%+ N B i i ey

e e
i it S : ,
s o S e eIV

(oo jo22/ et /W/OB

Wl /Miz3
5 1.3.1 Guideline: Character sets used for program text Y2in [ 30 -DE73

As far as possible, the language should be defined in terms only of the characters
included within 1SO 646, avoiding the use of any that are in national use positions.
it any symbols are used which are not included within 1ISO 646 or are in national use
positions, an aternative representation for all such symbols should be specified. A
conforming processor should be required to be capable of accepting a program
ropresented using only this minimal character set. Great care should be taken in
specifying how “non-printing" characters are to be handled, i.e. those characters
that correspond to integer values O to 32 inclusive and 127, i.e. null (0/0) to space
(2/0) and delete (7/13).

HOTES

1 The motivation here is to provide a common basis for representing programs, which
does not exist with current (published up to 1986) standards. The characters that aic
availabla in all national variants of 1ISO €46 cannot represent programs in many programming
languages in a way that is acceptable to programmers who are familiar with tho us
national varant (usually referred 10 by fts acronym *ASCII). In particular, square brackits.
curly brackets and vertical line are unavailable. '

Funher, the characters that are available in the Intemational Reference Version of ISOC 63¢
cannol represent programs in many programming languages in a way that is acceptable
to programmers who are tamiliar with a particular national variant of 1SO 646. For examplc.
neither the pound nor dollar symbol may be available. The characters that are available n
ASCIl cannot represent programs in many programming languages in a way that 3
aczypisble (0 programmans because thelr tarminals suppon some othar national vanant of
ISO 646.

Consideration needs also to bs given to the use of upper and lower case (roman) letters.
il only one case 13 required it should be made clear whether the other case is regarded as
an atternative representation (so that, for example, TIME, time, Time, tImE are reqarded &s
dentical elements) or its use ig dlsallowed In a standard-contorming program. Whare beth
cacns are required or allowed, the rules goveming their use should be as simple 3s
possiDla, and exactly and completety specried.

O! the non-printing characters, nearty all languages allow space (2/0), and carriage returin
(0/13) line feed (0/10) as a pai. though they differ as 1o whether these charactars are
meaningful or ignored. How carriage retum without line feed (or vice versa) is to ba troated
needs consideration, as do constructions such as camage retumn, carriage return, lina fe€d.
it characters are disallowed that do not show themseh@s on a printed representation, tie
undesirable situation may arise where a program may be incorrect though its printout SNows
no tauh. If a tabulation character (0/9) s disallowed, this can cause trouble, since it appears

10 be merely a sequence of spaces, it allowed, the effact on languages such @s Fo:iran,

iR

/&%



having a given length of line, has to be considered.

2 The characters that are available In the eight-bit character sets 1SO 4873 with DIS 8858.
or 1SO 693772, would be sufficlent to represent programs In a way that Inoks famillar to most
(tut not APL) programmers. However, in 1989 these standards are not yet widely supporied
on printers and display terminals.

3 For advice on character sgt matters, committees should consult 1ISO/T Cc97/SC2.

5.1.3.2 Guideline: Character sets used in character literals

Character lterals permitted to be embedded in program text in a standard-
conforming program should be defined in such a way that each character may be
represented using one or more of the following methods:

a) The character represents itself, eg A, B, g, 3, + (-

b) A character is represented by 2 pair of characters: an egscape character
followed by a graphic character, e.g. if & is the escape character, & 1o
represent apostrophe, && to represent ampersand, &n 10 represent newline.

b) A character is reprasented by three characters: an escape character
followed by two hexadecimal digits that specify its internal value.

Any conforming processor should be required to be able to accept “as themsslves”
(i.e. as in (1)) at least all printable characters in the "minimal set" defined in 5.1.3.1.
apart possibly from any special-purpose characters such as an escape character Of
those used to delimit literal character strings.

NOTES

1 For reasons of porability #t is necessary to provide a common basis for representing
character literals in programs, in addition 1o the characters used for the program text itselt
The required character set could be wider than (and tor general purpose text hanalng
would need 1o be wider than) that which is necessary for representaton ol program
statements. Programs must be representable on as many difterent peripherals and systems
as possible; there is therefore a need 10 reduce the number of characters required 10
represent a program 10 the minimum that is consistent with general practice and readability.
On the other hand, programs themsalves must be able t0 represent and process as many
different characters as possible.

These two requirements make it impossibie to represemnt every character by ttself in 3 eral
character string, if the language is to be suitable for general processing of character data.

2 The preceding paragraphs envisage that inside a program each character is storable as
a single octet (8-bit byte). See 5.1.3.6 for discussion of handling of mutti-octet characters.

3 A particular problem arises with the representation of a space in a character or string
lteral. It can be represented by a visible graphic charactef, the argument in favour being
that blank spaces in program text should not affect the meaning. However, it can also be
represented by itself, the argument in favour being that this is the most natural form of



represartation. The indistinguishability of a tabulation character from a sequence of spaces
(in a primed reprasertation) Is a particular problem since a function that retums the length
of a string, in characters, may give different results from two programs that appear identical.
There can be turther complications when using a °high quality* printer with variable-width
characters. DOrafting committees are recommended to pay particular attention to these
points.

4 The character set in ISO 6937/2 represents some graphic characters as a pair of octets.
This is suitable for printing but is dificutt to process in operations such as comparison and
sorting.

5 1.3.3 Guideline: Character sets used in comments

.o standard should define the characters that are permitted in comments in a
«tandard-conforming program.

NOTE - For publication in the pages of a journal, some languages make no restriction on
rermated characters in comments, beyond making it clear where the comment finishes. For
inclusicn on a compuiter flle, however, it is preterable to restrict the characters to those that
aro widaly available, to help portability. Since comments are intended for human reading
and henco escape mechanisms are unnecessary, there is no disadvantage in printing
characters simply representing themseives (apart of course from any characters or
sequences of characters marking the end of the comment), and in limiting non-printing
characters to those (like camiage retum and line feed) necessary for layout purposes.

55 1.3.4 Guideline: Character sets used for data

The programming language standard should be defined in such a way that it is not
assumed that character data processed by a program is anything other than a
sequence of octets whose meaning depends on the context. However, 2a
ccnforming processor should be required at least 1O be able to input, manipulate
and output characters from the minimal character set defined in 5.1.3.1 above.

NOTES

1 The objective here is 10 provide a common basis for processing data. Many programs
will assume that their data is expressed in ASCIl or some other variant of ISO 646. But it
the standard assumes that a/l data is expressed in ary one particular character set, it will
cause dificutties for many users.

2 See also the guideline on collating sequences (5.1.3.5 below).

5.1.3.5 Guideline: Collating sequences

The standard should specify completely the default collating sequence to be
provided by a conforming processor, and preferably that this should be that implied
by the ordering of the characters in the minimal character set drawn from ISO 646
as defined in 5.1.3.1 above. If the default collating sequence is other than that
implied by 1SO 646, means should be provided whereby the user may optionally

13

-



switch to the ISO 646 collating sequences, and consideration should be given to
providing means for the user optionally to switch to alternative collating sequences,
.hether or not the defined default collating sequence is that based on ISO 646.

NOTES

1 Programs which perform ordering of character data are in general not portable unloss
the collating sequence Is completely defined. This guideline ensures that such programs
will be portable at least where only those characters drawn from the minimal character sel
defined in 5.1.3.1 are used.

2 Drafting committees may wish to consider further guidance relating to characters not
included in the minimal character set, especially where ordering of character data is a major
anticipated use of the language.

3 Possible means of including atemative collating sequences are language features or
processor options (see 5.1.9).

4 Poasslible reasons for wishing to provide such altemative means are 10 obtain maximum
processing efficlency by use of a processor-defined intemal character set, or to allow
orderings more usatul for particular purposes, e.G. acA < b=B < ... < z1=L

(ISO 646 implies 0 < 1 < ... < 9<A<B8. <ZI<a<b.. <z whichisnot always
convenient.)

5.1.3.6 Guideline: Use of other character sets

The standard should ensure that it is possible within the language to support the
handling of characters from a wide range of character sets, including multi-octet
character sets and non-English single-octet character sets.

14

NOTES

1 For some applications, and for some classes of usars 10r ail applcativis, 1S vild (o 1T
language to have the ability to accept and manipulate data from character sets other than
the minimal character set needed for the basiC purpose of specitying programs. For some
users this need will be greater than the need for international interchange. An imponant
task for any language standards committee is 1o ensure that it is possible for each of these
needs to be met in a standard-conforming way.

2 me applications will require both the ability to manipulate mutti-octet characters and the
capability of intemational interchange. This may imply two or more alternatve
representations of the same ‘character (data object), one of which will be a representation
(for interchange purposes) in the minimal character sat defined in 5.1.3.1.

3 In general it should be possible to us8 mutti-octet or non-English single-octet character
sets in program text, character literals, comment, and data without recourse to the use of
procassors which are not standard-conforming. Programs using such characters in program
taxt, ltarals or commamts may NOi be siandarc-cornonming and in general will be less
portable intemationally than those using only the minimal character set, but may still be
portable within the applications community for those programs. Delined mappings from
other character sets to the minimal character set of the language, and the presence of
su'rtaple processor options, are likely to maximize benefits and usability for difterng
requirements.



4 At the time that this Technical Repont is published, consideration of the issues addressed
by this guideine is being actively pursued. tanguage standards committees are strongly
urged to ascertain the |atest developments In this area before specifying requirements.

5 1.4 Guideline: Error detection requirements

Raquirements should be included covering error detection, reporting and handling,
with appropriate conformity clauses. The standard should specify a minimum set
of errors which a conforming processor must detect (in the absence of any masking
errors); minimum level of accuracy and readability of error reports; whether an error
i~ f=1a or non-fatal; and, for non-fatal errors, the minimum recovery action to be

:
1ntien.

NOTES

{ The objective of this guideline is to enhance the value of standards to users. The
inclusion of requirements on &ol detection, reporting and handling provides a minimum
lavel of assurance to the programmer of assistance from the processor in identifying errors.

2 Saa 4.1.3 for a dsfinition of the term *error* in this context.

2 T1hat an srror is statically determinable (see 4.1.3) does not imply that the processor must
nacassarly determine it statically raiher than dynamically.

4 It is raccgnized that requining provision of specffic efror detection requirements within the
standard entails 3 cenain overhead in a conforming processor. It is a marter for each
standards committee to determine how severely such overhead will affect the users of the
language concerned, and consequently whether requiring detection is worthwhile. 1t is of
course open 1o the committes 10 specty of recommend the provision of processor options
which would permit the user 10 control the use of error detection (see 5.1.9).

5.1.4.1 Chacklist of potentlal errors

The following is a list of typical errors which can arise in the submission of program
text o a processor. Drafting committees should check all of the following for
relevance to their language, and the standard produced should address all that are
2ppropriats, plus others specific to the language concerned. This list is not to be
considered either as exhaustive Or as prescriptive.

In all cases the standard should specify whether the error concerned is fatal or
non-fatal. Depending on the design and philosophy of the language, it may occur
that a particular usage is not invalid (whereas it would be in another language) but
that users would nevertheless penefit from the availability of a warning message
within the processor.

5.1.4.1.1 Errors of program structure

(a) unmatched brackets - either open without close, or vice versa. Note:
@is covers all sorts of bracket: (), (I, {} etc.

15

X

4



