Information Technology Standards Commission of Japan
. i (T‘ S C j Information Processing Society of Japan TEL +813431 28

Sy i = - A FAX: +31 3431 6463
Kikai Shinko Building No. 3-5-8 Shiba-Koen Minato-ku, Tokyo 105, JAPAN TX: 0242530 PSJ J

Lo ISO/IEC JTC1/SC22/WG14 convener U‘-/"”/A////

From: Takehisa Inose ’ ~ 06D
Chair IPSJ/ITSCJ/SC22/C WG Xg"“ qo

Subject: Rationale of Multibyte Support Extension for ISO DIS9899

Date: June/01/1990

Dear Dr. Plauger,

I appreciate your greatly consideration for our proposal of Multibyte Ezten-
sion for ISO DIS9899.

I attached document " Rationale of Multibyte Support Eztension for ISO DIS
g8495%

This rationale summarizes the discussions of C Working Group of SC22 com-
mittee of Japan on Draft proposed Multibyte Support Eztension of ISO DIS
9899(Document Number WG1{/N104). It includes erplanations how the working
group developed the proposed interface definitions, as well as the concerns on the
. multibyte character related features in the ezisting draft ISO DIS9899.

This rationale also includes formal discussions with the X/OPEN interna-
tionalization working group as an appendiz, so as to keep track the global discus-
stons.

Therefore we believe that this rationale is really helpful to understand the
background of our proposed specifications.

We greatly appreciate if you deliver this document to the SC22/WG14
members before the London WG14{ meeting so as to help understanding what our
proposal 1s.

Thank you for your cooperation.

Yours very truly,
e

Takehisa Inose

Enclosures:

Rationale of Multibyte Support Extention for ISO DIS9399

Rationale
of
Multibyte Support Extension
for

DIS9899

DRAFT 1.0

SC22/C WG
TPSJ/ITSCJ

Japan

June 1, 1990

Rationale of Multibyte Support Extension for ISO DIS 9899

ABSTRACT

This rationale summarizes the discussions of C Working Group of SC22 committee,
Information Technology Standards Commission of Japan, Information Processing Society of
Japan on the Draft Proposed Multibyte Character Support Extension of ISO 9899
[SC22/WG14/N104). It includes explanations how the working group developed specific
interface definitions, as well as the concerns on the multibyte character related features in the
existing draft of 1SO 9899.

A formal conversation between the working group with X/Open Internationalization
Working Group on our previous draft is also appended at the end of this rationale, to keep
track the global discussions.

i

Introduction

1.1
1.2
13

1.4

Rationale of Multibyte Support Extension for 1ISO DIS 9899

CONTENTS

Purpose .

Organization of this Document

i A e b R L i SRR SR R A LR A
13.1 Policy of the Multibyte Support Extension 2
13.2 Scope of the Language Specification Extensions 3
1.3.3 Scope of the Library Functions Extensions 3

1.3.4 On Programming Style 3

135 On Performance of New Library Functions 4
Generallssues.....................4
1.41 Type of the wide character 4

142 Character sets and Environment 5

1D =

Rationale - corresponding to SC22/WG14/N104 . 6
21 Environment and Language (2] - - - - 6
2.1.1 Upward Compatibility of Text Handling Programs 6
21.2 Wide characters and shift-sequence characters 7
213 Constraint for the execution character set 8
214 Execution character set and the setlocaleQ function 9
2.2 Wide Character Handling (3.1] e T Ty e TP LAt A R e 10
22.1 Type of the property argument of the set_wctype(Q function 10
222 Consideration of a single byte character classification extension 11
23Input/0utput[3.2]................. 1
231 Return values of wide character input/output functions 11
232 WEOF 12
233 Null for wide character string literals 12
25.4 No new macro for a null pointer constant to the wide character 12
23.5 New macro for an end-of-file constant returned by wide character
functions 12
23.6 Error handling during the code conversion in the functions 14
23.7 Insufficiency of the Standard multibyte functions in a shift-dependent
encoding 14 ,
238 Redundant shift-sequences and a file position indicator for the
stream 15
239 Names of the new conversion specifiers in the format character
string 16
23.10 Precision and field width interpretation of the wide character
specifiers 16
23.11 Scanset discussion for multibyte characters 20
23.12 Field width of shift-sequences for the %wc specifier of the fscanf
function 21
23.13 Field width for the %ws specifiers and its portability 21
23.14 Overhead of the %ws support 22
23.15 %s vs. %ows 22
2.3.16 sprintf/scanf vs. wsprintf/wsscanf 22
2.4 Future Library Directions (3.6 23

2.4.1 Naming conventions of the wide character functic;ns. 23
2.4.2 Header files 24

3. Rationale - not corresponding to SC22/WG14/N104

3.1
3.2
30

3.4
3.5
3.6
3.7
3.8

Default locale at program startup - - -
No wide string counterparts for the file handling functions

No extension to harden the Standards multibyte functions in a shift-

dependent encoding . . . - . . - . o - e
Insufficiency aspects on code conversion in the Standard

A code value of the wide character data B O R
String concatenation problem about shift-sequence handling
9% character in the format string of the fprintf() function
Effects of the setlocale() function g .

APPENDIX: Conversation with X/Open Internationalization Working
CITOMIEE. . e 3 ot ASE s 4w ool
A.1 Comments/Requests from X/Open

A.1.1 Comments 31
A.12 Proposals 31
A.1.3 Misc. 34

A.2 Reply to X/Open

29
25
25

26
27
28
28
29
29

31
31

34

Ty

~.r.

Y5

10

15

20

40

Rationale of Multibyte Support Extension for ISO DIS 9899

1. Introduction
1.1 Purpose

The purpose of this rationale is to clarify and to help understanding on what is defined in
the Draft Proposed Multibyte Support Extension of 1SO 9899 (SC22/WG14/N104], by recording the
discussions made by the Working Group for about one and half year.

1.2 Organization of this Document

Section 1 describes the discussions about generic issues on multibyte character support in
the Standard. Section 2 covers discussions on the specific interface definitions described in the
section 2 of the Proposed Extension, while section 3 covers those which do not correspond
directly to the sections in the Proposed Extension.

Appendix A is the copy of a formal conversation between the Working Group and X/Open
Internationalization Working Group who is working to define multibyte character support
library functions in the future issue of X/Open Portability Guide.

Notations

References All the references are surrounded by brackets {]. Wherever it is not
described explicitly, references are to the Standard.

Multibyte Characters Multibyte characters in the piece of programs, in the image of
output are shown as D1, D2, and so on, while ordinary single byvte
characters are shown in lower case.

Glossary

* Proposed Extension

* The Working Group
The sub-working group of $C22/C WG, Information Technology Standards Commission of
Japan, Information Processing Society of Japan, which is formed by SC22/C WG to produce
“the Multibyte Support Extension of ANSI C** and its rationale.

e The Standard
ANSI C [X/3DH53-1989] and/or 1SO DIS9899. or ISO/IEC DIS 9899

* The Rationale
The rationale for Draft Proposed American National Standard for Information System -
Programming Language C (X3]11/88-151).

e IEEE POSIX
e X3]11
* SIGMA Project

¢ Japanese UNIX System Advisory Committee
The advisory committee formed by AT&T UNIX Pacific (at that time) with participation of
major Japanese companies and universities who were concerned with Japanese capabilities
of UNIX System and C language.
Their proposal regarding the C language extension for Japanese character support using a
long char type was submitted not only to AT&T, but also to the X3/11 committee through
AT&T.

May 16, 1990
for DRAFT 2.0

EZd
—
(k%]

« Japanese C Language Committee
The voluntary committee of the C language in Japan, who submitted their proposal
regarding Japanese character support to the X3J11 committee, introducing a letter type for
multibyte characters.
) This is not a national body of the C standard in Japan. The ITSCJ/SC22/C WG is the only
national body corresponding to the ISO/IEC JTC1/5C22/WG14.

1.3 Overview
1.3.1 Policy of the Multibyte Support Extension

Prior to discussions of the Proposed Extension in depth, the Working Group has discussed its
10 policy of the proposal.
There were two major ideas:

1. To propose some frameworks for extensions of the specification towards multibyte
character handling, and then to produce a specification only for Japanese as a practical
example and for their own purpose.

15 2. To propose generic extensions of the specification which can be applied to other
languages (that is, other nations and/or cultural regions).

In the light of current trends of international standardization, possible future explosions of
markets, and the needs for high portability of application programs, the Working Group decided
to define extension specification which is generic and applicable to languages of many nations,

20 avoiding to define local spedfication which depends on Japanese language.

In addition to that, the Working Group discussed support of encoding rules. Tre Woraing
Group considered following alternatives:

i. a generic spedfication to cover all of practical encoding rules that we know.

ii. a limited specification assuming a state-independent encoding in order to avoid related
25 difficulties.

The Working Group considers the the former as its major premise, regarding the policy of the
Proposed Extension is basically the same with the Standard.

With the premise above, the Working Group verifies each functional interfaces in the proposed
extension can be implemented for all of practical encoding rules, precluding all functions which

30 are judged as impractical. Therefore, the Working Group believes that all the new functions can
be implemented for practical encoding rules, and can be utilized by the application

programmers.

However, the Working Group feels that specification which is applicable for all theoretically

possible encoding rules is just redundant and is impractical, and introduces following

35 assumptions as limitation of encoding rules which is to be supported by new library interface.

In other words, the new library interface can be implemented for all encoding rules which
obey the limitations:

e Shortest Matching (instantaneous code) = no multibyte character has its byte representation

that is the prefix of other multibyte character. This means that in interpreting a byte stream

40 under the encode rule, if a byte sequence matches a certain multibyte character, the

multibyte character is determined at that point without checking any following data,
because the byte sequence must not be part of any other multibyte character.

e While interpreting a byte data, no two or more multibyte character are determined
simultaneously.

§1.2 May 16, 1990 $1.3.1

for DRAFT 2.0

/1

5

10

15

20

35

40

§1.3.1

These two assumptions are mandatory to guarantee the functionalities of the fseek()
function and the ftell() function for multibyte character handling, even though it is not
described explicitly.

The Working Group believes that such limitations on encoding schemes do not exclude any
existing code systems from scope of implementations, and so it is practical; it is useful to build
clear specification of multibyte/wide character processing.

1.3.2 Scope of the Language Specification Extensions

The Working Group felt that the Standard has several points yet to be discussed, as you can
see in section 1.4.1, 2.3.7, and 34.

From a view point of migration from the Standard, the Working Group concluded that the
language specification should not be mcdified.

1.3.3 Scope of the Library Functions Extensions

The primitive five multibyte functions in the Standard — the mbtowc() function, the
wctomb() function, the mblen() function, the mbstowcs() function, and the wcstombs()
function — should be kept as they are, while additional library functions should be defined as a
set of higher level functions, assuming the code conversion features of the functions - the
mbtowe() function and the wectomb() function — are available to implement new functions.

Since the five functions cannot process multiple strings simultaneously, these functions may
not be used to implement new functions as they are. Section 33 and 3.4 discuss about this in
details.

For character classification functions and for string handling functions, the Working Group
proposes another set of functions which perform the same functions as existing char
functions, but take wchar_t objects.

For input/output, the Working Group proposes another set of functions which perform
input/output of wide character(s) on memory converting from/to multibyte character(s) on
external files.

For formatted input/cutput, the Working Group proposes additional conversion specifiers
for existing functions (the printf family functions and the scanf family functions), to
convert from multibyte character(s) on the external files to wide character(s) on memory, and
vice versa.

1.3.4 On Programming Style

Programs which handle “characters”, not only multibyte characters but also single byte
characters like ordinary ASCII, can be in unified style and be highly portable by using the new
library interface.

The programming style using the new library functions might be as follows; a program
reads data onto memory from external files, converting byte sequences to wchar_t object
using functions like the getwc() function, processes wchar_t objects just in the same way as
ordinary char obijects, and writes data to external files, converting the wchar_t object to byte
sequences using functions like the putwc() function.

Section 2.1.1 discusses more details about upward compatibility of the new library interface.
The Working Group imagines that in the near future, the truly internationalized programs must
use these new library functions to handle “characters™.

May 16, 1990 §1.3.4
for DRAFT 2N

10

15

20

40

§1.3.5

1.3.5 On Performance of New Library Functions

The Working Group supposes there exist objections to add new library functions to the
Standard to support multibyte character processing, with performance concerns, especially from
people who mainly need to process single byte codes.

The Working Group believes that implementations are responsible for such possible
performance issues, and can avoid them. For example, an implementation may have libraries
both for single byte and for multibyte, and application programmers can choose one of these,
as appropriate.

The importance of new library functions here is that use of the new interface makes wider
and more practical internationalized programming possible, and it could hide the concerns of
performance issues.

1.4 General Issues

1.4.1 Type of the wide character
Glossary

* object types (3.1.2.5]

* basic types [3.1.2.5]

* wide string literal [3.1.4],

Concerns

Although this document does not intend to introduce a new definiuon of the wechar_t, thc
Working Group believes that a type of the wide character would be one of the object types and of
the basic types, just like a long char, as was proposed earlier to the X3]11 committee.

This section discusses why the Working Group prefers a compiler built-in data type for the
wchar_t type.
i. Asymmetry with a char type.

While two expressions for a char type, like signed char and unsigned char, are
well defined, the similar expressions for a wchar_t type may not be allowed since they
are against the constraints [3.5.2). Refer to [the Rationale, 3.5.6).

A.
typedef int wchar_t:
signed wchar_t wchO; /* illegal */
unsigned wchar_t wchl; /* illegal */
B.

typedef unsigned short wchar_ t:
signed wchar_ t /* illegal */

ii. Name space for wchar_t

Since the token wchar_t is not defined as one of keywords but as an identifier using
the typedef specifier, the wchar_t shares a name space with all other ordinary
identifiers.

For example, a wchar_t identifier cannot be allowed without declaring an
appropriate header file <stddef.h> or <stdlib.h>, while a wide character constant

L’x’ and a wide character string literal L"xxx" may always be valid. This implies the
specification of the wchar_t is ambiguous and incomplete.

May 16, 1990 §1.4.1

bAae MDATT 27N

/ /%

Besides, according to the Standard, two identifiers with a lexically identical token may
appear in block scope (3.1.2.1]. The following shows another abnormal example.

#include <stddef .h>

function ()
5 {
unsigned wchar_ t;

wchar t = (wchar t)'T’'’

}

So far, the Working Group believes that a type of the wide character would be a compiler

10 built-in basic data type. To support various natural languages in the world, the C

programming language must provide a powerful set of functions to handle one of the most

important data elements: “characters”, which may include multibyte characters, with a simple
and unified interface using that data type.

1.4.2 Character sets and Environment
15 Glossary
e translation environment [2.1.1]
* execution environment (2.1.2]
Concemns
Regardiny coue conversion for wide character constants, the Standard (3.1.3.4] speaities:

20 The value of a wide character constant containing a single multibyte character that maps into a
member of the extended execution character set is the wide character (code) corresponding to that
multibyte character, as defined by the mbtowc function, with as implementation-defined current
locale.

The Working Group understood that a wide character constant is mapped into the value which

25 corresponds to the execution environment which can be recognized in translation phase.
Therefore, when the execution environment is changed dynamically, there may be no
portability on the above encoding of wide character constants. For example, the encoding
value of a wide character constant L‘D1‘’ may not be the same as the value by call to the
mbtowc() function with ‘D1’.

30 Discussions

This kind of concermn, which comes from the difference between translation environment
and execution environment, may be found elsewhere like character representation in
ASCII/EBCDIC environments and internal representation of floating point, and so forth.
Therefore, the issue is not spedfic to the wide character constants. P Rather the issue should

35 be resolved by an appropriate (static) support of the (cross) compiler, since the Standard
spedifies the actual value of a wide character constant in the execution environments. [3.1.3.4]

Conclusion

The Working Group will propose to include a concern as shown below into the normative
addendum to the Standard:

40 During an execution of program if the encoding is changed dynamically with the setlocale()
function, the behavior of code conversions, including those for character constants or for string
literals, is undefined.

§1.4.1 May 16, 1990 §1.4.2
for DRAFT 2.0

5

10

15

20

40

§14.2

2. Rationale - corresponding to SC22/WG14/N104
2.1 Environment and Language (2]

2.1.1 Upward Compatibility of Text Handling Programs
Concerns

Some people might be anxious about the way of text processing using wide character.
They might fear that the new type wchar t (though it really is a typedef type) would force
them to give away their well-established programming style of text processing.

Discussions

Wide character was introduced in the Standard in order to regard any text data as a
sequence of logical ‘character’ (element of extended character set). If we use the wide
character, we need not to suffer from bothersome byte handlings for multibyte characters. [n
fact, it avoids tremendous operations to handle the multibyte character encoding (for example,
detecting boundary between two multibyte characters, and keeping the shift-state if there is on
a shift-encoding).

It seems quite clear that designers of the C programming language and most of the C users
believed an assumption that they could express any single character with one byte. Note that
the C programming style of text processing had been established under that assumption. This
means that such programs would manipulate each byte object as a character.

However, this assumption is no longer true in text processing when the text data may
include multibyte characters. If we try to write some programs to handle multibyte characters
in byte representation, we will face with several problems as follows:

e It is necessary to interpret shift-sequences and to determine the shift-state for any text
streams.

e Itis very difficult to split and/or to concatenate character strings.

« It is almost impossible to “seek” file position indicator in the streams.

No doubt, programs developed under the byte-oriented text processing style, cannot work well
in the multibyte character environment.

In order to promote portability of programs between the single Dbyte character
environments and the multibyte character environments, it is necessary to solve the issues. As
hinted above, it is a wide character that provides a good solution for the problems, hiding
unnecessary difficulties about a multibyte character encoding from the user and thus keeping
the well-established programming style as well.

To achieve this, a full set of wide character functions should be provided in the Standard.
Since such a full set in the Proposed Extension is going to include the functions each of which 1s
corresponding to one in the traditional libraries, including character handling <ctype.h>,
string handling <string.h>, and input/output <stdio.h> functions, it will be possible with
ease to convert most of the programs with the traditional programming style for the single
byte character environment, into what is suitable for both the single byte character
environment and the multibyte character environment; the wide character programming style.

Conclusion

The Proposed Extension introduces the full set of wide character functions with maximum
upward compatibility for single byte character processing, which enables the traditional text
handling programs to be still useful for both the single byte and multibyte character
environments with minimum adaptation or modification.

-

May 16, 1990 §2.1.1
for DRAFT 20 '

For example, a text handling program for the traditional environment (that is, char ==
bit) will be useful if we rewrite it in the following way:

char o wchar_t
5 strcat o wcscat
fgets o fgetws

We will expect that the new program will be executed in almost the same performance as
previous version under the following environment:

10 wchar t = 8 bit
ASCII,
non-shift encoding, no code conversion

and that the new program will be useful in the following multibyte character encoding:

wchar_t = 16 bit
15 ASCII + JIS X 0208 (Japanese characters),
shift-encoding, with code conversion.

2.1.2 Wide characters and shift-sequence characters
Concerns
Among the topics in our discussion, there are:
20 i. what a shift-encoding is (the definition of shift-encoding), and
1. how we treat a shuft-sequence.

The Working Group strongly feels that the Standard doesn’t specify shift-sequence clearly
enough to image some realistic implementation, and that it is necessary to clarify what a shift-
sequence is in the Proposed Extension.

25 Discussions

In most encodings, a shift-sequence can be regarded not as a character that is meaningful
for human but as what is necessary to express text, consisting of a large number of different
characters from among several character sets, on a byte data stream.

The Working Group regards a shift-sequence as a character:
30 ¢ that is not meaningful for human, and

¢ that specifies the new shift-state applied for the following byte interpretation, regardless the
previous state.

It is not desirable that it appears in wide character strings because of its meaningless not
only for human, but also for wide character processing.

35 While the Standard has already defined a shift-sequence is one of the multibyte characters,
there is no clear definition about whether or not the shift-sequence is a legal component of
wide characters.

The Working Group concentrates on the discussion about encoding rules where a shift-
sequence is a multibyte character, but is not a wide character. Also, the Working Group
40 considers the feasible implementations under such encodings.

We may think of some wide character sequence that consists of the corresponding wide
characters to members of a multibyte character. For example, we may think of a wide
character sequence L"\033$B", which consists of three wide characters, L’ \033‘,L’ $’,L'B’,

corresponding to a three octet (byte) escape sequence for designation of JISX0208-1983,
45 ESC 2/4 4/2.

8§2.11 Mav 16 1990 €919

v N

The Working Group cannot find any positive necessity to allow such wide character
sequences. Different implementations may convert it to different results. In some
implementations, a code conversion function invoked with such wide character string might
well go mad. Thus we conclude that such kind of wide character sequences be invalid because

5 no such wide character sequences should appear in Input/Output text data stream of type
wchar_t.

Conclusion
A shift-sequence is a multibyte character, not a wide character.

The result data being converted from a wide character string that consists of the abnormal
10 wide characters corresponding to bytes of a certain multibyte character is undefined.

2.1.3 Constraint for the execution character set
Con_cems

The Standard describes few about encoding rules. This lack of specification lead us to have
no way to reject the following unusual encoding rule, which we would not intend to accept or
15 use.

Discussions
Let us consider the following encoding rule:
e The character set is union of ASCII and the following three characters; ‘O, ‘0, and "V'.
* All single bytes except for 0x40 and 0x24 are treated in the same way as in ASCIL
20 ¢ Any single 0x24 (followed any byte except for 0x40) represents single character ‘O".
* If A byte 0x24 precedes 0x40, both two bytes represent single character ‘0’.
* Two adjacent 0x40’s mean ‘V". ’
e It is error if there are any byte 0x40 following one except for 0x24.

One way to interpret the above encoding is as follows; Any bytes except for 0x24 and

25 0x40 are mapped to ASCIl character set as soon as it appears. A byte 0x24 precedinyg viw

except for 0x40 can be treated as ‘O’. Apart from these two trivial cases, it is tremendous to

interpret byte sequence which consists of a single byte 0x24 followed by two or more 0x40s.

In order to interpret this type of sequence, we would count the number of 0x40’s. If the

number were even, the result would be a ‘O’ followed by appropriate number of ‘V's.
30 Otherwise if it were odd, a ‘0’ and subsequent ‘V’s we would get.

It would be much difficult to implement a code conversion function under this encoding
because if it had had found 0x40 following single 0x24 it should have scanned the byte
sequence until it would meet one but 0x40. This would have caused the implementation to
hold an un-predefined size of, that would be infinite size, of buffer. It is clear that this

35 requirement is not realistic at all.

According to the description in the Standard, there seems to be no way to reject such an
terrible encoding. By the way, the Standard defines a constant MB_CUR_MAX, which specifies
maximum number of bytes as a result of the wctomb() function. It is natural to regard the
constant as the size of internal buffer for code-conversion. It implies that the Standard never

40 allows such an encoding rule that there is some possibility to read infinite number of bytes in
order to get a character during code conversion. Thus we decide that it is feasible to impose
the existence of finite number of byte pre-reading on the encoding rule.

There should be such property of encoding rules that we can easily determine boundary
between two multibyte character on a byte stream. This property is necessary to ensure the
45 functionalities of the fseek() function [4.9.9.2) and the fgetpos() function [4.9.9.1] on

§2.1.2 May 16, 1990 §2.1.3
for DRAFT 2.0

Vi

10

15

20

§2.13

multibyte character streams. Thus we should deny such encoding rules that; two or more
characters may be simultaneously found out from a byte stream.

Conclusion
In order to ensure the following requirements:

e the maximum number of bytes need to pre-read in getting single character is finite and
determinable, and

 at most only one character is returned once at a byte feeding to the code conversion
function
in any encoding rules according to it, we decide to introduce the following specification:

Any encoding rules should be instantaneous, where shortest-matching interpretation is avatlable.

Shortest-Matching means that if you find a byte sequence which corresponds to a certain
multibyte character at a point, you need not to think of any subsequent bytes to establish the
multibyte character. Both this specification and the existence of multibyte character ensure that
the encoding rules be in the above requirements.

2.1.4 Execution character set and the setlocale() function
Concerns

The current value of the locale category LC_CTYPE determines the encoding rule which the
code conversion functions obey. This means an invocation of the setlocale() function which
will change LC_CTYPE category causes the code conversion functions to change its encoding
rule.

Switching the encoding rule between two read/write operatons on streams leads us to
some difficult problems, one of which is how we should treat the current shift-state. What is
the desirable behavior of wide character input/output functions after changing the value of the
locale category, LC_CTYPE.

Discussions
(none)
Conclusion

Changing the value of the locale category LC_CTYPE between two read/write operations
should cancel the validity of the data obtained by the latter operation. In other words, after
changing value of the locale category LC_CTYPE that causes to switch the current encoding
rule, the behavior of input/output streams, except ones that no read/write operations are
spplied, is undefined.

Thus, any locale value changing which causes to switch the encoding rule should occur before
any read/write operations.

May 16, 1990 §2.14

fre DD AT = 2

YR

TN

20

2.2 Wide Character Handling [3.1]
2.2.1 Type of the property argument of the set wctype() function
Background

In the design process of character classification functions for wide characters and new
5 character classes, only two functions like,

set_wctype (property-name)
and
is_wctype (wc, property-id)

which provide user- and/or dymamically- definable character classification are introduced,
10 instead of defining all possible character dassifications and their functions by collecting such
character classifications all over the world.

Concerns

The question is raised why a property argument of the set_wctype() function is not one
of integral types, but character pointer type.
15 Discussions

Another suggestion is that the property-name argument should be integral type just like the
category argument of the setlocale() function.

Whereas, several intentions of the new functions are explained:
e A property-name or class-name would be extensible, covering user-definable character class.

20 ¢ An integer type implementation of the property-name may lead to pre-definition or
registration issues of the appropriate properties (classes) by implementors or certain
authorities. It is not flexible but a constraint against freely or dynamically introducing a
new character class as appropriate.

o A character pointer type enables a flexible binding of the property in the execution
25 environment by a system command like the localdef command in POSIX.

Conclusion

The Working Group agreed that the property-name argument of the set_wctype() function
be character pointer type, taking account of the flexibility.

Moreover, since several common character classes are expected among the all
X UMpIEMENntauons, e YYUIALLY GIUKP decided 1o define and tescrve the ficlliowing cloven names

as the Standard properties:

alnum lower xdigit
alpha print
35 cntrl punct
digit space
graph upper

§2.2 May 16, 1990 §2.2.1

for DRAFT 2N

10

Bl

2.2.2 Consideration of a single byte character classification extension
Concerns

There are new functions — the is_wctype() function and the set_wctype() function for
“wchar_t” type which do not have “char” type counterparts.

Discussions and Conclusion

The Working Group discussed about possible “char” type counterparts, and came up with
the idea — they are not necessary and the functionalities which such new functions may
provide are covered by existing functions appeared in the Standard.

2.3 Input/Output [3.2]
2.3.1 Return values of wide character input/output functions
Concerns

Traditional specifications of (single byte) character input/output functions such as the
getc() function and the putc() function are defined based on the fact (assumption) that a
single byte character shall be covered by an integer. In other words, a sizeof (int) is

15 always greater than a sizeof (char), or INT_MAX > CHAR_MAX. Some of these functions
also require EOF which expands to a negative integral constant expression to indicate end-of-
file. Therefore, a function which returns a (single byte) character is almost always defined as
an integer type.

This is not true for wide character input/output functions, because a wide character

20 (wchar_t) may be more than 2 bytes. An assumption that INT_MAX > WCHAR MAX is no
longer valid.

Note that in the Japanese Extension Specifications of SIGMA Project, the assumption
INT MAX >= WCHAR MAX is made, assuming a wide character which covers a Japanese
character as well as an English character is 2 bytes:

25 typedef unsigned short wchar_t:
and each function which returns a wide character is defined as an integer type. This approach
has an advantage that the traditional conventions related to a integer, EOF handling are still
valid. However, it is a limited solution.

To get a more general specification, there were two possible solutions:
30 i. Define as a long integer type.
ii. Define as a wchar_t type.
In the Proposed Extension, ii. was selected because a long int type is lengthy in a sense, it
may prevent the implementation from tuning a size of wchar_t (since it is a typedef
quantity) and memory required to support several kinds of wide character handling functions,

35 and the assumption LONG_MAX > WCHAR_MAX is not always appropriate.

As a result, in this draft return values of wide character input/output functions are defined
as a wchar_t type wherever the function returns a wide character.
§2.2.2 May 16, 1990 §2.3.1

/7
/o

10

15

20

40

§23.2

SN o M

2.3.2 WEOF

According to previous discussion, a WEOF macro is introduced to represent return value of
wide character input/output functions at detecting the end-of-file. Although the WEOF
corresponds to the EOF for (single byte) character input/output functions, it is no longer
assumed to be a negative integer even if in many cases it will be just defined as:

(wchar_t)EOF
2.3.3 Null for wide character string literals

A wide character with all bits set to 0, is used to terminate a wide character string literal.
There is no specific macro other than the NULL to represent it.

2.3.4 No new macro for a null pointer constant to the wide character
Concerns

In conjunction with a discussion about return values of wide character input/output
functions and macros for wide character constants, there is a concern whether or not to define
a new macro which corresponds to a null wide character constant or a null pointer constant of
wide character type. For example, WNULL is suggested on the analogy of WEOF—EOF relation.

Discussions
According to the Standard (3.13.4, 3.14, 4.1.1, and 4.15],
« a wide character string terminates by a wide null character;

 a wide null character constant can be represented by L’ \0’.
In addition to that, the Standard (3.2.2.3 and 4.1.5) implies that a NULL macro can be used as a
null pointer constant of wide character type.

Therefore, there is no need to define a new macro for a null wide character constant or a
null pointer constant of wchar_t.

Conclusion
The Working Group agreed not to add a new macro fcr NULL of wchar_t type.

2.3.5 New macro for an end-of-file constant returned by wide character
functions

Concerns

As we propose wide character input/output functions such as the getwc() function, the
getwchar() function, or the £getwc() function, it is no doubt that the functions need to return
end-of-file.

Can they return EOF as end-of-file?

The Working Group feels that the Standard assumes following facts on relations between
character (or byte) input/output functions and EOF:

F1 A return value is treated as an int.

F2 On any actual implementation, a storage size of an int is truly greater than that of a
char.

F3 EOF expands to a negative integer constant.

By analogy, on wide character input/output functions, their return value seems to be
treated as an int, and their end-of-file macro shall be EOF.

But conflict occurs on some implementations on which integral type is represented in two’s
complement representation, a storage size of an int object is 16 bits, and wchar_t is defined as

May 16, 1990 §2.3.5
for DRAFT 7 0

T\)

10

15

20

30

35

§235

iSh e it

unsigned short. In this case:
maximum value of wchar t > maximum value of int

can be true. Some wide characters will be treated as negative. Therefore, we cannot
distinguish them from EOF.

The Working Group can solve this confusion if there exists the fact F2. To admit the F2 may
mean as follows.

F2-2 Every wide character, regardless of any locale specific, can be represented in positive
int.
Since this request is too severe, we cannot solve the confusion with this approach.

Discussions
To solve this confusion, two suggestions were under examination by the Working Group.

* Suggestion 1:
Instead of the FI, we introduce:

F1-2 A return value is treated as a long int.

However, this is not quite solution if

maximum value of wchar_t > maximum value of long int
is true.

® Suggestion 2:
Instead of the F1, we introduce:

F1-3 A return value is treated as wchar_t.
However, another confusion occurs on some Japanese common implementations on which a
storage size of an int object is 32 bits and wchar_t is defined as an unsigned short.

wchar t wC;

/ﬁ Ak %k t/

if((wc=getwchar()) == EOF)
/i
* As the wc has unsigned short type,
* it cannot be negative.
wj

Therefore, to admit the FI-3, we need the special wide character WEOF, which means end-
of-file of wide character input/output functions stream and will expand to (wchar_t) (-
1) or to (wchar_t)EOF.

Conclusion

The Working Group rejected the former solution because it has no expansion and is due to
non-effective handling to wide character. As a result, the Working Group selects the latter
solution, eventually a returned value from input/output functions for wide character is treated
as a wchar_t, and there exists WEOF as end-of-file of wide character input/output functions.

May 16, 1990 §2.3.5

fre AP A~ ~ - Y iy

G5 b o

2.3.6 Error handling during the code conversion in the functions
Concerns

There is an opinion that when an invalid data (violating of the encoding rule) is found
during code conversion, wide character input/output functions should return the value
5 indicating invalid code error.

Discussions

It may be useful to be informed the occurrence of an invalid code error. There is no reason
to refuse this information.

There is another opinion that programmers may want to write a program where the

10 erroneous data are skipped to recover from the error if the program detects it. But in order to

implement error recovery it is necessary to impose some kind of restrictions upon the

encoding rule. It is not suitable for the Standard to restrict encoding rule because there is a

criteria that unnecessary restrictions should not be imposed upon the encoding rule in the
Standard .

15 The Working Group should regard data which include erroneous code as totally unreliable.
From this point of view invalid code error is similar to read/write inputfoutput error.

Conclusion

Any wide character functions should detect an invalid code if it occurs. 1f they find it they
should return any error value.

20 ¢ For example, The £getwc() function will return WEOF.

e It is implementation-defined whether there is an individual error value which ferror(and so
on.) returns to identify inwalid code error.

2.37 Insufficiency of the Standard multibyte functions in a shift-dependent
encoding

25 Concerns
In the Proposed Extension we can find the following description:
The corversion (in wide character inputfoutput functions) is done as if such functions call wctomb
andJor westombs functions.
But it is almost impossible to implement these wide character input/output functions with the
30 Standard multibyte handling functions (mbtowc, mbstowcs and so on).
Discussions

If it may handle a shift-encoding rule, it is impossible for the Standard multibyte handling
functions to treat two or more byte streams. See section 3.4 in this document.

On the contrary, each byte stream has its own FILE structure that keeps the current shift-
35 state in code conversion.

Conclusion

In spite of the above description (in the Proposed Extension) we cannot implement code
conversion mechanism in wide character input/output functions with only the multibyte
handling functions in the Standard.

§2.3.6 May 16, 1990 §2.3.7

far DRAFT 2N

115

2.3.8 Redundant shift-sequences and a file position indicator for the stream
2.3.8.1 the fgetwc() function and file position indicator
Concerns

When the fgetwc() function is called for the multibyte character sequence which contains
5 redundant shift-sequence, where should the file position indicator point to after its execution?

Discussions
Example 1:

SI SO SI SO SI XX YY SO
LB 28 T QRIS Bl T 819

10 The file position indicator points to the top of redundant shift-sequence (position 1).
After the execution of the fgetwc() function, to where the file position indicator
advance.

Example 2:

SI XX SO SI SO SI SO SI YY SO
15 102534 5067 809 10511

The behavior for such redundant shift-sequence is implementation-dependent. However,
what we mean in the paragraph of the fgetwc() function in the Proposed Extension:

The file position indicator is advanced for one multibyte character obtained.
is to advance the file position indicator one wide character.

20 Conclusion

Example 1:
position 1 — fgetwc() — position 7 = fgetwc () —
position 8
Example 2:
25 position 1 — fgetwc() — position 3-9 (implementation

dependent) — fgetwc() — position 10
2.3.8.2 The £getws(function and the file position indicator
Concern

To define the specification of the £getws() function using that of the fgets() function as
30 basis, the original description of the return values of the £gets() function in the Standard:

If end-of-file is encountered and no characters have been into the array, the contents of the array
remain unchanged and null pointer is returned.

(4.9.7.2) the semantics of the term “‘no character’” must be clarified.

That is, whether it is true — “no characters have been into the array” - when the current
35 file position indicator points to the redundant shift-sequence like SI SO SI SO SI SO and
advancing the position to seek the next character results to EOF.

Discussions

It is obvious for the implementations where there exists no wide characters which
corresponds to the shift-sequences themselves.

40 Being mainly composed of “wide characters” which are stored in the array, the description
(specification) should not state the points above, explicitly.

§2.338 May 16, 1990 §2.3.8.2

)24

Conclusion
The description should handle “wide character” to be stored in the array, its "subject” as:

If end-of-file is encountered and no wide characters have been into the array, the contents of the
array remain unchanged and null pointer is returned.

5 2.3.9 Names of the new conversion specifiers in the format character string
Concermns

The conversion specifiers for wchar_t type were named as sws and %$wc, instead of %1s
and %1c, neglecting an existing implementation of the similar specification. This is because the
consistency with the name of type wchar_t.

10 2.3.10 Precision and field width interpretation of the wide character
specifiers

Concems

The Working Group has discussed the field width and the precision for swc, sws on
formatted input/output functions, such as the print£() function and the scanf() function.
15 The following shows the reason why the Working Group should have defined new semantics of

field width and precision for $wc, $ws which are different from those for sc, %s.

) As you can see in the following figure, the formatted input/output functions are the data

i processing between character-oriented environment which processes by character, and byte-
oriented environment such as file, stream and peripheral which processes by byte. This means

20 that a unit of field width and precision closely depends on the relationship between a unit of
character and a unit of byte.

scanf o fscanf
Fo=—=—- L — = > input <
| (char)
RN
displa) = sscanf
lri?\tez' presen- . 7)‘" " buffer file memory
fb te?) soon output slchar) database| ™ ”| (byte)
) (byte)) sprincf (char)
hardware }:\ hardware
1
Lo - - -—-— < output >
prinef/vprintf ha fprintf/veprintf
application

The Standard defines that field width and precision for %c, %s are counted by number of
characters. In “single-byte character” world, a unit of character is equivalent to a unit of byte,
25 since 1 character is usually represented by 1 byte.

On the other hand, input/output functions with $wc and %ws is the data processing
between “character” and “byte”. Note that “character” means multibyte character. Therefore,
the Working Group has discussed whether a unit of field width and precision for $wc and $ws
is “byte’” or *’character” or ...

§2.38.2 May 16, 1990 §2.3.10 / 2

-17 - .

Rl g o ey |
[Scaatii] 3 fscanf
P S - > input <
) (wchar_t)
1
2 sscanf
: (
display presen- in 7;" R bChfaf[) file memory
pnntir tation output_l SPrinte ’\u €r | |database[™ (byte)
(b)’te-) (byte) (»}; wsprincf Wehae_c) (char)
hardware B hardware
1
1
Gl e et - output ; 3 e
prirdef/vprintf (wehar ¢) | fPrintf/viprintf
application
Discussions

The functions which support $wc and $ws specifiers are:

* the print£() function, the sprintf() function, the fprintf£() function, the vprintf()
5 function, the vsprint£() function, the v£print £() function

¢ the scanf() function, the sscanf() function, the £scanf() function
¢ the wsprint£() function
¢ the wsscanf() function

The following was the candidate as a unit of $wc and $ws.

10 i. character ... size of wchar_t
ii. byte ... size of char
iii. display width

The Working Group thought iii. display width should not be controlled by C language.
Therefore, discussed i. character and ii. byte.

15 And further, the Working Group assumed that the field width and the precision are
significant to specify when the environment is satisfied each of the following condition, A or B.

A-1 A display width of all single-byte characters are equivalent, and
A-2 A display width of all double-byte characters are equivalent, and
A-3 A double-byte character is twice of a display width of a single-byte character.

20 B-1 A display width of both all single-byte characters and all double-byte characters are
equivalent.

For the environment which is not satisfied neither of above conditions, such as supports
proportional font, we may specify the width based on a unit of display device and printer,
such as dot or inch. This support will be included in future enhancement, when it is thought

25 to be useful and significant. ~

i. The printf family functions
Generally, when user specifies the field width/precision in output functions, he will
decide those according to the width which the data occupies on device. From a this
point of view, it is significant for a unit of field width/precision to be byte, since these
30 functions write to display, file and stream. Note that a unit of display width can be

8§2.3.10 MAav 142 100N e 2 27y A

- 18 -

considered to be equivalent to byte. However, regarding the fprint£() function and the
vEprint£() function which write to display, the following should be considered. The
Working Group has the display which takes the position for control character, such as
shift-state switching code on state-dependent encoding, and also we have the display

5 which does not take. If the display does not take the position for control character, it
should be supported to specify the number of byte without control characters. Because
user wants to specify the width, which the data actually occupies on device, as field
width/precision.

Further, from the following application usage, field width and precision should be
10 consistent with a width of display.

The field width and the precision are used to arrange any data in table of database, as
follows:

1234567890123456789012345678901234567890

1 111111 abcXXYY XXXXXX AXXXXXXXX

2 222222 XXYYZZdefg XXXXXXX XXXXXXXXX

3 333333 abcdefg XXXX XXXXXXXXX
1,2,..., a,b,c,...: single-byte character
) &, @b & Gein NI : double-byte character

Since the precision is maximum number, converted value may be truncated when it 1s

1 longer than precision. Then, the precision is useful on output as above. On the other
hands, since the field width is minimum field width, all of converted value will be
displayed, not truncated. So, user can specify the length, which is enough to put any

data in one column, as field width. When the field width and the precision are specified

X by character, data width may be variable and unpredictable as you can see in the
20 following.

Example 1: Output by "character” (7 multibyte characters)

123456789012345

abcD1D2D3D4
D1D2D3D4DSD6ED?
abcdefg

a,b,c,...: single-byte character
D1,D2,...: double-byte character

However, if precision is specified by character, we can get the output that is
consistent across the environment. That is, as you can see in the following, the character
contents is same whether the environment supports shift-dependent encoding or not.

25 From this point of view, the spedfication by characters seems to be useful. Of course,
this is applicable only when output data can be truncated, that is, applicable for
precision.

§2.3.10 May 16, 1990 §2.3.10

for DRAFT 2.0 o

- 19.-

Example 2: Output by “character” (8 multibyte characters)

12345678901234567890

aD1bD2cD3dD4
a<D1>b<D2>c<D3>d<D4>

a,b,c, ... 8ingle-byte character
D1,D2,...: double-byte character
<,> : control character for shift-state switching

ii. The scanf family functions
The width parameter on these input functions is-useful for input of several data which
are formatted in certain rule like a table, as shown below:

1234567890123456789012345678901234567890

1 111111 abcD1D2 XRXXXXX XAXKXNX XXX
2 222222 D1D2D3defg XXXXXXX XXXXXXXXX
3 333333 abcdefg XAXXX AAXXXXXXX

So, at this kind of input processing, user will specify the width of input data in order to
limit the length of character data which he wants to convert. Then, the specification by —
byte should be supported.

iii. The wsprintf£() function and the wsscanf() function

10 These input/output functions include code conversion in between wchar t and
wchar_t. So, the specification by character, which is equivalent to by wchar_t, is
proposed.

Conclusion

Except i. on above discussion, the Working Group has agreed. Regarding i., that is, the
15 print£() function, the sprint£() function, the £fprint£() function, the vprint£() function,
the vsprint£() function, and the vEprint£() function, there was the following proposal.

Proposal-1 | Proposal-2 | Proposal-3
printf: field length | byte byte byte/char
predision byte byte/char | byte/char

byte: specified by byte
char: spedified by character
20 byte/char: specified by byte or character, switched by # flag

The result of vote was:

Proposal-1: 1
Proposal-2: 7
Proposal-3: 5 —

According to above and more discussion, the conclusion of the Working Group was proposal-2.
Therefore, proposed the following semantics of the field width and the precision for $wc, $ws.

§2.3.10 Mav 16 1990 §2310 /27

e o I

functions field width precision

printf (), byte "char” byte "char” (as default)
sprintf (), character "wchar_t" (with #flag)
fprintf (),

vprintf (),

vsprintf (),
viprintf ()

scanf (), byte "char”

sscanf (),

fscanf ()

wsprintf () character "wchar_t" | character “wchar_t" (even if #flag)
wsscanf () character "wchar_t”

Further Discussions

Even though the Working Group has once concluded this proposal, there may be required
some discussions in order to make the functionality be more useful. So, the Working Group will
S take the more consideration and reflect to next revision of the draft if change can be made.
2.3.11 Scanset discussion for multibyte characters
Concerns

In the review process of completeness of the Proposed Extension, it is pointed out that
multibyte or wide character discussion is missing regarding “scanset” of the scanf() function
10 family.

In order to complete a new paradigm using wide character functions, it is suggested to
discuss this topic.

Discussions
The Standard says {4.2.6.2):

15 The format shall ve a multibyte character sequence, beginning and ending in its initial shift-state.
The format is composed of zero or more directives: one or more white-space characters; an ordinary
multibyte character (neither 8 nor a white-space character); or a conversion specification.

On one hand, in the specifiers description of the Standard:

As Matches a sequence of non-white-space characters. (*118)

20 s[Matches a nonempty sequence of characters (*118) from a set of expected characters (the
scanset).

sc Matches a sequence of characters (*118) of the number specified by the field width. ...

*118 No special provisions are made for multibyte characters.
25 The above shows:
e The scanset representation cannot handle a multibyte character as a single ‘‘character”.

e Therefore, a complement (circumflex ~) expression of the scanset cannot correctly specify a
“character’” group which may include multibyte characters.

Consider a example: %[~0123456789]. Does this match multibyte characters which
30 may appear in the execution environment? :
These issues imply incompleteness of multibyte character features in the Standard, and thus it is
suggested in the Working Group that the Proposed Extension should cover the issues.

§23.10 May 16, 1990 §2311 /27

0 B

On the other hand, due to lack of discussion time, several members proposed to postpone
re-examining the issues until the next draft.

Meanwhile, it is noticed that these issues are also found in the strscn() function and the
stresen() function. For example, there is no discussion in the Working Group about a
5 complement character set in the strcscn() function from a multibyte point of view.

Although the wcsen(function and the wescsen() function specifications in the Proposed
Extension give one of the solutions to the problems, the discussion is not completed.

Conclusion
The Working Group decided to postpone the discussions until the next revision of the draft.

10 2.3.12 Field width of shift-sequences for the %wc specifier of the fscanf
function

Concerns

Should define the default field width for $wc on formatted input library functions. As you
know, the byte length for one multibyte character is variable. For state-dependent encoding,
15 some shift-sequences are encountered in the code sequence in order to switch the shift-state.

Discussions and Conclusion
The Working Group decided to postpone the discussions until the next revision of the draft.
2.3.13 Field width for the %ws specifiers and its portability 3

The Working Group discussed whether the field width for %ws should be interpreted as
20 number of byte or number of character.

The word “characters” here means not only “single-byte characters” but also means “multibyte
characters”.

Interpretation of both field width and precision as number of character

* Basis of interpretation
& If a programmer specifies field width and/or precision in consideration of printing format,
it has no meaning to interpret these as number of byte. Even if each output devices have
their own character sizes, it seems that it is intention of a programmer that the field width
and/or precision should be interpreted as number of character.

¢ Problem
30 It is necessary for a programmer to be conscious of correspondence between the wide
characters and their sizes on specific output devices.

Interpretation of both field width and precision as number of byte

¢ Basis of interpretation i
When field width and precision are interpreted as number of character, character sizes are
35 different according to the output device. So it seems that field width and/or precision are
available in such cases when a programmer would like to be conscious of buffer size for
input/output.

¢ Problem
When a programmer would like to be conscious of output format, the programmer should
40 calculate the character sizes by using number of byte.

Conclusion

The above two discussions have both merits and demerits, so we agreed with the
specification proposed for more details, refer to 2.3.10.

§2.3.11 May 16, 1990 §2.343 /2

RS2

2.3.14 Overhead of the %ws support

There was discussion that overhead for library is increased with supporting %ws conversion
specifier. But programming language C is utilized internationally and utilization of multibyte
is indispensable on the occasion of internationalization. Now, for multibyte code only 5

5 functions are supported in the Standard but these functions are not enough for handle
multibyte code systematically. Therefore, we proposed standardization of additional functions
from point of view that handling of multibyte code is important.

2.3.15 %s vs. %ows

Though these are the same in function, we consider the value of sws is enough for
10 existence to handle multibyte systematically as wchar_t type. So we proposed %ws
conversion specifier.

2.3.16 sprintf/scanf vs. wsprintf/wsscanf
Concerns

The following two concerns were raised during a wide character extension discussion about
15 sprintf/sscanf family.

e Format extensions like $wc and $ws are sufficient’
e What about an extension of the target memory to a wide character memory array?
Discussions

e The Proposed Extension aims at establishment of a new programming paradigm based upon
20 the proposed wide-character-oriented functions, in order to ensure international portability
of the C programs that use this extension.

e The sprint£() function and the sscanf() function are frequently used and important as
well as the print£() function and the scanf() function. Espedially, programmers prefer
the sscanf() function to the scanf() function. Therefore, wide character variants of the

25 sprint£() function and the sscan£() function are requested by several C communities.

e Wide character functions corresponding to the sprint£() function the sscanf() function
have been proposed and defined by both the “Japanese UNIX System Advisory Committee”
(April, 1985) and the SIGMA project (SIGMA OS Japanese Extension Specification, March

19%0).
30 e There is no strong objection against the wsprint£() function and the wsscan£() function.
Conclusion -
The Working Group decided to add the wsprint£() function and the wsscan£() function to
the Proposed Extension.
§2.3.13 May 16, 1990 §2.3.16 / 2/
- T\DADTT 2N e

SR j

2.4 Future Library Directions [3.6]
2.4.1 Naming conventions of the wide character functions

Concems

If we introduce library functions for multibyte character and/or multibyte string processing

5 without any naming rules, it will make both users and implementors of such library functions

confused. The Working Group may have to establish some naming convention for such
functions and to follow it.

Discussions

i. The Standard describes on the length of identifiers as: “... the implementation may further
10 restrict the significance of an external name (an identifier that has external linkage) to six
characters ...”" [3.1.2].

The function names of the multibyte library which we are going to define should be
identified with first 6 letters.

ii. The Standard describes that “function names that begin with str, mem, or wcs and a

15 lower-case letter (followed by any combination of digits, letters, and underscore) may be
added to the declarations in the <string.h> header.” [4.13.8]. The functions names of

the multibyte library which we are going to define should be prefixed with wcs, as much

as it is possible.

Conclusion

20 The Working Group introduces following conventions for the function names of the

multibyte library:

<ctype.h>

<stdio.h>

40

§2.4

the wide character functions which has single byte counterpart is named,
adding w, to mean wide character, following to the is or to.

Examples

isalnum o iswalnum
tolower o towlower

The set_wctype(function and the is_wctype() function do not
follow this rule, since these are new and have no single byte
counterparts.

Considering the rule ii. above, the names of the get/put family functions
for wide character have wc and/or ws following to the get/put. If we
follow the rule 2. above, the wide character counterpart for the fputs()
function would be the fputwcs() function, and it could not be
distinguish with the £putwc() function for their first 6 letters. With the
similar reasons, wide character counterparts for the sprint£() function
and the sscanf() function are preceded by a w.

Examples
fgetc o fgetwc
fputs o fputws

sprintf o wsprintf

The the printf() function, the fprintf() function, the sprintf()
function, the scanf() function, the fscanf() function, the sscanf()
function, the vprintf£() function, the vfprintf() function, and the
vsprintf() function have just been added new conversion specifiers -
$wc and $ws, and there existing functionalities are not changed.

May 16, 1990 §2.4.1

o

- o~

L./

10

15

20

§2.4.1

oq

<string.h> the function which has traditional counterpart is named by replacing
corresponding str with wes.
Examples

strcpy O WCSCpy
strcat (o g wcscat

<time .h> Same as <string.h>.

2.4.2 Header files

Concems

The location of the function prototypes for the multibyte library functions should be
specified by the extension. Existing implementations have different definitions.

Discussions
Following ideas were discussed:

i. Following the naming convention, <wctype.h>, <wstdio.h>, <wstring.h>, and so
forth should be introduced.

ii. All the function prototype should be located in the existing header file <stdlib.h>
where the wchar_t type is defined.

iii.’ Introduce a new header file, and put all the prototypes for the library in there.

iv. Each prototype for the library functions should be located in the existing header files
which correspond to the single byte counterparts. .

If we choose i. above, the relationship between new header files with traditional ones,

especially their dependencies, becomes complicated. For example, user may have to include

two header files in prior to <wstdio.h> in some implementations, as below:

#include <stdlib.h>
#include <stdio.h>
#include <wstdio.h>

If we do ii. above, the user of the header file <stdlib.h> who doesn’t need wchar_t but the
others in the header file must incorporate the large set of prototypes of the multibyte library
functions. iii. above appears economic, but not so intuitive.

In the past, there appears opposition to add new things to the standard header file,
espedially to <stdio.h>. In the Standard, contents of the standard header files appears to be
dealt tolerantly in the various environments; some data types like wchar_t are declared in
both <stddef .h> and <stdlib.h>, for example.

Conclusion

The Working Group will not define new header files for the multibyte library functions, but
to add declarations and definitions of prototypes to the existing header files.

The Working Group does not assume that <stdlib.h> and/or <stddef .h> are included
before the corresponding header file, even though the multibyte functions defined in it refer to
wchar_t type. On- the other hands, it should be an implementation issue to avoid the
multiple definitions of data types in various header files, when these are included to a file, just
like data types in <stdio.h>and <stdlib.h>.

May 16, 1990

£ TSDATYTT"N

vn
9
&
19

1)

225%

3. Rationale - not corresponding to SC22/WG14/N104
3.1 Default locale at program startup

Concerns

The Standard describes that an application program should behave as if

5 setlocale (LC_ALL, "C*); is executed at start up time (4.4.1.1]. However, it must be

useful for real programs to expect setlocale (LC_ALL, "“"): is executed instead of above.
That is, the locale at start up time of application programs is the default locale of the system.

Discussions

The Working Group consulted the meeting minutes of X3J11 on this issue to avoid

10 duplication of discussions on the resolved matter [X3]J11/85-092, X3J11/86-109, X3J11/86-125,

X3]11-86-145, X3]11/86-151). As result, the Working Group found that the current specificatior

was decided by a ballot, while no real discussions prior to the ballot are recorded in the
minutes.

Possible concerns must be on the behavior when the default locale cannot be obtained.

15 Conclusion

Since it appears that the issues was discussed in X3J11 great deal, the Working Group
decided to just follow the current specification. However two questions on the specification
below were raised:

i. There is a description in the Standard:
20 ... at program startup, the equivalent of setlocale(LC_ALL, "C"); is executed.

It is not clear that the phrase — “‘is executed ' means something like — ““shall be executed”’,
or not.

ii. The definition of the "C" locale - ‘‘minimal environment for C translation’’ is not clear.

3.2 No wide string counterparts for the file handling functions

25 Concemns

During the survey of multibyte extension to the Standard functions which take character
and/or string parameters as their arguments, it is asked whether or not the functions which
have “filename”’ argument like the remove() function [4.9.4.1], the rename() function (4.9.4.2],
the tmpname() function (4.9.4.4], the fopen() function [4.9.53), and the freopen() function

30 [4.9.5.4) should be extended as corresponding wide character functions.

Discussions
e Positive discussions:

P1 “A Proposal to the ANSI C” produced by the Japan C Language Committee in 1987
addresses several extended functions as follows:

35 — 1_remove (const letter *filename) ;
— 1 _rename (const letter *old, const letter *new);
o .'I._tmpname(letter s*);
— 1_fopen (const letter *filename, const char *mode)’

— 1_freopen (const letter *filename, const char *mode,
40 FILE *stream)’
[X3]J11/87-064)

§24.2 May 16, 1990 §3.2

o TYDALCLT 9N

2965

Note: letter corresponds to wchar_t in the Standard.

P2 Aiming at a full set of wchar_t functions corresponding to traditional char
functions, these functions like the wfopen() function, the wfclose() function, and so

A HAae nvn nAt ik

3 s : 4 o Y thate g
Vil WOUIld Le suppuiicd CVC Liougil waedd p.wumﬂ are nos &

5 P2’ Since the Working Group endorses a programming paradigm that all "character”
strings and arguments should be handled as wide character arrays and manipulated
using wide character functions, such philosophy should be applied to these filename
arguments and functions.

* Negative discussions:

10 N1 Because a file name is an implementation-dependent system (kernel) interface issue
and the name space issues are out.of the Standard scope, there is no need to
introduce new wchar_t functions that handle filename as a wide character string.

N2 A genuine intention of the enhancement of wchar_t functions in the Proposed
Extension lies in providing enriched functions that directly contribute to ease of
15 mumoyle character processiiiy i ploglalis, as wéll o as ;L;bk)

processing.

Rl s a A g
oyl Characier

Therefore, there are no good grounds for adding wchar_t filename functions.

Conclusion

The Working Group agreed upon not to add new functions which take filename as in
20 wchar_t.

3.3 No extension to harden the Standards multibyte functions in a shift-
dependent encoding

Issues

The detailed studies in the Working Group shows that the specification of the Standard

25 multibyte functions — the mblen() function (4.10.7.1], the mbtowc() function [4.10.7.2], the

wetomb() function [4.10.7.3), the mbstowcs() function (4.10.8.1], the wcstombs() function
{4.10.8.2) are not sufficient in a state-dependent encoding.

It is clearly pointed out that in order to ensure a correct behavior of the functions even in
any state-dependent encoding, necessary are several specification changes like introducing new
30 argument which can hold, notice and specify the current state information of the encoding.

Another issue is whether the Working Group should go further by enhancing the mbxxx()
functions family interfaces, as well as proposing enriched wide character functions.

Discussions
To resolve the problems, there are several options:
35 i. Change the Standard multibyte function interfaces;

ii. ‘Not change the interfaces, but add a certain restrictive description for state-dependent
encoding cases;

iii. Neither change nor add to the current specification. Rather, endorse wide character
functions in the Proposed Extension instead of the multibyte functions in the Standard

40 The option i. is evaluated as the most difficult solution, because it requires a lot of
discussions about the state-dependent encodings and at the same time there may be large side
effects to the existing function interfaces and their programming style.

§3.2 May 16, 1990 : $33 /5

5

10

15

20

40

§3.3

o AR

The options ii. and iii. are considered as feasible solutions.

Decision

The Working Group believes that it is inadvisable to harden multibyte handling functions of

the Standard in the state-dependent encoding environment.

Therefore, the Working Group decided not to enhance the interfaces, rather to take the

options ii. and iii. above.

3.4 Insufficiency aspects on code conversion in the Standard

Concerns

i. The mbstowcs() function and the wcstombs() function can handle more restricted class
of shift-encoding rules than the mbtowc() function or the wectomb() function.

ii. The mbtowe() function and the wctomb() function cannot handle two or more data

streams simultaneously.

Discussion

e We should regard the mbstowcs() function and the westombs() function as separated from

the mbtowe() function and the wetomb() function. This is because the former can be handle
more restricted class of shift-encoding than the latter.

Only the strings that start on initial shift-state can be fed to the mbstowcs() function.
This means that you should find where initial shift-state is with no help of any library
functions, only which should know about the encoding rule.

Because the result multibyte string which the westombs() function returns is always
SITI (Start Initial Terminate Initial, it means the property of multibyte character string that
starts and terminates on initial shift-state), the concatenated data may include redundant
shift sequences.

If the encoding rule accepts no such redundant shift-sequences, you should write codes
to throw the redundant sequences away so that the resulting multibyte strings be
interpreted according to the encoding rule. Generally speaking, this is not feasible to
implement, because it is very tremendous to interpret on a shift-encoding in general.

On the contrary, if the encoding rule allow us to easily determine where initial shift-
state is (for example, encoding on which initial state occurs at each end-of-line.), the
mbstowcs() function and the westombs() function may be useful.

Some additional regards should be needed if you would like to handle two or more text
data streams (NOTE: the meaning of the phrase “text data streams” above is different from
the term “text stream” in the Standard) with the mbtowc() function and the wctomb()
function on some shift-encoding. In such a case you will find it is necessary to hold one
current shift state for each of these streams. As for the mbtowc() function and the
wctomb() function, because each of them are expected to hold one shift-state in its static
storage hidden from the programmers, they can handle single text data stream at a time.

- They are not sufficient for applying two or more text data streams. In order to solve the
problem, we should introduce a new argument pointing to the current state of code-
conversion into arguments of the mbtowc() function and the wectomb() function.

We should note that there is a policy of the Working Group not to touch the description in
the Standard itself.

May 16, 1990 §34
for DRAFT 20N

g
/s

10

15

20

§3.4

~28.-

Conclusion

We will point out the problem in multibyte handling functions of the Standard in this
Rationale. We will not propose a plan to modify the specification about multibyte handling
functions in the Standard.

3.5 A code value of the wide character data
Concerns

The Standard specifies the following [4.1.5] regarding the wchar_t code value for basic
character set:
... each member of the basic character set defined in 2.2.1 shall have a code value equal to its value when
used as the lone character in an integer character constants. :

As the meaning of above the Standard statement, the following two meanings may be
expected.

i ‘A’ = L'A’ Supposing ‘A’ has code value x’AA’, L'A’ is
x’00..0AA".
ii (char)’A’ == (char)L‘A’ Supposing ‘A’ has code value x’ AR, L'A’ is

X’ *% _*AA’.
Note that * ** - _*/ can be any code value.
Discussions
(none)
Conclusion

The Working Group recognized C compiler is implemented based on interpretation i. above.
That is, wchar_t value of the basic character set pre-pends code value zero to its value.

3.6 String concatenation problem about shift-sequence handling
Concerns
In a shift-encoding environment, what is the result of the st ramp() function.

char *sl = "XXYXY"; /* SI XX YY SO */
char *s2 = "XX""YY"; /* SI XX SO SI YY SO */
int result;

result = strcmp(sl, s2);

Discussion

During the translation phase, the character code in the physical source files are mapped to
the source character set and the members of the source character set in string literals are
translated in to the execution character set. String concatenation for the pointer 32 above, then
is executed [2.1.12].

On the other hand, shift-sequence (SI or SO, here) can be treated as element of the
multibyte character set [22.1.2). Therefore, shift-sequences in the string literal remains after
the string concatenation as an individual elements of character set.

Conclusion

In general, the result of the strcmp() function as shown above will be false, for shift-
encoding environments.

May 16, 1990 §3.6
for DRATT 2 A)

LAy
~

10

15

20

25

30

-29 -

3.7 % character in the format string of the fprintf() function
Concerns

In the 7 bit encoding rule according to 1502022 (Code Extension) where there are two
character set, ASCII and JISX0208-1983 (Japanese characters), there are two “percent”
characters, one is in ASCII, the other is in JIS characters.

If there are two or more “percent” characters under some encoding rule, how should they
be treated in format argument of the fprint£() function?

Discussions

The Standard clearly tells about the question. It tells that we should treat only one in the
basic execution character set (in the.above example, one in ASCII) as escape character of
format argument.

Conclusion
The Standard expect that:

the special characters in format argument is ones in the basic execution character set.

3.8 Effects of the setlocale() function
Concemns

In the Standard, the functions whose behavior is affected by the value of current locale are
as follows:

e the functions which are influenced by LC_COLLATE
the strcoll() function, the strxfrm(funph'on

* the functions which are influenced by LC_CTYPE
the character handling functions except the isdigit() function and the isxdigit()
function.

« the functions which are influenced by LC_TIME
the strftime() function ‘
In the Proposed Extension, the following functions are influenced by the locale additionally.

e the functions which are influenced by LC_COLLATE
the wescoll() function, the wesx£frm() function

e the functions which are influenced by LC_CTYPE
the iswxxx() functions family, the towxxx() functions family

e the functions which are influenced by LC_TIME
the wes£time() function

Discussions

The Working Group agreed it should be written apparently in the Standard that the locale

35 specified by the setlocale() function influenced in the Proposed Extension.

§3.6

Conclusion

The following contents should be added to the next revision of the Standard.

* Adding the wescol1() function and the wesx£rm() function to the functions influenced by
LC_COLLATE

May 16, 1990 §3.8

b~Ar MDATT AN

AN

B Ts

 Adding the iswxxx() functions family and the towxxx() functions family to the functions
influenced by LC_CTYPE (contents of footnote 98)

* Adding the wesftime() function to the functions influenced by LC_TIME.

§3.8 May 16, 1990 §3.8

fre MDD & —= -

10

15

20

25

30

35

§3.8

el i

A. APPENDIX: Conversation with XOpen Internationalization
Working Group

A.1 Comments/Requests from X/Open

This memo was disiributed ai iTSCJiSC22iC WGiSWG meeting on 20ik December |
and is now translated into English to help reading replies from the group.

From: X/Open Internationalization Working Group

To: ITSCJ]/SC22/C WG /Sub-working Group on Multibyte Support Functions

Subject: Comments and Proposals on the Draft Proposed Multibyte Character Support
Extension for ANSI C (Draft 1.2)

Date: Wed, 20 Dec 89 12:23:45 +0900

A.1.1 Comments
A.1.1.1 On 2.3.1 Streams

The reason why the description of the fgetpos() and fputpos() functions were separate
from those of the ftell() and £seek() is unclear. You had better to rewrite the paragraph.

A.1.12 On state-information of the state-dependent encodings

The mbtowc() function cannot be applied to multiple multibyte character sequences at a
time; state-information should be managed at least per stream. Please forward this comment to
1SO.

A.1.13 On multibyte characters and single-shift characters
(also from X/Open Kemel/RealTime Working Group)

It is not clear that how implementors of the ANSIC can read the description of multibyte
characters when they want to support encodings which use single shift characters. Please
forward this comments also to ISO and/or ANSI.

A.1.14 Error conditions for input/output operations

In your proposal, input/output functions return WEOF, when they encounter errors, during
the input/output operation, while it is hard for users to distinguish real input/output errors
with the errors during the conversions like the mbtowc() function does.

Even though you don‘t plan to define error conditions (errno) in your proposal, you'd
better to describe the fact — there exist two types of errors during input/output operation.

A.1.2 Proposals
A.1.21 Change Requests
Please consider to add following changes in your proposal to ISO.

® The “,” flag character for print£f ()
Please refer the attachment [XoTGinter:547].

® strftime ()
Please refer the attachment [XoTGinter:546].

® wcsftime ()
Same with the change requests on the strftime().

May 16, 1990 §A.1.2.1
for DRAFT 2.0 / L/’p

232

Printing Position vs. Bytes in printf() /scanf () family
Please refer the attachment [e-mail from Tom Yap].

A.1.2.2 Addition Requests

Please consider to add following new functions in your proposal, to synchronize with

5 X/Open function set.

* strfmon ()

10 °

15

20

40

Please refer the attachment [XoTGinter:548].

strptime ()
Please refer the attachment [INT/1289/12].

mbfresync () t

Skip the data to the next ““valid spot” on the stream, after a read error occur during the
read of multibyte character, and returns the number of bytes skipped. Implementations of
the function may skip all the bytes from the input stream till they encounter end-of-file.

mbresync () t
The buffer version of the mbfresync() function, below.

mbwidth () t
Please refer the attachment [mbcol() in XoTGinter:594, mbscol() in XoTGinter:597]

nl_cat () t
which corresponds with:

char *p:
(*p):

nl_padvance()+

which corresponds with:
char *p:;
(*p++)

nl mbat () +

which corresponds with:
char *mbcp:
(*mbcp) ;

where mbcp is the pointer to a multibyte character.

nl_mbadvance () t
which corresponds with:

char *mbcp;
(*mbcp++)

where mbcp is the pointer to a multibyte character, and is advanced to the next multibyte
character [mbsadvance() in XoTGinter:601).

t The name of the function might be changed later.

§A.1.2.1

May 16, 1990 §A122

fAar MR ATT 2 A

/4

10

15

20

§A1.2.2

e i

nl mblen () t
The stateful mblen() function, taking the shift-state as another argument [s_mblen() in
XoTGinter:593].

nl mbstowcs () t

The stateful mbstowcs() function, taking the shift-state as another argument
[s_mbstowcs() in XoTGinter:591].

nl mbtowc () i

The stateful mbtowc() function, taking the shift-state as another argument [s_mbtowc() in
XoTGinter:592].

nl wc()t

which corresponds with:

wchar_t *wcsp:;

(*wcsp) ;
nl_wcsadvance() t

which corresponds with:

wchar_t *wcsp;

(*wcsp++) ;
nl wcstombs () t

The stateful wcstombs() function, taking the shift-state as another argument
{s_wcstombs() in XoTGinter598].

nl wctomb()f
The stateful wctomb() function, taking the shift-state as another argument (s_wctomb() in
XoTGinter:595].

wcsfmon () t
The wchar_t counterpart of the strfmon() function.

wcsfresync() t
The wchar_t version of the mbfresync() function.

wcsresync () t
The wchar_t version of the mbresync() function.

wcstol()
The wchar_t counterpart of the strtol() function.

wcstoul ()
The wchar_t counterpart of the strtoul() function.

wcwidth () t
Please refer the attachment [wecol() in XoTGinter:600, wescol() in XoTGinter:599]

May 16, 1990 §A.1.2.2

fAr-MDATT AN /‘;./,

7 .

10

15

20

40

KoY. F

A.1.3 Misc.

® mbftowc ()
In X/Open, the mbftowc() function was withdrawn.

A.2 Reply to X/Open

From: IPS]/ITSC]/SC22/C WG/SWG (Japan)

To: X/Open Internationalization Working Group

Subject: Response for “Comment and Proposal” of X/Open I18N WG
Date: Fri Mar 9 20:52:42 JST 1990

Thank you for giving us your comments and change requests to our “Dratt Proposal Multibyte
Support Extension of ANSI C (Draft 1.2). We’ve modified our draft, and submitted the Draft
2.0 to the 1SO/SC22/WG14 as for addendum of the 1509899 (which is now DIS9899). It will be
discussed at the next WG14 meeting in London, on 18th and 19th June 1950.

We plan to summarize all the comments and proposals, we received officially, including
what we did not incorporate into the Draft, and to attach them as appendices bringing into the
London Meeting.

[Summary]

We have admitted your four comments and one addition request (wcstol() and westou()
in 2.2), and modified the Draft and its Rationale. However, we did not include rest of your
proposals to our Draft. We categonze the reasons why we did so into three (ypes below.

i. The fundamental purpose of our work is to promote international portability of the
programs written in ISO C as an computer language. We feel that the function might be
powerful for internationalization and so important. It does not, however, directly
concern multibyte/wide character processing (e.g., monetary, time & date, character
width (column)).

We have focused on extending features for multibyte/wide character handling in our
Draft, and indeed have not enough time to discuss to establish a consistent view for
features other than multibyte/wide character handling. Due to the lack of such view, at
this point we cannot commit whether we will incorporate the function in our Draft in the
future, to 150.

ii. We don’t think that the function fits for the basic concept of ISO C, and don’t incorporate
it into our Draft (e.g, “resync” and code error recovery).

In some encoding rules, “resync” functions might be meaningful and usable. In other
encoding rules, such as shift encoding, we cannot imagine the behavior of the “resync”
functions clearly.

To introduce the “resync” functions into ISO C, it would be necessary to impose a
certain constraint upon the specification about encoding rules in order to refuse encoding
rules that do not allow “resync” functions. This constraint does not fit the slogan —
encode independence - in ISO C.

iii. The function belongs to the other programming style than we assume in our Draft (v .,
nl_cat(), nl_advance()).

The programming style which the functions in our Draft provide:

§A.13 May 16, 1990 §A2

for DRAFT 70

fate ot

e All the multibyte characters are converted to corresponding wide characters by the
functions, so that programmer do have no needs to directly handle multibyte
characters in his/her programs;

e All the character handling are done in wide character representation.

5 On the other hand, functions like “at”” and “advance” over the multibyte characters
introduce different style of programming, and may enforce programmers to concemn
about length of each character, error recovery in the application side, and whatever
complicated depending upon encoding rules. We believe all such functionalities which

“at” and “advance” may have are also provided by the functions in our current Draft
10 over the wide characters, in much more portable and elegant way.

[Resolutions]

1.1 (On 2.3.1 Streams)
We adopted; we modified the corresponding part of our Draft (Draft 2.0).

1.2 (On state-information)
15 We adopted; we incorporated the point into our Rationale.

1.3 (On single-shift characters)
We adopted; we will modify the Draft (>2.0) and/or its Rationale.

1.4 (Error conditions)
We adopted; we have a sentence in the Draft 2.0 about it.

20 The “code conversion error” should be taken into account in any implementations as you
mentioned. We have the statements in our Rationale as:

e The “‘code conversion error’” itself should be detected;

* It is implement-defined whether “code conversion error” and “(physical) 1/0 error” can be
treated as different kind of ones.

25 2.1 (Change Requests)
e The print£() flags corresponding to monetary feature

Rejected — type 1.
e strftime(), wesftime() - about field width and precision width
Rejected - type 1. '

30 e field/precision width should be by column in print£(), scanf()
Rejected - type 1.

2.2 (Addition Requests)

e strfmon()
Rejected - type 1.
35 ° strptime()
Rejected - type 1.

§A.2 May 16, 1990 §A2
for DRAFT 2N

36 =

e mbfresync() — “‘resync” on multibyte string
Rejected — type 2.

e mbresync()
Rejected — type 2.

5 e mbwidth() - column width
Rejected — type 1.

* nl_cat(), nl_cadvance(), nl_mbat(), mbsadvance()
Rejected — type 3.

* s _mblen(), s_mbstowcs(), s_mbtowc(), s_wctomb(), s_wcstombs()
10 Rejected — type 3.

* nl_wc(), nl_wcadvance()

Rejected — type 3.

e wesfmon() — wide character version of st rfmon()

Rejected — type 1.

15 * wesfresync(), wesresync() — “resync” for wctomb-type conversion functions
Rejected — type 2.

e wcstol(), westoul()
Incorporated.

3. Misc.
20 We added the vwsprint£() function to our draft 2.0.

We do not have time to review your recent change requests sent by Hirasawa-san; we will
review them in our future meetings.

§A.2 May 16, 1990 §A.2

fAar MRATT A N

§A.2

Sl

May 16, 1990
for DRAFT 2.0

WA

3;11/?0-06'

mq/NH‘S

=z X

1eder MDSLI/FSAIOM D/22ZDS Aq

'6686SI1Q 40
UOISUdIXF 10ddng 331AQI3ININ JO 3jeuolley ¢

‘D-ISNY 10 UQIS
-U91x3 woddng 23Agnniy pasodoud jeaq 1

SIUdWNDOQ &«

"PTOA 92U} JO W YIOAA MIN B 3q O]
(ISW)uoisuaixy poddns 93Aq1ININ a1
9s0doid AN &

jesodoid InoO B

61'81-9-0661
lebewinyy o0JIylIioN

jeuoneusdjul D abenbue ayy axey o

uoIsuUaIX3y poddng a1AqI NN
m__Z\TGE

FrSa o senes 1y NYIYT SO 04v0) AYOICuyy vaON FINS § 5T ON Taping ownS ey hu m H
Cery (CrCi0° vy
008 161 € 100 TN veder jo 4191905 buissao0ig uoyBWIOU| _)

uedep jo uoissiwwo) spiepue}s Abojouyoa uojewioju)

/e

sid)oeleyd IAQIINN «—

ft

(0009 ueyl 3iow) (962 =)
i912e.ieyd = 2149

'sbunls |
Bulylds/a3eulieduod 0} jednoeldw/3noyg o
"uoljedidde

uonIsod S Uo 9pIM-PlIOM 10} S}9S ey d abie| a|puey PINoYs aAA

spuadap 931AQ uleldd e Jo OuluesiN -
'9ouUanbas 91Aq JO uolielaidialu] e "

(ueder ui) sieyd 0009 4370 6'd

‘BUIPOIUD 1HIYS UOU 'SA BUuIpOodUd YIYs o si9}oeleyd Aue|N Aue|N
BuIssad0.d 4931dedeyYD abenbueT] ueisy
91AQIINIAIL U0 SUIdDUO0D ﬂ 10} Buissadold 4930eseyd (¢
+ +

e 3 .

S e
/
4 R
(1eyd u_nmuc:av
[CNVM SIF [IDSV
: b
(4eyd j0JIU0D)
27U3Nbas BIyS [IDSV
- el

19S JBYD 93N29XJ JO ajdwexy uy e

.90U9 iumw quum_mcu

0 :uﬁﬁ. = DO :23.

—

\

Do_m_ﬁ.z._ LD ls

[v]

ducmscmm B\Am
19<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>