test for the special case of zero when creating floating-point representations
from characters.)

Note also that stxrtod ("0.0e-99999", &ptr) isnota case of underflow, so errno shall not be set
to ERANGE in this case either.

ISO JTC1/SC22/WG14

Defect Report #024 Page 50 Question 1

Defect Report #024

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/91-004 (Fred Tydeman)
Question 1

In subclause 7.10.1.4 The strtod function page 151, line 5: What does “"C" locale” mean?

a) setlocale(LC_ALL,NULL) == "C"

b) setlocale (LC_NUMERIC, NULL) == "C"

c) a)&&b)

d) a)llb)

e) something else.

What does “other than the "C" locale” mean?

a) setlocale(LC_ALL,NULL) != "C"

b) setlocale (LC_NUMERIC,NULL) != "Ct

c) a)&&b)

d allb)

e) something else.

Subclause 7.4.1 Locale control, page 107 may help answer the questioné.

Response

Subclause 7.4.1, page 107, lines 11-17 describe what is affected by each locale portion. Is it the LC_NU-
MERIC locale category which affects the implementation-defined behavior of strtod, etc.?

Answer: Yes.
How can one guarantee that st rtod functions are in the "C" locale?
Answer: Execute setlocale (LC_NUMERIC, "C") orexecute setlocale (LC ALL, “C").

What is meant by “other than the "C" locale?” That is, how can one ensure that st rtod is not in the el
locale?

Answer: Successfully execute set Locale (LC_NUMERIC, str) or setlocale (LC_ALL, str)
to some implementation-defined string st x which specifies a locale that is different from the "C" locale.
No universally portable method can be provided, because the functionality is implementation-defined.

ISO JTC1/SC22/WG14

Quesiion 1 Page 51 Defect Report #025

Defect Report #025

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-005 (Fred Tydeman)
Quesiion 1
What is meant by “representable floating-point value?”” Assume doubge precision, uniess stated otherwise.

First, some definitions based partially upon the floating-point model in subclause 5.2.4.2.2, on pages 14-16
of the C Standard:

+Normal Numbers: DBL_MIN to DBL_MAX, inclusive; normalized (first significand digit is non-zero), sign
is+1.

2) -Normal Numbers: -DBL_MAX to -DBL_MIN, inclusive; normalized.

3) +Zero: All digits zero, sign is +1; (true zero).

4) —Zero: All digits zero, sign is 1.
5) Zero: Union of +zero and —zero.

6) +Denormals: Exponent is “minimum” (biased exponent is zero); first significand digit is zero; sign is
+1. These are inrange +DBL_DeN (inclusive) to +DBL_MIN (exclusive). (LetDBL_DeN be the symbol
for the minimum positive denormal, so we can talk about it by name.)

7) -Denormals: same as +denormals, except sign, and range is -DBL_MIN (exclusive) to -DBL_DeN
(inclusive).)

8 +Unnormals: Biased exponent is non-zero; first significand digit is zero; sign is +1. These overlap the
range of +normals and +denormals.

9 —Unnormals: Same as +unnormals, except sign; range is over —normals and —denormals.
10 +infinity: From IEEE-754.

_ 11) —infinity: From IEEE-754.

12) Quiet NaN (Not a Number); sign does not matter; from IEEE-754.

13) Signaling NaN; sign does not matter; from IEEE-754.

14) NaN: Union of Quiet NaN and Signaling NaN.

15) Others: Reserved (VAX?) and Indefinite (CDC/Cray?) act like NaN.

On the real number line, these symbols order as:

[o okt o) Lo Jabr 5143](4.:)05) (.61) Eor 7 Yal 8 Ll 9 5.r]
e i i Sttt e tmmmm e e e +
-INF -DBL MAX -DBL MIN —DBL_Den -0 +0 +DBL Den +DBL_MIN +DBL MAX +INF

Non-real numbers are: SNaN, QNaN, and NaN; call this region 10.

Regions 1 and 9 are overflow, 2 and 8 are normal numbers, 3 and 7 are denormal numbers (pseudo
underflow), 4 and 6 are true underflow, and 5 is zero.

So, the question is: What does “representable (double-precision) floating-point value” mean:
a) Regions 2,5 and 8 (+/—normals and zero)

b) Regions 2,3, 5, 7, and 8 (+/- normals, denormals, and zero)
c) Regions 2 through 8 [-DBL_MAX ... +DBL_MAX]

d) Regions 1 through 9 [-INF ... +INF]

e) Regions 1 through 10 (reals and non-reals)

f) 'What the hardware can represent

g) Something else? What?

ISO JTC1/SC22/WG14

Defect Report #025 Page 52 Quesiion 1

Some things to consider in your answer follow. The questions that follow are rhetorical and do not need
answers.

Subclause 5.2.4.2.2 Characteristics of floating types <£loat .h>, page 14, lines 32-35:

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.

Same section, page 15, line 6:
A normalized floating-point number x ... is defined by the following model: ...

That model is just normalized numbers and zero (appears to include signed zeros). It excludes denormal
and unnormal numbers, infinities, and NaNs. Are signed zeros required, or just allowed?

Subclause 6.1.3.1 Floating constants, page 26, lines 32-35: “If the scaled value is in the range of
representable values (for its type) the result is either the nearest representable value, or the larger or smaller
representable value immediately adjacent to the nearest value, chosen in an implementation-defined
manner.”

A B Yy c x D E F
-DBL Den 0.0 +DBL Den +DBL MIN +DBL MAX +INF

The representable numbers are A, B, C, D, E, and F. The number x can be converted to B, C, or D! But
what if B is zero, C is DBL._DeN (denormal), and D is DBL _MIN (normalized). Is x representable? It is not
in the range DBL._MIN ... DBL_MAX and its inverse causes overflow; so those say not valid. On the
other hand, it is in the range DBL_DeN\ ... DBL_MAX and it does not cause underflow; so those say it
is valid.

What if B is zero, A is -DBL_DeN (denormal), and C is +DBL_DeN (denormal); is y representable? If so,
its nearest value is zero, and the immediately adjacent values include a positive and a negative number. So
a user-written positive number is allowed to end up with a negative value!

What if E is DBL_MAX and F is infinity (on a machine that uses infinities, IEEE-754)? Does z have a
representation? If z came from 1.0/x, then z caused overflow which says invalid. But on IEEE-754 machines,
it would either be DBL_MAX or infinity depending upon the rounding control, so it has a representation and
is valid.

What is “nearest?”” In linear or logarithmic sense? If the number is between 0 and DBL._DeN, e.g., 10799999,
it is linear-nearest to zero, but log-nearest to DBL_DeN. If the number is between DBL MAX and INF, e.g.,
10%99999, it is linear- and log-nearest to DBL_MAX Or is everything bigger than DBL_MAx nearest to INF?

Subclause 6.2.1.3 Floating and integral, page 35, Foomote 29: “Thus, the range of portable floating values
is (-1,utype MAX+1).”

Subclause 6.2.1.4 Floating types, page 35, lines 11-15: “When adouble is demoted to £1loat ora long
double to double or £loat, if the value being converted is outside the range of values that can be
represented, the behavior is undefined. If the value being converted is in the range of values that can be
represented but cannot be represented exactly, the result is either the nearest higher or nearest lower value,
chosen in an implementation-defined manner.”

Subclause 6.3 Expressions, page 38, lines 15-17: “If an exception occurs during the evaluation of an
expression (that is, if the result is not mathematically defined or not in the range of representable values for
its type), the behavior is undefined.”

w=1l.0/ 0.0 ; /* infinity in IEEE-754 */
x=0.0/0.0; /* NaN in IEEE-754 */

y = +0.0 ; /* plus zero */

z = -y ; /* minus zero: Must this be -0.0?

May it be +0.0? */
Are the above representable?

Subclause 7.5.1 Treatment of error conditions, page 111, lines 11-12: “The behavior of each of these
functions is defined for all representable values of its input arguments.”

What about non-numbers? Are they representable? What is sin (NaN) ? If you got a NaN as input, then
you can return NaN as output. But, is it a domain error? Must errno be set to EDOM? The NaN already
indicates an error, 5o setting errno adds no more information. Assuming NaN is not part of Standard C

ISO JTC1/SC22/WG14

Quesiion 1 Page 53 Defect Report #025

“representable,” but the hardware supports it, then using NaNs is an extension of Standard C and setting
errno need not be required, but is allowed. Correct?

Subclause 7.5.1 Treatment of error conditions, on page 111, lines 20-27 says: “Similarly, a range error
occurs if the result of the function cannot be represented as a double value. If the result overflows (the
magnitude of the result is so large that it cannot be represented in an object of the specified type), the function
teturns the value of the macro HUGE_VAL, with the same sign (except for the tan function) as the correct
value of the function; the value of the macro ERANGE is stored in errno. If the result underflows (the
magnitude of the result is so small that it cannot be represented in an object of the specified type), the
function returns zero; whether the integer expression errno acquires the value of the macro ERANGE is
implementation-defined.”

What about denormal numbers? What is sin (DBL_MIN/3. OL) ? Must this be considered underflow and
therefore return zero, and maybe set errno to ERANGE? Or may it return DBL,_MIN/3.0, a denormal
number? Assuming denormals are not part of Standard C “representable,” but the hardware supports it, then
using them is an extension of Standard C and setting errno need not be required, but is allowed. Correct?

What about infinity? What is exp (INF) ? If you got an INF as input, then you can return INF as output.
But, is it a range error? The output value is representable, so that says: no error. The output value is bigger
than DBL_MAX, so that says: an error and set exrno to ERANGE. Assuming infinity is not part of Standard
C “representable,” but the hardware supports it, then using INFs is an extension of Standard C and setting
errno need not be required, but is allowed. Correct?

What about signed zeros? What is sin (-0. 0) ? Must this return —0.0? May it return —0.0? May it return
+0.0? Signed zeros appear to be required in the model in subclause 5.2.4.2.2 on page 15.

What is sqrt (-0.0) ? IEEE-754 and IEEE-854 (floating-point standards) say this must be 0. Is —0.0
negative? Is this a domain error? :

Subclause 7.9.6.1 The fprint £ function on page 131, lines 32-33 says: “(It will begin with a sign only
when a negative value is converted if this flag is not specified.)”

Whatis fprint £ (stdout, "%+.1£", -0.0);?Mustitbe-0.0? May itbe +0.0?Is-0.0a negative
value? The model on page 15 appears to require support for signed zeros.

What is fprintf (stdout, "$£f %$£", 1.0/0.0, 0.0/0.0) ;? May it be the IEEE-854 strings
of inf or infinity for the infinity and NaN for the quiet NaN? Would NaNQ also be allowed for a quiet
NaN? Would NaNS be allowed for a signaling NaN? Must the sign be printed? Signs are optional in
IEEE-754 and IEEE-854. Or, must it be some decimal notation as specified by subclause 7.9.6.1, page 131,
line 19? Does the locale matter?

Subclause 7.10.1.4 The st rtod function on page 151, lines 2-3 says: “If the subject sequence begins with
a minus sign, the value resulting from the conversion is negated.”

Whatis strtod("-0.0", &ptr)? Mustit be-0.0? May it be +0.0? The model on page 15 appears to
require support for signed zeros. All floating-point hardware I know about support signed zeros at least at
the load, store, and negate/complement instruction level.

Subclause 7.10.1.4 The st rtod function on page 151, lines 12-15 say: “If the correct value is outside the
range of representable values, plus or minus HUGE VAL is returned (according to the sign of the value),
and the value of the macro ERANGE is stored in erzno. If the correct value would cause underflow, zero
is returned and the value of the macro ERANGE is stored in errno.”

If HUGE VAL is +infinity, then is strtod ("1e99999", &ptr) outside the range of representable
values, and a range error? Or is it the “nearest” of DBL._MAX and INF?

Response
Principles for C floating-point representation:

(These principles are intended to clarify the use of some terms in the standard; they are not meant to impose
additional constraints on conforming implementations.

1) “Value” refers to the abstract (mathematical) meaning; “representation” refers to the implementation
data pattern.

2) Some (not all) values have exact representations.

3) There may be multiple exact representations for the same value; all such representations shall compare
equal.

4) Exact representations of different values shall compare unequal.

ISO JTC1/SC22/WG14

Defect Report #025 Page 54 Quesiion 1

5)
6)
7
8)

9

There shall be at least one exact representation for the value zero.

Implementations are allowed considerable latitude in the way they represent floating-point quantities;
in particular, as noted in Footnote 10 on page 14, the implementation need not exactly conform to the
model given in subclause 5.2.4.2.2 for “normalized floating-point numbers.”

There may be minimum and/or maximum exactly-representable values; all values between and
including such extrema are considered to “lie within the range of representable values.”

Implementations may elect to represent “infinite” values, in which case all real numbers would lie
within the range of representable values.

For a given value, the “nearest representable value” is that exactly-representable value within the range
of representable values that is closest (mathematically, using the usual Euclidean norm) to the given
value.

(Points 3 and 4 are meant to apply to representations of the same floating type, not meant for comparison
between different types.)

This implies that a conforming implementation is allowed to accept a floating-point constant of any
arbitrarily large or small value.

ISO JTC1/SC22/WG14

Question 1 Page 55

Defect Report #026

Defect Report #026

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-007 (Randall Meyers)

Question 1
Example:
#include <stdio.h>
int main()
{ puts ("@$ (etc.)");
return 0;

}
Is this a strictly conforming program?

Response

Strictly conforming programs cannot depend on unspecified or implementation-defined behavior (cf. clause
4, lines 17-19). (Choose @ as an example of the characters listed in the Defect Report.) Note that @ and the
other characters are extended source characters. Source characters are translated to execution characters in
an unspecified manner (cf. subclause 5.2.1). This is in the "C™ locale. The @ character is either a printable
character or a control character, either of which is implementation-defined (subclause 7.3, lines 8-11).

Therefore, the program is not strictly conforming.

ISO JTC1/SC22/WG14

Defect Report #027 Page 56 Question 1

Defect Report #027

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/91-008 (Randall Meyers)
Question 1

May a standard conforming implementation make characters in its character set that are not in the required
source character set identifier characters? Can these additional identifier characters be used in preprocessor
identifier tokens as well as post-processor identifier tokens?

Subclause G.5.2 states:

Characters other than the underscore _, letters, and digits, that are not part of the required source
character set (such as the dollar sign $, or characters in national character sets) may appear in
an identifier (subclause 5.1.2.2.1).

Response

May a standard conforming implementation make characters in its character set that are not in the required
source character set identifier characters?

Answer: Yes.

Can these additional identifier characters be used in preprocessor identifier tokens as well as post-processor
identifier tokens?

Correction

Add to subclause 6.8, page 86, Constraints, the following:

If the first character of a replacement-1ist is not a member of the minimal basic source character
set”, there shall be white-space separation between the identifier and the replacement-1ist.
[Footnote *: “Minimal basic source character set” refers to the 90-odd basic source characters listed in
subclause 5.2.1.]

ISO JTC1/SC22/WG14

Question 1 Page 57 Defect Report #028

Defect Report #028

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-009 (Randall Meyers)

Question 1
Subclause 6.3, page 38, lines 18-27 state some very important rules governing how a strictly conforming
program can access the value of an object. The basic theme of the rules is that an object’s value may only
be accessed through an lvalue of the appropriate type. These rules are required to permit C programs to be
optimized. ‘
The rules depend on the “declared type of the object.” This seems to make the rules not apply if the object
was not declared, which is the case for an object allocated usingmalloc().

Do the rules somehow apply to dynamically allocated objects? Is a compiler free to optimize the following
function:

void f£(int *x, double *y)

{
*x = 0;
*y = 3.14;
*x = *x + 2;

}

into the equivalent function:
void f(int *x, double *y)

{

*x = 0;

*y = 3.14;

x.=:2; / *x known to be zero */
}

Or must an optimizer prove that pointers are not pointing at dynamically allocated storage before performing
such optimizations?

Response

Case 1: unions £ (&u.i, &u.d)

Subclause 6.3.2.3, page 42, lines 5-11:

... if a member of a union object is accessed after a value has been stored in a different member
of the object, the behavior is implementation-defined.

Therefore, an alias is not permitted and the optimization is allowed.
Case 2: declared objects £ ((int *) &d, &d)

Subclause 6.3, page 38, lines 18-27 list specific ways in which declared objects can be accessed. Therefore,
an alias is not permitted and the optimization is allowed.

Case 3: any other, including malloced objects £ ((int *)dp, dp)

We must take recourse to intent. The intent is clear from the above two citations and from Footnote 36 on
page 38:

The intent of this list is to specify those circumstances in which an object may or may not be
aliased.

Therefore, this alias is not permitted and the optimization is allowed.
In summary, yes, the rules do apply to dynamically allocated objects.

ISO JTC1/SC22/WG14

Defect Report #029 Page 58 Question 1

Defect Report #029

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-016 (Sam Kendall)
Question 1

Subclause 6.1.2.6 says:

.. two structure, union, or enumeration types declared in separate translation units are
compatible if they have the same number of members, the same member names, and compatible
member types; for two structures, the members shall be in the same order; for two structures or
unions, the bit-fields shall have the same widths; for two enumerations, the members shall have
the same values.

I have one question and one clarification, both about compatibility between two struct/union/enum
types declared in separate translation units.

(1) Was it the Committee’s intent that the two types must have the same tag (or both lack tags) to be
compatible? As the standard is written, the following is legal:

One Translation Unit:

struct foo { int i; } x;

Another Translation Unit:

extern struct bar { int i; } x;

Recommendation: This seems like an accidental omission. To be compatible, the two types should have the
same tag, or both lack tags. I would guess that such was the Committee’s intent.

(2) Clarification: The phrase “two structure, union, or enumeration types” should be written “two structure
types, two union types, or two enumeration types.” The current standard, interpreted literally, allows a
structure and a union with identical member lists to be compatible, even though this is clearly not the intent
of the Committee.

One Translation Unit: union foo { int i; } x;

union bar { int i, j; } y:

Another Translation Unit: extern struct foo { int i; } x; extern
struct bar { int i, j; } y;

Response

Subclause 6.1.2.6 says (by omission) that tags do not have to be the same for structure, union, or enumeration
types to be compatible in separate translation units. Tags are used in succeeding declarations to ensure that
they are of the same type. They are not used for type compatibility.

Does “two structure, union, and enumeration types” mean “two structure types, two union types, or two
enumeration types?” Yes.

ISO JTC1/SC22/WG14

Question 1 Page 59 Defect Report #030
Defect Report #030

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-017 (Pawel Molenda)
Question 1
Reference: subclause 7.5.1 Treatment of error conditions, page 111, lines 14-17:

For all functions, a domain error occurs if an input argument is outside the domain over which
the mathematical function is defined. ... an implementation may define additional domain errors,
provided that such errors are consistent with the mathematical definition of the function.

If sin (DBL_MAX) results in errno being set to EDOM, is this a violation of the standard? If yes, what
should be the result of this call?

Response

Subclause 7.5.1 does not glve license for an implementation to set errno to EDOM for sin (DBL_MAX).
The mathematical function is defined for that argument value. While a conforming hosted implementation
must not set exrno to EDOM for this case, the standard imposes no constraint on the accuracy of the result
value.

ISO JTC1/SC22/WG14

Defect Report #031 Page 60 Question 1

Defect Report #031

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/91-018 (Pawel Molenda)

Question 1

Referring to subclause 6.3, page 38, lines 15-17:
If an exception occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

and subclause 6.4, page 55, lines 11-12:
Each constant expression shall evaluate to a constant that is in the range of representable values
for its type.

What should be the result of the constant expression:

INT MAX + 2

Is this a constraint violation, or it should be mapped onto the set of representable values?

What should be the result of:

INT MAX + 2ul

How should compilers that do not evaluate the constant expressions at compile time behave?

What is the result of: '

(INT_MAX*4) /4

Referring to subclause 6.5.2.2, page 61, lines 29-30:
The expression that defines the value of an enumeration constant shall be an integral constant
expression that has a value representable as an int .

What is the result of:

enum { a=INT MAX, b };

Does this violate the C Standard?

Response

case INT MAX + 2: isa constraint violation.

case INT MAX + 2ul: isokay, representable.

case (INT MAX*4) /4: isa constraint violation.

When subclause 6.4 says on page 55, lines 11-12:

Each constant expression shall evaluate to a constant that is in the range of representable values
for its type.

the Committee’s judgement of the intent is that the “representable” requirement applies to each subexpres-
sion of a constant expression, as shown in the third example. A constant expression is meant as defined by
the syntax rules.

enum {a=INT MAX, b}; isa constraint violation.

ISO JTC1/SC22/WG14

Question 1 Page 61 Defect Report #032

Defect Report #032

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-036 (Stephen D. Clamage)

Question 1
In subclause 6.4, page 55, line 10, a constraint specifies that a comma operator may not appear in a constant
expression (except within the operand of a sizeof operator).
At the end of the same section, page 56, line 1, it says, “An implementation may accept other forms of
constant expressions.”

Does the later statement give a license to relax the earlier constraint? For example, may a conforming
implementation accept

int io=(T, 2)%;

without issuing a diagnostic?

Response

No, a conforming implementation may not accept this example without a diagnostic. Constraint violations
always require a diagnostic (subclause 5.1.1.3). The intent of the statement “An implementation may accept
other forms of constant expressions” (subclause 6.4) is to allow an implementation to accept syntactic

forms, such as might be generated by the offsetof macro, that may not otherwise be semantically
allowed.

ISO JTC1/SC22/WG14

Defect Report #033 Page 62 Question 1

Defect Report #033

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-037 (Mike Vermeulen)

Question 1
Is a conforming implementation required to diagnose all violations of “shall” and “shall not” statements in
the standard, even if those statements occur outside of a section labeled Constraints?
An example that illustrates this question is: :
struct s { char field:1; };
This fragment violates a statement in subclause 6.5.2.1 on page 60, line 30: “A bit-field shall have a type

that is a qualified or unqualified version of one of int, unsigned int, or signed int.” Musta
conforming implementation issue a diagnostic for this violation of “shall?”

Following are two different ways in which the C Standard has been interpreted. These interpretations came
up during discussions over NIST conformance tests for an ANSI-C FIPS. I would like to ask X3J11 for an
interpretation of this issue, perhaps based on one or both of the interpretations given.

Suggested Interpretation #1:

Clause 3 Definitions and conventions states in the very beginning: “In this standard, ‘shall’ is to be
interpreted as a requirement on an implementation or on a program; conversely, ‘shall not’ is to be
interpreted as a prohibition.”

Therefore every “shall” is viewed as testable. The question is what happens if a “shall” is violated.
Subclause 5.1.1.3 Diagnostics provides the answer: “A conforming implementation shall produce at least
one diagnostic message (identified in an implementation-defined manner) for every translation unit that
contains a violation of any syntax rule or constraint. Diagnostic messages need not be produced in other
circumstances.” (emphasis added)

Therefore every violation of a “shall” should be treated as a failure to meet the requirements of the C Standard
(first definition). Any violation of syntax rules, semantic rules, or sections labeled as Constraints should
therefore generate a diagnostic.

According to this interpretation, a diagnostic should be produced for the example given above.

Suggested Interpretation #2:

Subclause 5.1.1.3 states that diagnostics must be produced “for every translation unit that contains a
violation of any syntax rule or constraint. Diagnostic messages need not be produced in other circum-
stances.”

Syntax rules are those items listed in the “Syntax” sections of the standard. Constraints are those items listed
in the Constraints sections of the standard.

The C Standard specifies in clause 3, page 3, lines 12-13 that when the words “shall” or “shall not” appearing
outside of a constraint are violated, the behavior is undefined.

For undefined behavior, the C Standard specifies in clause 3, page 3, lines 6-7 that “the standard imposes
no requirements.” Thus a conformance suite should not test for the words “shall” or “shall not” outside of
a Constraints section, since the standard imposes no requirements.

According to this interpretation, the C Standard imposes no requirements on a conforming implementation
for the program fragment above. A conforming implementation could choose to accept this program (see
also Footnote 6 to subclause 5.1.1.3 on page 6), it could issue a diagnostic, or have any other behavior.

Concerning a violation of subclause 6.5.2.1, Semantics, page 60, line 30: No diagnostic is required; this is
undefined behavior. It is not a violation of a constraint or syntax.

Concerning a violation of clause 3, page 2, lines 2-3, No diagnostic is required.
Response

Suggested Interpretation #2 is the correct one.

Conformance to FIPS is beyond our scope. We can’t comment on this.

ISO JTC1/SC22/WG14

Question 1 Page 63 Defect Report #034

Defect Report #034

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-038 (Stephen D. Clamage)
Question 1
In The C Users Journal, Vol. 8 No. 7, July 1990, P.J. Plauger gives the following example on page 10:

extern int al[];
int £() {
extern int a[l1l0];

}
int sizea = sizeof a; /* error */
M. Plauger claims that the size information from the inner scope “evaporates” when its scope ends, and
the operand to the sizeof operator has an incomplete type. We cannot find unequivocal support for this
claim in the standard.

Subclause 6.1.2.2 says on page 21, lines 10-11:
... each instance of a particular identifier with external linkage denotes the same object or
function.
Combining subclause 6.1.2.6 and subclause 6.5.4.2, we find that the two declarations for a are compatible
and we may construct a composite type. The composite type is array of 10 int.

Subclause 6.1.2.6 on page 25, lines 19-20, discusses the case of two declarations in the same scope, but
does not discuss the case of two declarations for the same object in different scopes.

But subclause 6.1.2.5 says on page 24, lines 8-9:
An array type of unknown size is an incomplete type. It is completed, for an identifier of that
type, by specifying the size in a later declaration (with internal or external linkage).

The identifier a appears in two declarations, and denotes the same object. The second declaration completes
the type for the identifier in the inner scope. The two identifiers denote the same object, so it would seem
reasonable to say the type of that object is completed.

Is the size information in the inner scope lost upon leaving the scope?
Response
Is the size information in the inner scope lost upon leaving the scope?
Answer: Yes.
See the correction in response to Defect Report #011.

Question 2

If no size information is known in the outer scope, then consider the following example:

extern int al[]l;
int £() {
extern int a[l10];

i.
int g() {
extern int a[20]; /* error? */

}
Is this legal? If not, does it violate a constraint?
Response

The example exhibits undefined behavior. It does not violate a constraint. Subclause 6.1.2.2, page 21, lines
10-13 describe"‘same object;” subclause 6.1.2.6, page 25, lines 9-10 require that “All declarations that refer
to the same object or function shall have compatible type; otherwise, the behavior is undefined.”

ISO JTC1/SC22/WG14

Defect Report #035 Page 64 Question 1

Defect Report #035

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/91-039 (Derek M. Jones)
Question 1

void f(a, b)

int a(enum b {x, y};):
int b;

{

}

Now this example is perverse because a prototype declaration is used to declare the parameter of an old-style
function declaration. But anyway ...

Is the declaration of the parameter a legal or a constraint error?
Now a (. . .) isadeclarator.
Subclause 6.7.1 says on page 82, lines 7-8:
... each declaration in the declaration list shall have at least one declarator, and those declarators
shall declare only identifiers from the identifier list.
The identifier list contains a and b.
The declarator for parameter a declares the identifiers a, b, x, and y.
b is in the identifier list, so that is okay. But x and y are not. Constraint error (methinks 50)?
See subclause 6.1.2, page 19 for a definition of an identifier.
Response
There is no constraint violation. The scopes of b, x, and y end at the right-parenthesis at the end of the
enum, so there is no violation. It is difficult to call the function £, but there is no constraint violation. The
phrase “each declarator declares one identifier” in subclause 6.5.4 refers to a, not to b, x, or y.
As an example, in the conforming definition:
void £(a, b)
int a(enum b{x, y});
int b;
{
}
the scope of b (the enum tag), x, and y end at the right-parenthesis at the end of the enum (prototype scope).

Question 2
Also consider:
void g(c)
enum m{q, r} c;
{
}

What is the scope of m, q, and x?

Subclause 6.1.2.1 says on page 20, lines 28-29 “... appears outside of any block or list of parameters, the
identifier has file scope, ...”

It says on page 20, lines 30-31 “... appears inside a block or within the list of parameter declarations in a
function definition, the identifier has block scope, ...”

Now the above three identifiers appear outside of any block or list of parameters but they are within the list
of parameter declarations.

Who wins?

ISO JTC1/SC22/WG14

Question 2 Page 65 Defect Report #035

Response

The scope of m, q, and r ends at the close-brace (block scope). The operative wording is the more specific
statement on page 20, lines 30-31 “... appears inside a block or within the list of parameter declarations in
a function definition, the identifier has block scope, ...”

As an example, in the code fragment:

void g(c)

enum m{qg, r} c;

{

}

the scope of m, q, and r ends at the closing brace of the function definition (block scope).

ISO JTC1/SC22/WG14

Defect Report #036 Page 66 Question 1

Defect Report #036

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-040 (Fred Tydeman)

Question 1

May floating-point constants be represented with more precision than implied by its type? Consider the
following code fragment:

float £;
double d;
long double 1ld;
1d = 14 + 0.1; /* add a long double and a double */
1d = 1d + 1.0 / 10.0; /* expression with "same" value */
.d=£f + 0.1£; /* "+" is allowed to be double precision */

In the above example, the decimal number 0 . 1, when converted to binary, is a non-terminating repeating
binary number; so the more bits used to represent the number, the closer it will be to its true value. Hence,
if doubles are 64 bits and long doubles are 80 bits, the long double will be more accurate. So in
essence, may 0.1 (a double) be represented with more precision, e.g. as 0. 1L (a Long double)?

Parts of the C Standard that may help answer the question follow.
Subclause 5.1.2.3 Program execution, page 7, line 36:
In the abstract machine, all expressions are evaluated as specified by the semantics.

I believe that this is the “as if” rule that applies to this case.
Subclause 5.1.2.3 Program execution, page 7, lines 44-45:
Alternatively, an operation involving only ints or floats may be executed using
double-precision operations if neither range nor precision is lost thereby.
Clearly,d = £ + 0.1F may be done using a double-precision add. But may 0. 1 £ be represented as the
double 0.1?
Subclause 6.1.3.1 Floating constants, page 26, lines 32-35:

If the scaled value is in the range of representable values (for its type) the result is either the
nearest representable value, or the larger or smaller representable value immediately adjacent
to the nearest representable value, chosen in an implementation-defined manner.

1 believe that the above does not require that the result be the nearest representable value (for its type).
Subclause 6.2.1.5 Usual arithmetic conversions, page 35, lines 38-39:
The values of floating operands and of the results of floating expressions may be represented
in greater precision and range than that required by the type; the types are not changed thereby.

I believe that a floating constant is a floating operand, so is allowed greater precision. Clearly, the expression
1.0 / 10.0isallowed greater precision than just double, so it would make sense to allow an equivalent
constant (0 . 1) to have greater precision.

Subclause 6.4 Constant expressions, page 55, lines 14-16:
If a floating expression is evaluated in the translation environment, the arithmetic precision and
range shall be at least as great as if the expression were being evaluated in the execution
environment.

Response

The Committee concurs with all the arguments presented — a floating constant may be represented in more
precision than implied by its type.

ISO JTC1/SC22/WG14

Question 1 Page 67 Defect Report #037

Defect Report #037

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/91-043 (Isai Scheinberg)
Question 1

Subclause 5.2.1.2 Multibyte characters states:

The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters,
which need not have the same encoding as for the source character set. For both character sets,
the following shall hold:

— The single-byte characters defined in 5.2.1 shall be present.

— A byte with all bits zero shall not occur in the second or subsequent bytes of a multibyte character.
My interpretation (and all of the experts that I consulted with) of the first rule, is that the basic character set
(A-z, 0-9, etc.) shall be coded in one-byte code. All multibyte locales that I know (EUC variants, SJIS)
follow this rule. But I may still be wrong.

If the above is true, then both 10646 (other than CM 5) and UNICODE fail this rule and cannot be used as
multibyte characters. UNICODE also fails the second rule.

Response

The following answers apply (almost) equally to ISO 10646-1 and UNICODE. They are expressed in terms
of ISO 10646-1.

Clause 3, page 2, lines 18-24 and 40-42 define “byte,” “character,” and “multibyte character” as follows:
“Byte — a unit of data storage large enough to hold any member of the basic character set of the execution
environment... Character — a bit representation that fits in a byte. The representation of each member of
the basic character set in both the source and execution environments shall fit in a byte... Multibyte character

—asequence of one or more bytes representing a member of the extended character set of either the source
or the execution environment. The extended character set is a superset of the basic character set.”

Therefore, if ISO 10646-1 were used as a basic character set, then by definition a byte would have to be
large enough to hold each member of the ISO 10646-1 character set. Also by definition this would make
ISO 10646-1 a valid multibyte character set.

If a byte were only eight bits long, the following answer would hold. ISO 10646-1 represents, in a particular
byte order, the character * a’ for example as follows.

000 97
----- 16-bit version
--------- 32-bit version

This fails subclause 5.2.1.2, page 11, lines 30-32:

A byte with all bits zero shall be interpreted as a null character independent of shift state, A
byte with all bits zero shall not occur in the second or subsequent bytes of a multibyte character.

Therefore, 8-bit bytes preclude the use of ISO 10646-1 as a multibyte character set.

ISO JTC1/SC22/WG14

Defect Report #038 Page 68 Question 1

Defect Report #038

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-046 (Kuo-Wei Lee)

Question 1
Under subclause 6.8.3.1 Argument substitution, the C Standard states on page 90, lines 12-14:

Before being substituted, each argument’s preprocessing tokens are completely macro replaced
as if they form the rest of the translation unit; no other preprocessing tokens are available.

It is not clear to us what should happen if, after the first replacement, the argument is a valid preprocessing
number. Consider the following example:

#define X 0x000E

#define Y 0x0100

#define FFOO (a) a

FOO (X+Y)

After X is replaced, FOO (X+¥) becomes FOO (0x000E+Y) . At this point, should the macro replacement
continue and expand Y to be 0x0100 with the final result being FOO (0x000E+0x0100) ; or should the
expansion stop since 0x000E+Y is a syntactically valid preprocessing number?

In other words, should FOO (X+Y) be expanded into FOO (0x000E+0x0100), or should it be
FOO (0x000E+Y) ?

Response

Subclause 5.1.1.2, page 5, lines 32-39, points 3 and 4 indicate that translation must proceed as if all creation
of preprocessing tokens completes before any macro expansion begins. These are translation phases 3 and
4:

3. The source file is decomposed into preprocessing tokens and sequences of white-space characters
(including comments)...

4. Preprocessing directives are executed and macro invocations are expanded.

Therefore, if X+Y were expanded to 0x000E+Y, a new preprocessing number would not be created. The
macro expansion proceeds as follows.

FOO (X+Y) (6 tokens) --
FOO (0x000E+0x0100) (6 tokens) --
0x000E+0x0100 (3 tokens)

This sequence is required by subclause 6.8.3.1, page 90, lines 10-14:

A parameter in the replacement list ... is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing
tokens are completely macro replaced as if they formed the rest of the translation unit.

ISO JTC1/SC22/WG14

Question 1 Page 69 Defect Report #039

Defect Report #039

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-061 (Vania Joloboff)

Question 1

My interpretation of the Standard is that the value of MB_CUR_MAX must be one in the "C" locale. I infer
that from the fact that:

1) The characters in the "C" locale must be alphanumeric + space.
2) The isxxx functions specify character constant values for the "C" locale.

3) A character constant consists of one or more characters that are enclosed within apostrophes. A
character is regarded as having type char.

4) The data type char consists of one byte of storage.
However this clarification should be made explicit.

Response

Fact 3: We presume the second sentence was intended to be: “A character constant is regarded as having
type char,” in order to be applicable to this request. This is not true; a character constant is of type int.
Also facts 1-4 deal with the single byte chars and not the extended character set.

In any case, the facts as listed do not loglcally lead to the conclusion that MB_CUR _MAX must be one (1)
in the "C" locale. In fact, this conclusion is not true. It is possible for MB CUR MAX to be greater than
one in the "C" locale. In subclause 7.10, MB_CUR_MAX is the maximum number of bytes in a multibyte
character for the extended character set specified by the current locale. In subclause 7.4.1.1, the "C" locale
is the minimal environment for C translation. The minimal environment may still require more than one
byte for multibyte characters.

Question 2
I also would like to make a requirement that if the current locale is "C", the returned value by setlo-
cale(LC_ALL, NULL) be astring of length one, consisting of the single character C.
Currently the value of setlocale (LC_ALL, NULL) is unspecified for the "C" locale.
This makes it difficult to build libraries where you want to maintain the behavior pre-existing to interna-
tionalization for backward compatibility.
Typically you want to say in these programs:
if (*setlocale(LC_ALL, NULL) == ’C’)
<do the old thing>
else
<do the new thing>

Response

The Committee acknowledges that there exists no strictly portable method for determining whether the
current locale is the "C" locale. The request for this feature is neither an erratum nor a request for
interpretation; it is a request for an amendment. The Committee will perhaps support such an amendment
in the future.

ISO JTC1/SC22/WG14

Defect Report #040 Page 70 Question 1
Defect Report #040

Submission Date: 10 Dec 92
Submittor: WG14
Source; X3J11/91-062 (Derek M. Jones)
Question 1
Composite type
Rule for function parameter compatibility, subclause 6,7,1, page 82, lines 24-25:

void f(const int);
void £(int a)

In the above case what is the composite type of £? The legality of the assignment to a depends on the
answer.

int £(int al[4]);

int £(int a[5]);

The parameters are compatible becasue they are converted to pointer to ..., but what is the composite type?
Response

void f(const int);
void £(int a)

Question: What is the composite type of £?

Answer: void £ (int). Defect Report #013, Question 1 describes the correct manner for constructing
the composite type.

Question: Is the assignment valid?

Answer: Yes. The type of a parameter is independent of the composite type of the function, so the assignment
is valid (cf. subclause 6.7.1).

Question: Another example:
int £(int al[4]);
int £(int a[5]);
The parameters are compatible because they are converted to pointer to ..., but what is the composite type?
Answer: The response to the Defect Report mentioned above answers this question as well.

Question 2
Is an implementation that fails to equal (or exceed) the value of an environmental limit conforming?
Subclause 5.2.4 says that those in that subclause must be equalled in a conforming implementation. There
is no such wording for the Environmental Limits in the Library clause (subclauses 7.9.2, 7.9.3, 7.9.4.4,
7.9.5.5,7.10.2.1).
Correction
Add to subclause G.2, page 204, the following:
— A call to a library function exceeds an Environmental limit.

Question 3
Is an “Environmental Constraint” a constraint?

In subclause 7.6.1.1, page 118, lines 22-30, we have a set of environmental constraints on where set jmp
may occur.

Does violating these rules require a constraint error to be flagged, or is it undefined behavior?
Some examples:

ISO JTC1/SC22/WG14

Question 4 Page 71 Defect Report #040

i = setjmp(a):
if (setjmp(a) == i)

Response
Question: Subclause 7.6.1.1, must an implementation diagnose violations of Environmental Constraints?

Answer: Diagnostics are not required for constraint violations in clause 7, since a constraint as defined in
clause 3 applies to language elements described elsewhere.

Question 4
For the fragment
if (a<b]| |c>d)

Defect Report #017, Question 39 states that this is lexed as:
a) {if} {(} {a} <} (B} (11} {c} (>} {a" D))

not as:

b) {if} {(} {a} {<blle>} {d})]

The rationale for this interpretation was that the constraint in subclause 6.1.7, page 32, lines 33-34
disallowed a header name preprocessing token anywhere except within a #include. Since the header
name preprocessing token could not exist it was not lexed as such.

It was pointed out that the longest possible token rule was not influenced by rules elsewhere in the C
Standard, i.e. i+++++7 is lexed as:

©) {1} (++} (++]} {+]} (3}
not as:
d) (1} (++} (+]) (++} (3}

Now (c) is a constraint violation by subclause 6.3.2.4, page 42, lines 39-40, the operand of the second ++
is not a modifiable lvalue. But this constraint does not require that the input be re-lexed to form the
preprocessing tokens given in (d), which is conforming code.

As the UK C Panel saw it, the first example should be lexed as given in (b) and a diagnostic issued. Having
violated a constraint, we are now into undefined behavior. An implementation could define the behavior in
this circumstance to be a re-lex of the input to produce the preprocessing tokens given in (a).

As far as the user was concerned, they would get the expected behavior with the added value of a diagnostic
being issued.

All those present felt that the interpretation was incorrect and recommended that the UK ask X3J11 to
reconsider its decision.

To summarize, there is no ambiguity in the C Standard and the interpretation is incorrect.
Response
Question: Is a diagnostic required for an input such as

if (a<b] |c>d)
because of a violation of the constraint specified in subclause 6.1.7, page 33, line 8?
Answer: Defect Report #017, Question 39 addresses this issue.

Question 5

The constraint for subclause 6.5.2, page 59, lines 2-4: What does the C Standard “mean” when it says “set?”
Does it mean that the construct:
int:int .i;
violates a constraint?

It has been suggested that this wording was left vague to allow such constructs as long long (which is
supported by some compilers) to fall into the undefined behavior category.

Would X3J11 clarify the situation with regard to duplicate type specifiers? Do such constructs result in a
constraint error or undefined behavior?

ISO JTC1/SC22/WG14

Defect Report #040 Page 72 Question 6

The related case static static is explicitly ruled out by the constraints in the previous section.
Additionally, volatile volatile isruled out by the constraint in subclause 6.5.3.

Response
Question: Example:
int rint.d;
Must this be diagnosed?
Answer: Yes. It is allowed to rearrange the order of type specifiers within a set, but not to duplicate them
(cf. subclause 6.5.2). Thus int int is a constraint violation.
Question 6
The definition of the of£setof macro does not cover all its possible occurrences:
a) There are no restrictions on the struct being a completed type.
struct tl1 {
char ¢;
short s;
int i[offsetof(struct tl1l, s)];
}
When discussing the use of incomplete types, recourse usually has to be made to the rules relating to where
an object of unknown size may appear.
Would X3J11 agree that there are not any rules prohibiting the above construction?
b) In this struct we are asked to find the offset of a field that has not yet been encountered:
struct t2 { i
char c;
union {
int i[offsetof(struct t2, s)];
short s;
}ous
}i
Would X3J11 agree that there do not appear to be any rules that make this construct illegal?
c) The following struct has infinitely many “solutions:”

struct £3s5 {

char a[offsetof(struct t3, i)];

int i;

}
since char has size 1, any size of array will be the same as the of £setof the field i.
d) The following struct has no “solutions:”

struct t4 {
int a[offsetof(struct t3, i)];
int i;
}

int is always larger than 1.

Response

a) In the description of the o££setof macro, there appear to be no restrictions on the structure type
being a completed type. Example:

struct t1

char ¢;

short s;

int i[offsetof(struct tl1, s)];

}:

This is not a valid use of the of £set o £ macro. The hypothetical static type t; declaration required
for of£seto£ (cf. subclause 7.1.6) could not have validly appeared prior to the invocation of of£setof

ISO JTC1/SC22/WG14

Question 7 Page 73 Defect Report #040

because the type struct t1 is incomplete (cf. subclause 6.7.2), therefore the of£setof invocation is
not conforming.

b) The answer is the same as (a) above. In addition, the members mentioned in these invocations are not
in scope.
¢) The answer is the same as (a) above. In addition, the members mentioned in these invocations are not
in scope.
d) The answer is the same as (a) above. In addition, the members mentioned in these invocations are not
in scope.
Question 7
sizeof various identifiers
a)
void f(int c, char a[sizeof(c)]);
b)
intdid;
struct {
int i;
char a[sizeof(i)];
}:
Now the argument to sizeo£ must be an expression or a type.
In (a) is ¢ an expression? I think not becasue:
expression -> object -> has storage in execution envrionment
and c does not have storage allocated to it. So (a) violates a semantic “shall” and is undefined behavior.

Now in (b) the field i is obviously not an expression. But is it visible? Like the outer i, it has file scope.
However, it is in a different namespace. There are no rules for namespace resolution in the sizeof
subclause.

So is (b) legal or undefined behavior?

Response

a) With regard of the use of sizeof, consider this example:
void f£(int ¢, char a[sizeof(c)]);

The reference to ¢ is an expression because the identifier designates a function parameter (cf. subclause
6.5.4.3).
b) Another example:
int i;
struct {
in€ ade
char a[sizeof(i)];
};
In C, this is okay. Identifier name spaces (subclause 6.1.2.3) requires that i in the sizeof expression
refers to the external i, not the member.

Question 8
Subclause 6.1.2.5, page 22, lines 32-36:

a)

char ¢ = 7; /* implementation defined behavior, since 7 need not
be a member of the basic execution character set */

b)

c="'a’"; [* ok */

ct++; /* implementation defined */

c)

ISO JTC1/SC22/WG14

Defect Report #040 Page 74 Question 9
c="'1; [* ok */

ct+; /* ok? */

It has been suggested that the above constructs are not implementation defined.

Subclause 6.1.3.4, page 29, lines 30-33:

d)

d = "\07"; /* what is in the source/execution character set is
given in subclause 5.2.1. Anything else is an extension. *x/

e)

d="'§$";

It has been suggested that characters may be added to the basic source/execution character set without
implementation defined behavior being invoked. (I guess my position on this item can be deduced from the
text.)

Response

a) Subclause 6.1.2.5 says “An object declared as type char is large enough to store any member of the
basic execution character set... If other quantities are stored in a char object, the behavior is
implementation-defined: the values are treated as either signed or nonnegative integers.” Consider this
example:

char ¢ = 7;
The assignment ¢ = 7 is not implementation-defined because, from a reasonable reading of subclause

6.1.2.5, it is clear that the only implementation-defined behavior here is the signedness of the value of the
char object.

b) Another example:
c = 'a’;
c++;

The increment of c after assigning an “a’ to it is defined by the implementation because the numeric
encoding of * a’ is defined by the implementation. If a’ were equal to CHAR MAX, the increment could
even cause an overflow (cf. subclause 5.2.1).

¢) Another example:
c=11';
ct++;

The increment of c after assigning a 1 to it is not implementation-defined because the characters * 0
through * 9 are required to be a contiguous range (cf. subclause 5.2.1). Thus, the result is * 27 .

d) Another example:
d = "\07";
The value of the character constant * \07" is defined by the C Standard (cf. subclause 6.1.3.4, page 29,

line 10-14). The implementation-defined behavior of some escape sequences, described on page 29, lines
30-38, is clarified in the example on page 30, lines 8-14.

e) Another example:
d=r§";
If $ is in the execution character set, the value of * § is locale-specific and so must be defined by the
implementation (cf. subclause 5.2.1).
Question 9
re: UK request for interpretation cai027 (Defect Report #017, Question 27)
X3J11 refs: 90-056, 90-083

It has been pointed out, and the UK C panel agreed at its last meeting, that the request for interpretation was
unnecessary. The C Standard was clear and unambiguous as is.

To make matters worse, X3J11 appear to have given an interpretation that is the opposite of what the C
Standard says.

The UK would like to withrdaw this request for interpretation and ask X3J11 to reconsider their position.

ISO JTC1/SC22/WG14

Question 9 Page 75 Defect Report #040

Response
Question: We ask X3J11 to reconsider its answer to Defect report #017, Question 27.
Answer: We re-affirm the previous interpretation.

ISO JTC1/SC22/WG14

Defect Report #041 Page 76 Question 1

Defect Report #041

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/91-076 (Andrew Josey)

Question 1

Does the description in subclause 7.3.1 imply that the characters defined in subclause 5.2.1 are always
classified as implied by subclause 5.2.1 regardless of the locale specified?

In particular, do the characters * a’ through / z’ and * A’ through z* have to be classified as “lower case
and “upper case,” respectively, in every locale?

The specific lines needing interpretation are lines 20-21 in subclause 7.3.1.6 and lines 16-17 in subclause
7.3.1.10. The word “or” can be interpreted to require a superset of the characters specified as lower/upper
case in subclause 5.2.1 or to allow an implementation-defined set of characters (which might contain none
of the subclause 5.2.1 designated lower/upper case characters).

Response

Question: Does the description in subclause 7.3.1 imply that the characters defined in subclause 5.2.1 are
always classified as implied by subclause 5.2.1 regardless of the locale specified?

Answer: By subclause 7.3.1.6 The islowexr function, subclause 7.3.1.10 The isupper function) which
refer to lower- and upper-case letters, respectively, and by subclause 5.2.1: “Basic source and basic
execution character sets shall have at least ... upper-case letters of the English language” (with example) ...
“lower-case letters of the English language” (with example), and by subclause 5.2.1.2 “The single-byte
characters defined in subclause 5.2.1 shall be present” refers to multibyte characters. Therefore, yes, the
characters defined in subclause 5.2.1 are always classified as implied by subclause 5.2.1 regardless of the
locale specified.

Question: Do the characters * a’ through * z’,and * A’ through ’ ', have to be classified as “lower case”
and “upper case,” respectively, in every locale?

Answer: Yes, the characters a’ through * z’ ,and ’ A’ through ’ 2, have to be classified as “lower case”
and “upper case,” respectively, in every locale (following the citations above).

ISO JTC1/SC22/WG14

Question 1 Page 77 Defect Report #042

Defect Report #042

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/92-001 (Tom MacDonald)
Question 1
The description of memcpy in subclause 7.11.2.1 says:
void *memcpy(void *sl, const void *s2, size t n);

The memecpy function copies n characters from the object pointed to by s2 to the object pointed
to by s2. If copying takes place between objects that overlap, the behavior is undefined.

The definition of the term object in subclause 3.6 is:

Object — a region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one
or more bytes, the number, order, and encoding of which are either explicitly specified or
implementation-defined. When referenced, an object may be interpreted as having a particular
type.
Are the objects in the description of memcpy the largest objects into which the arguments can be construed
as pointing?
In particular, is the behavior of the call of memcpy in Example 1 defined:
void £1(void) ({
extern char a[2] [N];
memcpy(a[1], a[0], N);
}

because the arguments point into the disjoint array objects, a [1] and a [0] ? Or is the behavior undefined
because the arguments both point into the same array object, a?

Response :

From subclause 3, an object is “a region of data storage ...” “Except for bit-fields, objects are composed of
contiguous sequences of one or more bytes, the number, order, and encoding of which are either explicitly
specified or implementation- defined ...” From subclause 7.11.1, “the header <string.h> declares one
type and several functions, and defines one macro useful for manipulating arrays of character type and other
objects treated as arrays of character type.” “Various methods are used for determining the lengths of the
arrays...” From subclause 7.11.2.1, description of memcpy: “if copying takes place between objects that
overlap, the behavior is undefined.” Therefore, the “objects” referred to by subclause 7.11.2.1 are exactly
the regions of data storage pointed to by the pointers and dynamically determined to be of N bytes in length
(i.e. treated as an array of N elements of character type).

a) So, no, the objects are not “the largest objects into which the arguments can be construed as pointing.”
b) In Example 1, the call to memcpy has defined behavior.
¢) The behavior is defined because the pointers point into different (non-overlapping) objects.

Question 2

For the purposes of the description of memepy, can a contiguous sequence of elements within an array be
regarded as an object in its own right? If so, are the objects in the description of memcpy the smallest
contiguous sequences of bytes that can be construed as the objects into which the arguments point?
In Example 2:
void £2(void) {

extern char b[2*N];

memcpy (b+N, b, N);

}

can each of the first and last half of array b be regarded as an object in its own right, so that the behavior
of the call of memcpy is defined? (Although they are not declared as separate objects, each half does seem
to satisfy the definition of object quoted above.) Or is the behavior undefined, since both arguments point
into the same array object b?

ISO JTC1/SC22/WG14

Defect Report #042 Page 78 Question 3

In Example 3:
void £3(void) {
void *p = malloc(2*N); /* Allocate an object. */
{
char (*q) [N] = p; /* The object pointed to by p may
be interpreted as having type
(char [2][N]) when referenced
through q. */

[ENE Tk

memcpy (q[1], q[0], N);

PAG S 4

}

{

char *r = p; /* The object pointed to by p may
be interpreted as having type
(char [2] [N]) when referenced
through r. */

Ve i L

memcpy (r+N, r, N);

ixaod gk /.

}

}

the types of the objects are inferred from the pointers, and the underlying storage is dynamically allocated.
Is the behavior of each call of memepy defined?

Since the relationship between the values of the arguments presented to memcpy is the same in all the above

calls, it seems reasonable to expect that either all these cals of memcpy give defined behavior, or none do.

But which is it?

Response

a) Yes, for memcpy, a contiguous sequence of elements within an array can be regarded as an object in
its own right.

b) The objects are not the smallest contiguous sequence of bytes that can be construed; they are exactly
the regions of data storage starting at the pointer and of N bytes in length.

¢) Yes, the non-overlapping halves of array b can be regarded as objects in their own rights.
d) The behavior (in Example 2) is defined.

e) The definition of object is independent of the method of storage allocation. The array length is
determined by “various methods.” So, yes, the behavior of each call of memcpy is well-defined.

f) All of the calls of memepy (in Example 3) give defined behavior.

Question 3

Similar questions arise for the other library string handling functions that have undefined behavior when
copying between overlapping objects. These include strcpy, strncpy, strcat, strncat,
strxfrm, mbstowcs, westombs, strftime, vsprintf, sscanf, and sprint£. For these
functions, however, the number of bytes referenced through each pointer depends, at least in part, upon the
values stored in the bytes.
Consider a library function for which the number of bytes accessed or modified is affected by the values of
the bytes. Is the object associated with each of its pointer arguments the smallest contiguous sequence of
bytes actually accessed or modified through that pointer?
In Example 4:
void £4(void) {

extern char b[2*N];

strcpy(b+n, b);

}

is the behavior defined if N > strlen (b)?

ISO JTC1/SC22/WG14

Question 3 Page 79 Defect Report #042

In Example 5:

void £5(wvoid) {
extern char c[2*N];
strcat (c+n, c):;

}
is the behavior defined if both N > strlen(c) andN > strlen(c) + strlen(c+N)?

Response

Lengthis determined by “various methods.” For strings in which all elements are accessed, length is inferred
by null-byte termination. For mbstowcs, westombs, strftime, vsprintf, sscanf, sprintf
and all other similar functions, it was the intent of the C Standard that the rules in subclause 7.11.1 be
applicable by extension (i.e., the objects and lengths are similarly dynamically determined). The behavior
(in Examples 4 and 5) is defined.

ISO JTC1/SC22/WG14

Defect Report #043 Page 80 Question 1

Defect Report #043

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/92-004 (Robert Paul Corbett)
Question 1

Defining NULL

Subclause 7.1.5 defines NULL to be a macro “ which expands to an implementation-defined null pointer
constant.” Subclause 6.2.2.3 defines a null pointer constant to be “an integral constant expression with the
value 0, or such an expression cast to type void *.” The expression 4-4 is an integral constant expression
with the value 0. Therefore, Standard C appears to permit

#define NULL 4 - 4

as one of the ways NULL can be defined in the standard headers. By allowing such a definition, Standard
C forces programmers to parenthesize NULL in several contexts if they wish to ensure portability. For
example, when NULL is cast to a pointer type, NULL must be parenthesized in the cast expression.

At least one book about Standard C suggests defining NULL as

#define NULL (void *) 0

That definition leads to a subtler version of the problem described above. Consider the expression
NULL [p], where p is an array of pointers. The expression expands to (void) 0 [p] which is equivalent
to (void *) (p[0]).Idoubt many users would expect such a result.

Have I correctly understood Standard C’s requirements regarding NULL? If not, what are those require-
ments?

Correction
Add to subclause 7.1.2, page 96, the following:

Any invocation of a macro described in this clause shall expand to code that is fully protected by parentheses
where necessary, so that it groups in an arbitrary expression as if it were a single identifier.

Question 2

Subclause 7.1.2.1 implies that an identifier that begins with an underscore cannot be defined as a macro
name in any source file that includes at least one standard header. Foomote 91 emphasizes this restriction.
Nonetheless, there are texts on Standard C that imply that such macro definitions are allowed.

The first paragraph of subclause 7.1.2.1 states that each header optionally declares or defines identifiers
which are always reserved either for any use or for use as file scope identifiers. The second bullet item
states, “All identifiers that begin with an underscore are always reserved for use as identifiers with file scope
in both the ordinary identifier and tag name spaces.” The final sentence states, “If the program declares or
defines an identifier with the same name as an identifier reserved in that context (other than as allowed by
subclause 7.1.6), the behavior is undefined.” Taken together, these statements imply that an identifier that
starts with an underscore cannot be defined as a macro in a source file that includes at least one of the
standard headers.

Can an identifier that starts with an underscore be defined as a macro in a source file that includes at least
one standard header?

Response

Question: Can an identifier that starts with an underscore be defined as a macro in a strictly conforming
source file that includes at least one standard header?

Answer: No. See subclause 7.1.3 and Footnote 91.

ISO JTC1/SC22/WG14

Question 1 Page 81 Defect Report #044
Defect Report #044

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/92-010 (Steve M. Hoxey)

Question 1
Subclause 7.1.6, page 98, lines 24-30 describe the macro
offsetof (type, member desigmator)
“which expands to an integral constant expression that has type size_t,.."
How is this statement to be interpreted? The expansion of the macro of£setof is
a) anexpression which can be evaluated during translation, the value of which is in the range representable
by asize_ t type.
Or

b) an expression as (a) above, but further constrained to be an “integral constant expression” as defined
in subclause 6.4, page 55, lines 17-21.

Response
Question: Subclause 7.1.6, page 98, lines 24-30 describe the macro
offsetof (type, member designator)

“which expands to an mtegral constant expression that has type size t,...” How is this statement to be
interpreted? Is the expansion of the macro offsetof

a) anexpression which can be evaluated during translation, the value of which is in the range representable
byasize_t type?

Or

b) an expression as (a) above, but further constrained to be an “integral constant expression” as defined
in subclause 6.4, lines 17-21? :

Answer: The specification you cited is to be taken literally. Your alternative (b) is correct.

Further clarification proposed by David Prosser [These were circulated by email, with no objections
received, but were not incorporated in the response, because of procedural issues.]:

Although the replacement for the of £setof macro must be an integral constant expression, and must
follow all the constraints appropriate to expressions, an implementation is permitted to make use of its
extensions to constant expressions that behave like integral constant expressions. This is why the sample
replacement expressions for the offsetof macro in the Rationale are valid candidates (for many
implementations) but do not come under the strict definition of integral constant expression that strictly
conforming code must follow. In particular, this is why the o£ £setof macro exists: there was otherwise
no portable means to compute such translation-time constants. Therefore, of the two choices, (b) is the
closest, but it is not the whole story.

A later response developed by X3J11 answers all questions in Defect Report with the same response:

Neither alternative (a) nor (b) in Question 1 fully captures the intent. What is intended is exactly what is
specified in the C Standard. A strictly conforming program shall not produce output that varies depending
upon details of implementation of facilities defined by the standard headers. Hence, use of the of £setof
macro, in a context requiring an integer constant expression, per se does not render a program not strictly
conforming.

Question 2

Subclause 5.1.1.1, page 5, lines 11-20 define a “translation unit” to be equivalent to the sequence of
preprocessing tokens and white-space characters which exists at the end of translation phase 4 (subclause
5.1.1.2). Later in translation phases 5, 6, 7, these preprocessing tokens are converted to tokens and
syntactically and semantically analyzed and translated.

Therefore, must a conforming implementation provide strictly conforming expansions of macros defined
by the standard headers, such that any use of the resulting preprocessing token sequence, and ultimately the

ISO JTC1/SC22/WG14

Defect Report #044 Page 82 Question 3

token sequence, beyond phase 4 does not alter the behavior of an otherwise strictly conforming program?
See also clause 4 Compliance, page 4, lines 24-26.

Response

Question: Must a conforming implementation provide strictly conforming expansion of macros defined by
the standard headers, such that any use of the resulting preprocessing token sequence, and ultimately the
token sequence, beyond phase 4 does not alter the behavior of an otherwise strictly conforming program?
(See also subclause 4, page 3, lines 38-40).

Answer: A conforming implementation need not provide strictly conforming expansion of macros defined
by the standard headers.

A later response developed by X3J11 answers all questions in Defect Report with the same response:

Neither alternative (a) nor (b) in Question 1 fully captures the intent. What is intended is exactly what is
specified in the C Standard. A strictly conforming program shall not produce output that varies depending
upon details of implementation of facilities defined by the standard headers. Hence, use of the offsetof
macro, in a context requiring an integer constant expression, per se does not render a program not strictly
conforming.

Question 3
Assuming (b) is the correct interpretation of Question 1, if a particular implementation expands o £ £set o f
into an expression which contains operands and/or operators which resilt in a violation of the definition of
“integral constant expression” from subclause 6.4, page 55, lines 17-21, does this situation constitute

a) aconstraint violation since the expansion presented for further translation is not an “integer constant
expression?”’

or

b) undefined behavior since the definition of “integral constant expression” appears a a “shall”
requirement in the semantic description of subclause 6.4 Constant expressions?

Response

Neither alternative (a) nor (b) in Question 1 fully captures the intent. What is intended is exactly what is
specified in the C Standard. A strictly conforming program shall not produce output that varies depending
upon details of implementation of facilities defined by the standard headers. Hence, use of the offsetof
macro, in a context requiring an integer constant expression, per se does not render a program not strictly
conforming,

Question 4
Assuming (b) is the correct interpretation of Question 3, if within a translation unit at a point where an
“integer constant expression” is required to satisfy a language constraint, — such as to specify the size of
a bit-field member of a structure, the value of an enumeration constant, the size of an array, or the value of
a case constant — does the use of the macro of£setof£ constitute:

a) aconstraint violation?
or
b) the use of undefined behavior, which renders the translation unit to be not strictly conforming?

Response
Neither alternative (a) nor (b) in Question 1 fully captures the intent. What is intended is exactly what is
specified in the C Standard. A strictly conforming program shall not produce output that varies depending
upon details of implementation of facilities defined by the standard headers. Hence, use of the offsetof
macro, in a context requiring an integer constant expression, per se does not render a program not strictly
conforming,

Question 5
Revisiting (b) as the correct interpretation of Question 1, it seems the only possibility for a definition of the
macro of £setof constitutes use of an identifier from the reserved name space to define a builtin which
interrogates the translator’s symbol table in a fashion analogous to the sizeof operator. Further, this
builtin must appear syntactically as a keyword rather than an identifier to avoid the constraint violation of
subclause 6.4, page 55, line 9, which invalidates the use of what appears to be a function call within that
which is otherwise required to be a constant expression.

ISO JTC1/SC22/WG14

Question § Page 83 Defect Report #044

Further, that implementing an expansion for of £setof as described in the previous paragraph would
violate the implementation constraint outlined in Question 2 above, since the expansion would inject
preprocessing tokens requiring recognition of a keyword outside the scope of a strictly conforming program.

In any case, the implication is that the fragment:

#include <stddef.h> static struct x {int fieldl, field2; } s;
enum fields {F0, F1, F2 = offsetof(struct x,field2), F3 }:;

is either rendered not strictly conforming or the implementation is rendered a nonconforming implementa-
tion.

Alternatively, if the answer to Question 2 above is no, then the following questions are raised:

Since translation phases 1 through 4 may introduce into the translation unit token sequences which are not
strictly conforming, what mechanism exists, if any, to determine whether such sequences originated from
the program source?

How is one to interpret the meaning of “strictly conforming program” from clause 4, page 3, lines 38-40,
given that subclause 5.1.1.1, page 5, lines 12-15 define the translation unit to be “A source file together
with all the headers and source files included via the preprocessing directive #include, less any source
lines skipped by any of the conditional inclusion preprocessing directives?”

It seems that any program which makes use of the macro offsetof£ in the context of a constraint
requirement mandating an “integer constant expression” will require use of unspecified, undefined, or
implementation-defined behavior.

Near as I can tell, of £setof is the only macro defined by the C Standard which can alter the behavior of
a strictly conforming program as a consequence of its own definition.

Response :

Neither alternative (a) nor (b) in Question 1 fully captures the intent. What is intended is exactly what is
specified in the C Standard. A strictly conforming program shall not produce output that varies depending
upon details of implementation of facilities defined by the standard headers. Hence, use of the offsetof

macro, in a context requiring an integer constant expression, per se does not render a program not strictly
conforming,.

ISO JTC1/SC22/WG14

Defect Report #045 Page 84 Question 1

Defect Report #045

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/92-036 (David J. Hendricksen)
Question 1
Under subclause 7.9.5.4 The £reopen function, the C Standard states on page 130, lines 25-29:

The £reopen function opens the file whose name is the string pointed to by £ilename and
associates the stream pointed to by st ream with it. The mode argument is used just as in the
fopen function.

The freopen function first attempts to close any file that is associated with the specified
stream. Failure to close the file successfully is ignored. The error and end-of-file indicators for
the stream are cleared.

It is not clear whether the following situations have defined behavior:

1) Calling freopen where st ream points to uninitialized storage. For example:
{ FILE a, *b;
b = freopen("c.d", "r", &a);
}

(It may not be possible to detect that the information contained within a is not valid when the
close for £reopen is attempted.)

2) Calling freopen where st ream is associated with a previously closed file. (The storage pointed to
by st ream may have been deallocated.)

Response

The behavior is undefined in both cases; case (2) is clear from subclause 7.9.3 Files, page 126, lines 24-27,
“A file may be disassociated from a controlling stream by closing the file... The value of a pointer to a
FILE object is indeterminate after the associated file is closed (including the standard text streams).” Also
subclause 7.9.3 Files, page 126, lines 2-3 and lines 37-39, “A stream is associated with an external file...
by opening a file, ... At program startup, three text streams are predefined and need not be opened
explicitly...” Also subclause 7.9.5.3 The £fopen function, and subclause 7.9.5.4 The £reopen function:
“The ... function opens the file ... and associates a stream with it...” Thus when subclause 7.9.5.4 says “The
freopen function ... associates the stream pointed to by st ream with it,” the intention is certainly that
stream already points to a valid stream. Extending this to case (1), we observe that a (or &a) might not
refer to a stream, since none has been “associated” by any means specified in the C Standard.

[There was some discussion about whether a clarifying footnote should be added to the descripton of the
freopen function (subclause 7.9.5.4). This was not desired because that would change the response
category from Record of Response to Technical Corrigendum.]

ISO JTC1/SC22/WG14

Question 1 Page 85 Defect Report #046

Defect Report #046

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/92-041 (Neal Weidenhofer)

Question 1
In subclause 6.7.1, page 82, line 9, it says, “An identifier declared as a typedef name shall not be redeclared
as a parameter.”
The question I have is: Does that sentence stand by itself absolutely or is it intended to be read in the context
of the paragraph in which it appears?
The beginning of the paragraph says, “If the declarator includes an identifier list, ...” Function declarators
including a parameter type list are dealt with in the preceding paragraph which says nothing about typedef
names.
In other words, is the following valid Standard C:

typedef int foo;
int bar(int foo) {return foo; }

Response

Question: In subclause 6.7.1, on page 82, line 9 it says, “An identifier declared as a typedef name shall not
be redeclared as a parameter.”

The question I have is: Does that sentence stand by itself absolutely or is it intended to be read in the context
of the paragraph in which it appears?

The beginning of the paragraph says, “If the declarator includes an identifier list, ...” Function declarators
including a parameter type list are dealt with in the preceding paragraph which says nothing about typedef
names.

In other words, is the following valid Standard C:

typedef int foo;
int bar(int foo) {return foo; }

Answer: The sentence is a part of the paragraph in which it appears. An identifier declared as a typedef
name may be redeclared as a parameter in a parameter type list. The example is valid Standard C.

ISO JTC1/SC22/WG14

Defect Report #047 Page 86 Question 1

Defect Report #047

Submission Date: 10 Dec 92
Submittor: WG14
Source: X3J11/92-040 (Randall Meyers)

Question 1
Are the following declarations strictly conforming?
/* 1 */ struct S;

/* 2 %/ struct S *f(struct S *p) {return p; }
/* 3 %/ struct S *g(struct S a[]) {return a; }
/* 4 %/ int *h(int a2[][]) {return *a2; }

/* 5 %/ extern struct S esl;

/* 6 %/ extern struct S es2[1];

The declaration of struct tag S introduces an incomplete type (subclause 6.5.2.3, page 62, lines 25-29) that
may only be used when the size of the type is not needed.

The function £ therefore is a fairly common and non-controversial use of an incomplete pointer type by a
function. It is strictly conforming.

The function g is more interesting. A parameter of type array is adjusted to pointer type (subclause 6.7.1,
page 82, lines 23-26). (Note that is an adjustment of the type of the parameter definition. It is not a
conversion, as is what happens when an argument of type array is passed to a function.) Thus, the type of
parameter a is pointer to struct S. This would seem to make the functiong the same case as function £.
However, subclause 6.1.2.5, page 23, lines 23-24 (also Footnote 17) disallow array types from having an
incomplete element type (like struct S). This raises the question, is functiong strictly conforming because
the type of a is really pointer, or is function g not strictly conforming because a had an invalid array type
before the compiler in effect rewrote the declaration?

The function h is similar to function g. The type of a2 after adjustment is pointer to array of unknown size
of int, which does not violate any rules. However, before adjustment, the type of a2 is illegal because it
is an array whose element type is array of unknown size, which is an incomplete type.

In previous Committee discussion that occurred during the discussion of Defect Report #017, Question 10,
the Committee took the position that a declaration like that of es1 was strictly conforming, since the size
of es1 is not needed for an external reference, and thus was similar to the cases described in Footnote 63
in subclause 6.5.2.3 on page 62.

The declaration of es2 also does not require its size to be known. However, it appears that the rule from
subclause 6.1.2.5, page 23, lines 23-24 that prohibits an incomplete array element type makes es2 not
strictly conforming,

Response
First of all, no constraints are violated. Therefore, no diagnostics are required.

Declarations 1, 2, and 5 are strictly conforming. Declarations 3, 4, and 6 are not, and therefore cause
undefined behavior.

The struct S is an incomplete type (subclause 6.5.2.3, page 62, lines 25-28). Also, an array of unknown size
is an incomplete type (subclause 6.5.4.2, page 67, lines 9-10). Therefore, arrays of either of the above are
not strictly conforming (page 23). This makes declarations 3, 4, and 6 not strictly conforming. (But an
implementation could get it right.)

As an aside, array parameters are adjusted to pointer type (subclause 6.7.1, page 82, lines 23-24). However,
there is nothing to suggest that a not-strictly-conforming array type can magically be transformed into a
strictly conforming pointer parameter via this rule.

The types in question can be interpreted two different ways. (Array to pointer conversion can happen as
soon as possible or as late as possible.) Hence a program that uses such a form has undefined behavior.

ISO JTC1/SC22/WG14

Question 1 Page 87 Defect Report #048

Defect Report #048

Submission Date: 10 Dec 92

Submittor: WG14

Source: X3J11/92-043 (David F. Prosser)
Question 1

This Defect Report requests a clarification regarding the valid interpretations of the abort function,
especially when the implementation must also match the requirements of POSIX.1 (ISO/IEC 9945-1:1990).

The C Standard states (subclause 7.10.4.1, page 155):

The abort function causes abnormal termination to occur, unless the signal SIGABRT is being
caught and the signal handler does not return. Whether open output streams are flushed or open
streams closed or temporary files removed is implementation-dependent. An
implementation-defined form of the status “unsuccessful termination” is returned to the host
environment by means of the function call raise (SIGABRT).

and (subclause 7.10.4.3, page 156):

The exit function causes normal program termination to occur.

and (subclause 7.10.4.1, page 101 [Rationale]):

The Committee vacillated over whether a call to abort should return if the signal SIGABRT
is caught or ignored. To minimize astonishment, the final decision was that abort never
returns.

The POSIX.1 Standard states (subclause 3.2, page 46):
There are two kinds of process termination:

(1) “Normal termination” occurs by areturn frommasin () or whenrequested with the exit ()
function.

(2) “Abnormal termination” occurs when requested by the abort () function or when some
signals are received (see 3.3.1).

The exit () and abort () functions shall be as described in the C Standard (2). Both
exit () and abort () shall terminate a process with the consequences specified in 3.2.2,
except that the status made available to wait () or waitpid () by abort () shall be that
of a process terminated by the SIGABRT signal.

and (subclause 8.2.3.12, page 161):

The exit () function shall have the effect of £close () as described above. The abort ()
function shall also have these effects if the call to abort () causes process termination, but
shall have no effect on streams otherwise. The C Standard (2) specifies the conditions where
abort () does or does not cause process termination. For the purposes of that specification,
a signal that is blocked shall not be considered caught.

and (subclause B.8.2.3.12, page 291 [Rationale]):

POSIX.1 intends that processing related to the aboxt () function will occur unless “the signal
SIGABRT is being caught, and the signal handler does not return,” as defined by the C Standard
(2). This processing includes at least the effect of £close () on all open streams, and the
default actions for SIGABRT.

The abort () functions will override blocking or ignoring the SIGABRT signal. Catching the
signal is intended to provide the application writer with a portable means to abort processing,
free from possible interference from any implementation-provided library functions.

Note that the term “program termination” in the C Standard (2) is equivalent to “process
termination” in POSIX.1.

The above quotes make it clear that the POSIX. 1 Standard intends to have the abort function implementation
be roughly the following:

1. Inquire about SIGABRT handling.

ISO JTC1/SC22/WG14

Defect Report #048 Page 88 Question 1

2. If currently blocked, unlock SIGABRT.

3. Ifcurrently SIG_IGN, reset SIGABRT to SIG_DFL.

4, If currently SIG_DFL, flush all open output streams.

5. raise(SIGABRT).

6. Reset SIGABRT to SIG_DFL (handler must have returned).
7. Gotostep 5.

As far as the C Standard is concerned, step 2 is outside its scope, so it can be part of a valid implementation.
(The effects cannot be noticed by a strictly conforming program.) Step 4 is clearly permitted as well. It is
step 3 and the loop that are the key of this Defect Report. (Note that step 3 could have been skipped above
as it would be handled by the 5-6-7 loop, but I've left it explicit for clarity.)

The special case in the C Standard regarding SIGABRT handlers that don’t return is intended to keep the
implementation straightforward. (It is, in general, difficult to determine whether a handler will return
without calling it!) The POSIX.1 Standard has understood the C Standard to require, in effect, an
implementation to force an uncaught SIGABRT to terminate the program. But, is this actually the C
Standard’s intent? The Rationale quote can certainly be taken to indicate that catching and ignoring
SIGABRT are in the same category.

Does the C Standard either permit or require an implementation to reset an ignored SIGABRT t0 SIG_DFL?
Or, does the C Standard permit or require a call similar to exit (EXIT FAILURE)? s the distinction
between abnormal termination and unsuccessful normal termination beyond the scope of the C Standard?
(After all, how can it be tested?) And, finally, can a portable application find any utility in setting SIGABRT
to SIG_IGN?

Response

Question: Does the C Standard either permit or require an implementation to reset an ignored SIGABRT to
SIG DFL?

Answer: Yes, it permits it. There is no way to detect such a change in a strictly conforming program.
Question: Or, does the C Standard permit or require a call similar to exit (EXIT_FAILURE)?
Answer: No. Abnormal termination does not allow calls to the atexit-registered functions.

Question: Is the distinction between abnormal termination and unsuccessful normal termination beyond the
scope of the C Standard? (After all, how can it be tested?)

Answer: No. See above.

Question: And, finally, can a portable application find any utility in setting SIGABRT (0 SIG_IGN?
Answer: Not within the context of abort.

X3J11 noted that therefore there is no clash between Standard C and POSIX.1.

ISO JTC1/SC22/WG14

Question 1 Page 89 Defect Report #049
Defect Report #049

Submission Date: 10 Jan 93
Submittor: Project Editor (P.J. Plauger)
Source: David Metsky

Question 1

It has been suggested that, at least in the "C™ locale, the transformed string output from st rx£rm will not
contain more characters than the original string. I believe that this suggestion is overly-restrictive, and that
the standard does not impose such a restriction on implementations. I am requesting a clarification from the
appropriate standards committee(s). I hope that you will agree with the following resolution:

The C Standard does not impose a requirement upon the length of the transformed string output
from strxfrm. (The returned value does indicate the necessary length.)

Here are some citations from the C Standard:

Subclause 7.4.1.1 The setlocale function:

LC_COLLATE affects the behavior of the strcoll and strxfrm functions... A value of
wC for locale specifies the minimal environment for C translation... At program startup,
the equivalent of

setlocale (LC_ALL, "Cv);
is executed.

Subclause 7.11.4.3 The strxcoll function:
The strcoll function compares the string pointed to by s1 to the string pointed to by s2,
both interpreted as appropriate to the LC_COLLATE category of the current locale.
Subclause 7.11.4.5 The st rx£frm function:

The transformation is such that if the st rcmp function is applied to two transformed strings, it returns a
value greater than, equal to, or less than zero, corresponding to the result of the strcoll function applied to
the same two original strings... The st rx£frm function returns the length of the transformed string (not
including the terminating null character). If the value returned is n or more, the contents of the array pointed
to by s1 are indeterminate.

I haven’t located any requirement that the "C" locale behavior of st rcol1 must be identical to st rcmp.
Even if there were such a requirement, I haven’t located any requirement that the transformed string must
not be longer than the original string.

Response

We support your resolution:

The C Standard does not impose a requirement upon the length of the transformed string output from
strxfrm, other than a limitation on the size of objects. (The returned value does indicate the necessary

length.)

ISO JTC1/SC22/WG14

Defect Report #050 Page 90 Question 1
Defect Report #050

Submission Date: 24 Feb 93
Submittor: Project Editor (P.J. Plauger)
Source: C. Breeus

Question 1

Subclause 6.1.3.4 says that the type of a wide character constant is wehaz_t, and subclause 6.1.4 says the
type of a wide character string is array of wchar_t.

Subclause 7.1.6 says the typedef name wchar_t must be defined in <stddef .h>.
Question: When a compiler sees a literal of the form L’ . . .7 or L". . . " must it not check that
1) The name wchar_t is visible at that place.

2) The name is a typedef name. It could be redefined in an inner scope.
3) Itis atypedef for an integral type. Again, it could be redefined.

And then, take that integral type as the meaning of wchar_t. Isuppose it cannot just hope for the best and
take a type that makes it feel good.

Response
A similar issue was explamed in response to Defect Report #017, Question 7, regarding size_t. The
relevant citation here is from subclause 6.1.3.4, page 29, lines 36-37:

A wide character constant has type wchar_t, an integral type defined in the <stddef.h>
header.

The intent of this sentence is to note that a wide character constant has an integral type. That mtegral type
is the same integral type used to define wechar_t in the header <stddef . h>. The sentence imposes no
requirement that this particular definition of wchar t be in scope wherever you write a wide character
constant, It certamly does not suggest that the transfator should honor any other definition of wchar t
that may be in scope, as the type for a wide character constant.

Rather, the sentence suggests that the translator knows what integral type to assign to a wide character
constant. The implementation further knows to define wchaxr_t within the header <stdde£ . h>ashaving
that same integral type. Thus, the program has a way of obtaining a name for this type, if it chooses — by
including the header <stddef£ . h>. But it need not invoke that mechanism just to assist the translator.

It is an unfortunate, but widespread, practice within the C Standard to use abbreviated language for
describing some types. Thus, subclause 6.1.4, page 31, lines 5-6 say:

for wide string literals, the array elements have type wchar_t,...
instead of the more long winded (but clearer):

for wide string literals, the array elements have the same type used to define wchar_t in the
header <stddef.h>,.

We feel the usage is sufficwntly uniform that the meaning intended by committee X3J11 is sufficiently
clear, even as we acknowledge that the words can be (and have been) misread.

So to put the matter crassly, the translator does “just hope for the best and take a type that makes it feel
good,” as you conjectured.

ISO JTC1/SC22/WG14

Question 1 Page 91 Defect Report #051

Defect Report #051

Submission Date: 08 Mar 93
Submittor: Project Editor (P.J. Plauger)
Source: Andrew R. Koenig

Question 1
I'll give you the short form first. I can haul out lots of related material if it becomes necessary, but perhaps
the bare question is enough. Is the following program strictly conforming (modulo typographical errors)?
#include <malloc.h>

struct A {
char x[1];
}:

main ()
{
struct A *p = (struct A *) malloc(sizeof(struct A) + 100);
p—>x[5] = '?'; /* This is the key line */
return 0;

}

If I remember correctly from reading the C Standard, pointer arithmetic is illegal if it results in an address
outside the object to which the original pointer refers. The question here is essentially whether the “object”
is all the memory returned by malloc or the single char denoted by p->x.

1 do not believe there is any language in the C Standard that clearly answers this question. I understand that

this particular programming technique is quite common, but that is more likely to affect whether a program
is “conforming” than whether it is “strictly conforming.”

Response

Subclause 6.3.2.1 describes limitations on pointer arithmetic, in connection with array subscripting.
Basically, it permits an implementation to tailor how it represents pointers to the size of the objects they
point at. Thus, the expression p->x [5] may fail to designate the expected byte, even though themalloc
call ensures that the byte is present. The idiom, while common, is not strictly conforming.

A safer idiom is:

#include <malloc.h>

fdefine HUGE_ARR 10000 /* largest desired array */

struct A {
char x[HUGE ARR];
}:

main ()
{
struct A *p = (struct A *) malloc(sizeof(struct A)
- HUGE_ARR + 100); /* want x[100] this time */
p->x[5] = '?’; /* now strictly conforming */
return 0;

}

ISO JTC1/SC22/WG14

Defect Report #052 Page 92 Question 1

Defect Report #052

Submission Date: 21 Mar 93
Submittor: Project Editor (P.J. Plauger)
Source: Paul Edwards

Question 1
In subclause 7.12.2.3, page 172, the example is not strictly conforming. The mkt ime return is compared
against -1 instead of (time t) -1, which could cause a problem with a strictly conforming implemen-
tation.

Correction
Change subclause 7.12.2.3, page 172, line 16, from:

if (mktime (&'I:ime__str) = -1)
to:

if (mktime (&time str) == (time t)-1)

Question 2

Index entry for static lists subclause 3.1.2.2 instead of subclause 6.1.2.2.
Correction

Change index entry, page 217, from:
static storage-class specifier, 3.1.2.2, 6.1.2.4, 6.5.1, 6.7
to:
static storage-class specifier, 6.1.2.2, 6.1.2.4, 6.5.1, 6.7
Question 3
Footnote 1, page 1, says that the C Standard comes with a Rationale, it doesn’t.
Response

The footnote actually states, in part, “It is accompanied by a Rationale document that explains ...” And
indeed, the C Standard was accompanied by such a document throughout its approval process. ISO,
unfortunately, has elected not to distribute the Rationale with the C Standard. “Accompanied by” does not
promise “comes with” when you buy the C Standard.

ISO JTC1/SC22/WG14

Question 1 Page 93 Defect Report #053

Defect Report #053

Submission Date: 25 Mar 93
Submittor: Project Editor (P.J. Paauger)
Source: Larry Jones

Question 1

There’s been a discussion on comp . std . ¢ recently about accessing a piinter to a function with parameter
type information through a pointer to a pointer to a function without parameter type information. For
example:

int £(int);

int (*£fpl) (int);

int (*£p2) (),

int (**£pp) ()

fpl = £;

fp2 = fpl; /* pointers to compatible types, assignment ok */
(*£p2) (3); /* function types are compatible, call is ok */
fpp = &fpl; /* pointer to compatible types, assignment ok */

(**£pp) (3) ; /* valid? */
The final call itself should be valid since the resulting function type is compatible with the type of the
function being called, but there’s still a problem: Subclause 6.3 Expressions, page 38, says:

An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:36

— the declared type of the object,
— a qualified version of the declared type of the object,
— a type that is the signed or unsigned type corresponding to the declared type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— acharacter type.

[Footnote 36: The intent of this list is to specify those circumstances in which an object may
or may not be aliased.]

This would appear to render the final call undefined since the stored value of £p1 is being accessed by an
Ivalue that does not match its declared type: (int (*) ()) vs. (int (*) (int)).

I think that this example should be valid and that the above limitation is too strict. I think what we meant
to say was “a type compatible with the declared type of the object,” which would allow “reasonable” type
mismatches without allowing aliasing between wildly different types.

Correction

Change subclause 6.3, page 38, lines 18-21, from:

An obg%ct shall have its stored value accessed only by an Ivalue expression that has one of the following
types:

— the declared type of the object,

— a qualified version of the declared type of the object,

to:

An obggct shall have its stored value accessed only by an Ivalue expression that has one of the following
types:

— a type compatible with the declared type of the object,

— a qualified version of a type compatible with the declared type of the object,

ISO JTC1/SC22/WG14

Defect Report #054 Page 94 Question 1
Defect Report #054

Submission Date: 01 Apr 93
Submittor: Project Editor (P.J. Plauger)
Source: Larry Jones

Question 1
Are the string handling functions defined in subclause 7.11 that have an explicit length specification
(memcpy, memmove, strncpy, strncat, mememp, strncmp, strx£frm, memchr, and memset)
well-defined when the length is specified as zero?
Taking memcpy as an example, the description in subclause 7.11.2.1 states:

The memecpy function copies n characters from the object pointed to by s2 into the object
pointed to by s1.If copying takes place between objects that overlap, the behavior is undefined.

The (suggested) response to Defect Report #042, Question 1, indicates that:

... the “objects” referred to by subclause 7.11.2.1 are exactly the regions of data storage pointed
to by the pointers and dynamically determined to be of N bytes in length (i.e. treated as an array
of N elements of character type).

Since, by definition, objects consist of at least one byte, this would imply that s1 and s2 are not pointing
to objects when N is zero and thus are outside the domain of the function leading to undefined behavior.

I do not recall whether this was the committee’s intent or not, but it would seem that some clarification is
in order.

Correction

Add to subclause 7.11.1, page 162, the following:

Where an argument declared as size_t n determines the length of the array for a function, n can have
the value zero on a call to that function. Unless explicitly stated otherwise in the description of a particular
function, pointer arguments on such a call must still have valid values, as described in subclause 7.1.7 Use

of library functions. On such a call, a function that copies characters shall copy zero characters, while a
function that compares two character sequences shall return zero.

ISO JTC1/SC22/WG14

Question 1 Page 95 Defect Report #055
Defect Report #055

Submission Date: 14 Apr 93
Submittor: Project Editor (P.J. Plauger)
Source: Loren Schall

Question 1

It has been suggested that the six macros SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and
SIGTERM must have distinct values. Here is the relevant portion of subclause 7.7:

“The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the second
argument to and the return value of the signal function, and whose value compares unequal to the address
of any declarable function; and the following, each of which expands to a positive integral constant
expression that is the signal number corresponding to the specified condition:

An implementation need not generate any of these signals, except as a result of explicit calls to the raise
function.”

On the one hand, the reference to “the signal number corresponding to the specified condition” might be
assumed to imply different numbers for each signal. On the other hand, the words “distinct values” were
explicitly used for the three SIG_* macros and are conspicuously missing for the others.

Also, I think it’s worth noting that the standard expects raise to work meaningfully (i.e. to be able to tell
them apart).

Summary: must SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM have distinct values?
Correction
Change subclause 7.7, page 120, lines 14-16, from:

and the following, each of which expands to a positive integral constant expression that is the signal number
corresponding to the specified condition:

to:

and the following, which expand to positive integral constant expressions with distinct values that are the
signal numbers, each corresponding to the specified condition:

ISO JTC1/SC22/WG14

Defect Report #056 Page 96 Question 1

Defect Report #056

Submission Date: 15 Apr 93
Submittor: Project Editor (P.J. Plauger)
Source: Thomas Plum

Question 1

The following requirement is implied in several places, but not explicitly stated. It should be explicitly
affirmed, or alternative wording adopted.

The representation of floating-point values (such as floating-point constants, the results of floating-point
expressions, and floating-point values returned by library functions) shall be accurate to one unit in the last
position, as defined in the implementation’s <f£loat . h> header.

Discussion: The values in <f1loat . h>aren’t required to document the underlying bitwise representations.
If you want to know how many bits, or bytes, a floating-point values occupies, use sizeof. The
<float.h> values document the mathematical properties of the representation, the behaviors that the
programmer can count upon in analyzing algorithms.

It is a quality-of-implementation question as to whether the implementation delivers accurate bits through-
out the bitwise representation, or alternatively, delivers considerably less accuracy. The point being clarified
is that <float . h> documents the delivered precision, not the theoretically possible precision.

Open Issue

ISO JTC1/SC22/WG14

Question 1 Page 97 Defect Report #057

Defect Report #057

Submission Date: 07 Jun 93
Submittor: Project Editor (P.J. Plauger)
Source: Fred Tydeman

Question 1

Must there exist a user-accessible integral type for every pointer? If an implementation provides 48-bit
pointers, must there be an integral type, such as long or int, that is at least 48-bits? Parts of the C Standard
that may help answer the question follow:

Subclause 6.3.4, Cast operators, page 45, lines 30-34 and Footnote 45:
A pointer may be converted to an integral type. The size of integer required and the result are
implementation-defined. If the space provided is not long enough, the behavior is undefined.

An arbitrary integer may be converted to a pointer. The result is implementation-defined.4>
[Footnote 45: The mapping functions for converting a pointer to an integer or an integer to a
pointer are intended to be consistent with the addressing structure of the execution
environment.]

Response

Integral types and pointer types are incommensurate. An implementation need not provide an integral type
that can accept the conversion from a pointer type without loss of information.

ISO JTC1/SC22/WG14

[

Defect Report #058 Page 98 Question 1

Defect Report #058

Submission Date: 07 Jun 93
Submittor: Project Editor (P.J. Plauger)
Source: Fred Tydeman

Question 1

What is the minimum value for the maximum number of digits in a number that can be processed by the
scanf family and the st rtod family?

1) 509
2) 32767
3) something else
Parts of the the C Standard that may help answer the question follow. Subclause 7.9.6.1,The fprint £
function, page 131, lines 16-18:
Environmental limit. The minimum value for the maximum number of characters produced
by any single conversion shall be 509.
But, note, there is no such environmental limit for scanf.
Subclause 5.2.4.1, Translation limits, page 13, line 17:
509 characters in a logical source line
But, note, there is no execution limit. Subclause 5.2.4.1, Translation Limits, page 13, line 19:
32767 bytes in an object (in a hosted environment only)
Consider the number 1.0 written as . 00000. ..00001e32759 that is 32767 characters long. There is

only one significant digit, the 1. It can be stored in an array of 32767 characters, so it should be possible to
pass this string to atof, strtod, or sscanf£ and get the value 1.0. Correct?

Response .

You are correct, the C Standard imposes no execution limit on the maximum number of digits in the subject
sequence of £scan£ conversion specifiers and the st rto* functions, other than on the size of objects.

ISO JTC1/SC22/WG14

Page 99 Summary

Summary of Issues

The list that follows provides a brief summary of all issues raised as separate questions within Defect Reports
#001 through #059. Please note that the one-sentence summaries that follow seldom do justice to the issues,
which are often subtle or complex. Read them to get a sense of the area of the C Standard requiring
interpretation or correction. Be warned that they may well fail to properly characterize the precise concern.

#001 10 Dec 92 X3J11/90-009 (Paul Eggert)

QI: Do functions return values by copying?

#002 10 Dec 92 X3J11/90-010 (Terence David Carroll)

Q1: Should \ be escaped within macro actual parameters?

#003 10 Dec 92 X3J11/90-011 (Terence David Carroll)

Q1: Are preprocessing numbers too inclusive?

Q2: Should white space surround macro substitutions?

Q3: Is an empty macro argument a constraint violation?

Q4: Should preprocessing directives be permitted within macro invokations?

#004 10 Dec 92 X3J11/90-012 (Paul Eggert)
QI: Are multiple definitions of unused identifiers with external linkage permitted?
#005 10 Dec 92 X3J11/90-020 (Walter J. Murray)

Q1: May a conforming implementation define and recognize a pragma which would change the semantics
of the language? .

#006 10 Dec 92 X3J11/90-020 (Walter J. Murray)

Q1: How does strtoul behave when presented with a subject sequence that begins with a minus sign?
#007 10 Dec 92 X3J11/90-043 (Paul Eggert)

Q1: Are declarations of the form struct tag permitted after tag has already been declared?
#008 10 Dec 92 X3J11/90-021 (Otto R. Newman)

Q1: Is dead-store elimination permitted near set jmp?

Q2: Should volatile functions be added?

#009 10 Dec 92 X3J11/90-023 (Bruce Blodgett)

Q1: Are typedef names sometimes ambiguous in parameter declarations?

#010 10 Dec 92 X3J1190-044 (Michael S. Ball)

QI: Is the typedef to an incomplete type valid?

#011 10 Dec 92 X3J11/90-008 (Rich Peterson)

Q1: When do the types of multiple external declarations get formed into a composite type?

Q2: Does extern link to a static declaration that is not visible?

Q3: Are implicit initializers for tentative array definitions syntactically valid?

Q4: Does an incomplete array get completed as a tentative definition?

#012 10 Dec 92 X3J11/90-046 (David F. Prosser)
QI: Can one take the address of a void expression?
#013 10 Dec 92 X3J11/90-047 (Sam Kendall)

Q1: How does one form the composite type of mixed array and pointer parameter types?
Q2: Is compatible properly defined for recursive types?

Q3: What is the composite type of an enumeration and an integer?

Q4: When is a struct type complete?

Q5: When is the sizeof an enumeration type known?

#014 10 Dec 92 X3J11/90-049 (Max K. Goff)

Q1: Is set jmp a macro or a function?

ISO JTC1/SC22/WG14

Summary Page 100

Q2: How does £scanf ("$n") behave on end-of-file?

#015 10 Dec 92 X3J11/90-051 (Craig Blitz)
Q1: How does an unsigned plain bitfield promote?
#016 10 Dec 92 X3J11/90-052 (Sam Kendall)

Q1: Can a tentative definition have an incomplete type initially?

Q2: Can you implicitly initialize a union when null pointers have nonzero bit patterns?
#017 10 Dec 92 X3J11/90-056 (Derek M. Jones)

Q1: Are newlines permitted within macro invocations in preprocessing directives?
Q2: Should the absence of function main be explicitly undefined?

Q3: Does a constraint violation win over undefined behavior?

Q4: Do numeric escape sequences map from source to execution character sets?
QS5: When are character constants implementation defined?

Q6: Are register aggregates permitted?

Q7: What is the scope and uniqueness of size t?

Q8: What types are compatible with pointer to void?

Q9: What is the type of an assignment expression?

Q10: When is the sizeof an object needed?

Qll:Isstruct t; struct t; valid?

Q12: How do typedefs parse in function prototypes?

Q13: How does register affect compatibility of function parameters?
Q15: When do array parameters get converted to pointers?

Q16: Are subarrays of arrays distinct objects?

Q17: How do you initialize the first member of a union if it has no name?
Q18: Are £() and £ (void) compatible?

Q19: Are macro expansions ambiguous?

Q20: Is the scope of macro parameters defined in the right place?

Q21: Is translation phase 4 defined unambiguously?

Q22: Does the rescan of a macro invocation also perform token pasting?
Q23: How long does “blue paint” persist on macro names?

Q24: Can subclause 7.1.2 be better expressed?

Q25: Should “must” appear in footnotes?

Q26: Are unnamed union members required to be initialized?

Q27: Does the # flag alter zero stripping of $g in fprint £?

Q28: Does exrxrno get stored before library functions return?

Q29: When does conversion failure occur in floating-point £scan£ input?
Q30: Do £seek/£setpos require values from successful calls to ftell/fgetpos?
Q31: Are object sizes always in bytes?

Q32: Are strcmp/strncmp defined when char is signed?

Q33: Are st remp/strncmp defined for strings of differing length.
Q34: Is st rtok described properly?

Q35: When is a physical source line created?

Q36: Is a function returning const void defined?

Q37: What is the type of a function call?

Q38: What is an iteration control structure or selection control structure?
Q39: Are header names tokens outside include directives?

ISO JTC1/SC22/WG14

Page 101 Summary

#018 10 Dec 92 X3J11/90-066 (Yasushi Nakahara)
Q1: Does £scanf recognize literal multibyte characters properly?
#019 10 Dec 92 X3J11/91-014 (Richard Wiersma)
Q1: Are printing characters implementation defined?

#020 10 Dec 92 X3J11/91-006 (Bruce Lambert)
Q1: Is the relaxed Ref/Def linkage model conforming?

#021 10 Dec 92 X3J11/91-001 (Fred Tydeman)
Q1: What is the result of print £ ("$#.40", 345)?

#022 10 Dec 92 X3J11/91-002 (Fred Tydeman)
Q1: What is the result of strtod ("100ergs", &ptr)?
#023 10 Dec 92 X3J11/91-003 (Fred Tydeman)

Q1: If 99,999 is larger than DBL MAX 10 EXP, what is the result of strtod("0.0e99999",
&ptr)?

#024 10 Dec 92 X3J11/91-004 (Fred Tydeman)

Q1. For strtod, what does "C" locale mean?

#025 10 Dec 92 X3J11/91-005 (Fred Tydeman)

Q1: What is meant by “representable floating-point value?”’

#026 10 Dec 92 X3J11/91-007 (Randall Meyers)

Q1: Can one use other than the basic C character set in a strictly conforming program?
#027 10 Dec 92 X3J11/91-008 (Randall Meyers)

Q1: May a standard conforming implementation add identifier characters?

#028 10Dec92 X3J11/91-009 (Randall Meyers)

Q1: What are the aliasing rules for dynamically allocated objects?

#029 10 Dec 92 X3J11/91-016 (Sam Kendall)

Q1: Must compatible structs/unions have the same tag in different translation units?
#030 10 Dec 92 X3J11/91-017 (Pawel Molenda)

QI: May sin (DBL_MAX) set errno to EDOM?

#031 10 Dec 92 X3J11/91-018 (Pawel Molenda)

Q1: How are exceptions handled in constant expressions?

#032 10 Dec 92 X3J11/91-036 (Stephen D. Clamage)

Q1: Can an implementation permit a comma operator in a constant expression?
#033 10 Dec 92 X3J11/91-037 (Mike Vermeulen)

Q1: Must a conforming implementation diagnose “shall” violations outside Constraints?
#034 10 Dec 92 X3J11/91-038 (Stephen D. Clamage)

Q1: Does size information evaporate when a declaration goes out of scope, even for objects with external
linkage?

Q2: If so, can one then write conflicting declarations in disjoint scopes?

#035 10 Dec 92 X3J11/91-039 (Derek M. Jones)

Q1: Can one declare an enumeration or struct tag as part of an old-style parameter declaration?

Q2: If so, what is the scope of enumeration tags and constants declared in old-style parameter declarations?

#036 10 Dec 92 X3J11/91-040 (Fred Tydeman)
Q1: May a floating-point constant be represented with more precision than implied by its type?
#037 10 Dec 92 X3J11/91-043 (Isai Scheinberg)

Q1: Can UNICODE or ISO 10646 be used as a multibyte code?

ISO JTC1/SC22/WG14

Summary Page 102

#038 10 Dec 92 X3J11/91-046 (Kuo-Wei Lee)
Q1: What happens when macro replacement creates adjacent tokens that can be taken as a single token?
#039 10 Dec 92 X3J11/91-061 (Vania Joloboff)

Q1: MustMB_CUR_MAX be one in the "C" locale?

Q2: Should setlocale (LC_ALL, NULL) return "C" in the "C" locale?

#040 10 Dec 92 X3J11/91-062 (Derek M. Jones)

Q1: What is the composite type of £ (int) and £ (const int)?

Q2: Is an implementation that fails to equal the value of an environmental limit conforming?

Q3: Is an Environmental Constraint a constraint?

Q4: Should the response to Defect Report #017, Q39 be reconsidered?

QS5: Can a conforming implementation accept long long?

Q6: Can one use offsetof (struct tl, mbr) before struct t1l iscompletely defined?
Q7: Can sizeof be applied to earlier parameter names in a prototype, or to earlier fields in a struct?
Q8: What arithmetic can be performed on a char holding a defined character literal value?

Q9: Should the response to Defect Report #017, Q27 be reconsidered?

#041 10 Dec 92 X3J11/91-076 (Andrew Josey)
QI: Are ’ A through ’ 2 always isupper in all locales?
#042 10 Dec 92 X3J11/92-001 (Tom MacDonald)

Q1: Does memcpy define a (sub)object?

Q2: If so, how big is the object defined by memcpy?

Q3: How big is a string object defined by the st r* functions?
#043 10 Dec 92 X3J11/92-004 (Robert Paul Corbett)
Q1: Can NULL be defined as 4-4?

Q2: Can an identifier that starts with an underscore be defined as a macro in a source file that includes at
least one standard header?

#044 10 Dec 92 X3J11/92-010 (Steve M. Hoxey)

Q1: What does it mean to say that the type of of£setofis size t?

Q2: Must the expansion of a standard header be a strictly conforming program?

Q3: Does expanding of£seto£ result in a non-strictly conforming program?

Q4: Can one use of£setof in a strictly conforming program?

Q5: Is of £setof the only standard macro that renders a program not strictly conforming?
#045 10 Dec 92 X3J11/92-036 (David J. Hendricksen)

Q1: Can one freopen an already closed file?

#046 10 Dec 92 X3J11/92-041 (Neal Weidenhofer)

Q1: May a typedef be redeclared as a parameter outside an old-style function parameter list?
#047 10 Dec 92 X3J11/92-040 (Randall Meyers)

Q1: Can an array parameter have elements of incomplete type?

#048 10 Dec 92 X3J11/92-043 (David F. Prosser)

Q1: Is abort compatible with POSIX?

#049 10 Jan 93 David Metsky

Q1: Can strxfrm produce a longer translation string?

#050 24 Feb 93 C. Breeus

Q1: Does a proper definition of wchax_t need to be in scope to write a wide-character literal?
#051 08 Mar 93 Andrew R. Koenig

Q1: Can one index beyond the declared end of an array if space is allocated for the extra elements?

ISO JTC1/SC22/WG14

Page 103 Summary

#052 21 Mar 93 Paul Edwards

Q1: Should the mkt ime example use (time_ t) -1 instead of -1?

Q2: Is the index entry for static correct?

Q3: Does the C Standard come with a Rationale, as indicated in Footnote 1?
#053 25Mar 93 Larry Jones

Q1: Do the aliasing rules cover accesses to different function pointers properly?
#054 01 Apr93 Larry Jones

Q1: What is the behavior of various string functions with a specified length of zero?
#055 14 Apr 93 Loren Schall

Q1: Must the SIG* macros have distinct values?

#056 15 Apr 93 Thomas Plum

Q1: How accurate must floating-point arithmetic be?

#057 07 Jun 93 Fred Tydeman

Q1: Must there exist a user-accessible integral type for every pointer?

#058 07 Jun 93 Fred Tydeman

Q1: What is the number of digits in a number that can be processed by the scan£ family and the strtod
family?

#059 15 Jun93 Martin Ruckert
Q1: Must an incomplete type be completed by the end of a translation unit?

ISO JTC1/SC22/WG14

