W6y wOT2

A European Representation for ISO C

Keld Simonsen

University of Copenhagen, Denmark

Bjarne Stroustrup
AT&T Bell Laboratories, USA.

ABSTRACT

The proposed ANSI C standard uses the American national character set,
ASCII, for its representation, but as other national character sets use some characters
differently, the ANSI C standard proposal includes a specification for an alternate
representation, the trigraph representation. This paper proposes an extension to the
trigraph proposal based on keywords and two-letter combinations of special characters,
that is much easier to read and write.

1. The problems

Writing programs in C can be quite difficult where English is not the native language. The prob-
lem is that C uses symbols from the American national character set as operators and punctuation char-
acters. This implies that you cannot use all letters from a national alphabet in identifiers and that pro-
grams appear strangely transformed on your screen or printer because some C operators are printed as
the corresponding letters. d

In many countries in Europe, South America and Africa the national character set standard is a
version of the ISO 646-1983 international standard for 7-bit character sets. ASCII (ANSI X3.4-1968) is
the national version of ISO 646 in the USA. It is the impression of the authors that ASCII and the
national standard competes bravely from country to country for being the national indulétry standard.
Also, on IBM mainframes there are national EBCDIC implementations very close in character reper-
toire to the formal national standards. In some areas, such as Scandinavia, the national 'lcharacter sets
are predominant both in the 7-bit and the EBCDIC world. In other countries, such as the' Netherlands,
you mostly see ASCII. There are some new international standards based on 8-bit characters (the 1SO
8859/1/2 Latin character sets and the ISO 6937/2 Videotex standard) which includes both ASCII and
the various national characters, but it will take years, if not decades, for these new official standards to
become industry standards and for 7-bit equipment to completely lose its importance. '

It is quite desirable (and only polite) to allow programmers to write (and read) programs using
their national 7-bit character set representation. The recent proposed ANSI C standard allows a
representation of C programs in a national character set that does not have all of the characters used to
represent a C program in ASCII. This is achieved by defining alternative representations, trigraphs, for
the “‘offending’ C operators and punctuation characters. However, there is still no provision for
identifiers with national letters and the trigraph representation is not very suitable for human eyes.

2. ASCIH and Trigraph Representations

The ISO 646-1983 standard leaves 12 positions undefined and up to national standards organiza-
tions to decide. For those undefined positions used in C for national ISO chars, the proposed ANSI C
standard specifies a trigraph representation, a three-character replacement beginning with two question
marks (??). Three characters (’$’, '@’ and '*’) are not used in the proposed ANSI C (but they are
used in some dialects of C) so we will also refrain from using them.

L3 2l

The 12 **problem’’ characters in ASCII and their equivalent ANSI C trigraph representation are:

G LS S TR el R Sl SRR B i T i

Trigraph ?7= o B & Rl B KPR ar A livger e b i dr I

ISO646 reserves the characters # and $ so that they cannot be used for letters of a national alphabet.
This ensures that they are not a problem in the context of C. The other 10 characters are ‘‘available
for national or application oriented use.’’

Let us see how these things looks on a common example. First the ordinary C version in plain
ASCII:

main(argc,argv) charx argv[];

if (arge<l || xargv[1]=="\0’) return;
printf(”Hello,%s\n”,argv[1]);
}

And this is how it looks in the Danish ISO 646 character set:

main(argc,argv) chars argviAR;

@
if (argc<l ee xargvAlR=="@0’) return;
printf(”Hello,%s@n”,arqvAlR);

a

The begin-end brackets and the or operator look ugly and the array subscripts simply drown. It looks
Just as weird in, say, the Finnish, French, German, or Spanish ISO 646. This is the reason for the
proposed ANSI C trigraph solution. How does our example look using trigraphs?
main(argc,argv) charx argv??<??>;
?7?)
if (arge<l ?7177! xargv?7<1??>==’27/0") return;
printf(”Hello,%s??/n”,argv?7<1272>);
?77(

Where are the array subscripts? Which operator is used in the conditional statement? We believe that
even though the problem of defining an ISO 646 representation is solved by introducing trigraphs, the
original problem of being able to write C programs without losing one’s native language has not been
attacked at all. The resulting *‘C programs’’ are unreadable and unwritable.

We see no alternative to using trigraphs for representing {, }, \, etc., in strings and character
constants. For example:

switch (tok) {

case *{’: Sk

case ’}’: A

case AN il

becomes
switch (tok) {
case 222l Tk
case it 2D i
case ’??/7?/’:

Trigraphs are not pretty, but with the notable exception of backslash they will not be common in this
context.

3. Our Proposal

To solve the original problem one could provide a combination of new keywords and reasonably
nice-looking one- or two-letter symbols.

New keywords:

or
cor | (conditional or)
and &

cand && (conditional and)
XOr ‘

compl i (complement)

Introducing new keywords is always a way to break existing programs, but the keywords could
be conditionally in effect for new programs. The new keywords requires a few more keystrokes than
the ASCII characters, but not many, and some would consider them to improve readability of C! The
keywords and and cand were added for consistency — it seemed silly to have an or but no and. The
& and && operators are still valid. The new keywords (except cor and cand) can be combined with
= to make assignment operators.

Note that use of trigraphs will not by itsell avoid the problem of keywords. Macros will be used
to make trigraphs more palatable. For example:

fidefine begin ?7¢
fidefine end 77>
fidefine or 77!

Naturally, groups of programmers will agree on standard versions of such macros and naturally not
everyone will agree on the same versions. In a few years we will therefore be faced with the problem
of having several incompatible sets of ‘‘de facto keywords’’ and conventions. The alternative is to pick
a minimal set now. This is what this proposal does.

New symbols:

(: {
23 }
1([
)]
??/ \

The use of 22/ as the escape character is probably the least elegant of these alternative representa-
tions, but we see no acceptable alternative given that trigraphs are necessary in some contexts anyway.
One might argue that an escape need not to be too pretty anyway.

We decided to make the compound statement brackets digraphs, finding ’begin’ and ’end’ too
long to write and too likely to be found *‘not in the spirit of C** by large numbers of programmers.
The digraphs (/ /) might have been preferable to (- and :) but current usage precludes this. For exam-
ple

/%

argument type commented out waiting for ANSI C compiler:
*/

int printf(/+ const charx, ... */);
int fprintf(/+ FILE*, const chars,. ... =/);s

o

Using (- will cause a minor problem for C++ parsers because C+ + has the prefix scope resolution
operator Z:. For example: .
if: :open(”myfile.c”,0)==0) ...

This problem can be solved either by a bit of lookahead in a C+ + lexical analyzer or by requiring
C+ + programmers to use a space before the :: operator in this relatively rare case.

The grammar of C precludes using (and) for subscripting (as is done for many other
languages). Parentheses are typically unnecessary for subscripting and ! should be considered an infix
subscript operator (as in BCPL). The binding strength of the binary ! operator (subscripting) should be
just above the unary operators and it should be left associative. For example, a'b.c!2*d means

1 12)%4.

Our proposal would allow the program look like this:
main(argc,argv) charx argv!();

if (arge<l cor xargv! (1)=="22/0") return;
printf(”Hello,%s??/n”,argv! (1));
:) :
Using ! as an infix operator, this can be further cleaned up:
main(int argc, charx argv!)
(:
if (arge<l cor xargv!l==’77/0") return;
printf‘(”Hello,%s??/n”,argv!l) ; ,
:)
One would still need parentheses for more complicated subscripts; for example, y!(i+j). The symmetri-
cal nature of subscripting in C will actually be more obvious.

Programs written this way still have a distinct C flavor. Locally, they can even be more terse
than C and they are always shorter than programs written using the trigraph notation.

4. Practical Details

As observed, the trigraph proposal solves only a small part of the problem they were introduced
to compensate for, whereas this proposal is an almost complete solution. ;

It should nor be legal to mix the constructs proposed here, such as (:, or, and compl, with tradi-
tional C constructs, such as . l, and Z This rule leads to a cleaner style than a more permissive rule
and ensures that the new *“ISO C”’ notation is only used where it is specifically requested (by an ISO C
compiler, by an ISO C option, by an ISO C #define, by an ISO #pragma, or by simple detection the
use of an ISO C feature). This rule also minimizes the chances of problems with old programs using
the new keywords as identifiers, etc. and allows modifications to compilers to be localized to startup
routines (or even to compiler makefiles).

Mechanical translation from the standard American/English notation for C to this proposed
““European’ C notation is trivial. The reverse translation requires understanding of operator pre-
cedence to handle subscripting. Furthermore, if national characters are allowed in identifiers such char-
acters must be expanded into sequences of English characters. This is no major problem.

5. Conclusions

We have found a usable solution to the international representation problem of C for most
languages using a latin alphabet. The solution is quite easy to implement in a C compiler. We tried it.

The (:, 2), and ! constructs do not affect existing programs, and the new keywords are chosen so
that it is likely that only a minimal number of existing programs will be affected. Using them only in
programs identified as non-US ISO C should remove completely the possibility of hurting existing pro-
grams.

If adopted this proposal will open the way for allowing national characters to be used in

Zsl

identifiers. This proposal is submitted for consideration to the ANSI C committe and the European ISO
committies dealing with C. It is also considered for adoption into C+ +. :

6. Acknowledgements

Brian Kernighan and David Prosser found errors in previous versions of this proposal and sug-
gested improvements to the presentation.

7. References
K&R: C

ANSI C draft
Richards: BCPL
BS: C++

