WGl4 N@33
@5 Dec 87

Remarks to X3J11
From ISO WGl4

ISO WG 14 on the C language has several remarks about the.dpafti ¢
standard from X3J1l1l. The first section 1lists the topics the
working group feels must be addressed before the draft can become
an ISO standard. The second section.Iists topics WGl4 feels X3J11
should look into to clarify important issues.

" Parenthesis grouping and unary +

We feel strongly that the C standard in sections 3.3 w:should; .hongr
grouping in expressions. One member of WG1l4 (AFNOR) has stated
that they will vote against an ISO standard that does not honor

grouping.

This allows the special semantics for unary plus connected with
grouping to be removed from the language. We are not in favor of
removing the unary plus as a language construct.

We fully support the position taken by P.J. Plauger in his paper
(%3311 /87-397) .

Multibyte characters

WGl4 supports the actions X3J1l have taken to.date:in support of

__multi-byte characters. One menmber of WGl4 (AFNOR) has stated that
they will vote against an ISO standard that does not complete the
job of supporting multi-byte characters.

WG1l4 endorses an attempt to find a notation for wchar string
literals and characteezeonstantss

WGl4 has no interest in providing additional capability.

WG1l4 sympathizes with the Japanese with regard to their multi-byte
character support requests. However, the committee is hesitant to
support more ambitious goals than those stated above without the
benefit of established prior art.

The term for international time
The descript?on in section 4.12.3.3 uses the name "Greenwich Mean
_Time (GMT)" for internationak time specification. This name is

10t correct it should be "Universal Time Coordinated (UT)". WG1l4
strongly endorses this change.

NO23 Reconsideration of trigraphs

WG1l4 N@33, page 2

The ISO/TC97/SC22 second plenary meeting in Washington @8-11 Sep
87 adopted unanimously in its resolution WP-34 that:

"ISO/IEC JTC1l/SC22 requests its member bodies to communicate
to the 8C22 secretariat '"their 'requirements for character
handling in programming languages, 1including multi-octet
character sets."

Thus WG1l4 has considered the support for non-ASCII ISO 646 based
charactepr” gset8: Ia-vWIB0:i0uQGd ISO 646 leaves 12 positions open to
national standardisation bodies to define, and it should be
possible to avoid using these positions in C-programs, as they are
not well defined. A« sglution' o/ Ehis, tnamed the trigraph
solution, is included in the current ISO draft, but this seems
inappropiate as the resulting programs are not very pleasant to
read nor write. Examples of this are demonstrated in the paper
ISO/TC97/SC22/WG1l4/N@23, where i possiblers soliutdon, also .ids
discussed.

The paper as amended by WG1l4 concludes in the following changes to
the draft proposal dated 1987-05-15:

Alternate bracketing tokens for - foiksbe and 3, name Lk Chy L dur Libs,
and) respectively. Corrections:

page 27 line 13, add: ! ¢(

page 27 line 21, add: 31§),

page 27 line 22, add: The operator pair !(and) shall be used
synonymously for [and] respectively.

page 27 line 33, 35 add: (/£ /) ()

page 27 line 37, add: The punctuators (/ /) I b ishal k. be -usad
synonymously for { } [and] respectively.

! used alone is proposed to work as an infix operator
for array subscripting.

page 33 line 28 add: postfix-expression ! expression
pPage 33 line 46 .add after []: or after !

It is also necessary to introduce new definitions of logical
operators, as :they Calssbpiised undefined: I80.646 characters. .. The
proposal is to include the keywords: or cor and cand xor compl.

page 13 section 3.1.1 add: or cor and. cand: X0k compl

Page 27 line 18 add: or cor and cand xor compl

page . 27 lYine 22, add: The operators’ or cor and cand xor compl shall be
used synonymiously for | || ‘& && ~ ~ respectively.

An alternate way to introduce these definitions is to include them
in a header file with the following definitions:

#define or |
#define cor ||
tdefine and &

WG1l4 N@33, page 3

#define cand &&
#define xor ~
tdefine compl ~

These defines could be included in a header file, for instance the
existing <locale.h> or a new <booldefs.h>.

The last non-defined ISO 646 character used in the ISO C draft is
N ised "IN SCrIvigl We praopose “td "alternatively'tuse . "This
should be included in section 3.1.3.4 with the addendum:

Alternatively the character & could be used for escape sequences.

A non—-IS0 646 character is likely . to be ‘introduced” In" '"format
strings for printf etc, namely $ to specify argument number. We
propose to alternatively use !.

WG1l4 “sstrongly " (but™ "nokjundnimousiy} Supports the alternate
notation for braces and brackets, and the proposed keywords (or
macros). There was no support for using & as an alternate escape
character within string literals.

Finland .does not support any part of «this proposaly dvespk
possibly some form of infix operator for subscripting.

NO27 Preprocessor tokenisation Phases of Translation: 2.1.1.2

Nowhere is the conversion of preprocessing tokens to so-called
“(normal) tokens" described. Surely the result of preprocessing,
i.e, the output of the preprocessor is a stream of tokens which
require Ro further processing. If this 19 not Ehe cass, thépn the
standard "should clarify what exactly takes place when
"preprocessing tokens are converted into (normal} tokens:®
Tokenisation

The standard implies in 3.1 that the following example is correct:

#define a +

SansaEbii

yields

.+ «PLUs’ token plus token identifiert.,%
and noE": 5

.+«.increment token identifier...

because 'a' only gets expanded after "parsing" ie tokenisation.
The _text 15 decomposed 1into: identiFfier plus_token identifier;
then expanded to plus_token plus_token identifier.

If preprocessing is implemented as a separate text—-to-text prepass
{see 3.8.3 claim in Rationmle)" 'then' this 'text" betobiibs

RS o o SR

WGl4 N@33, page 4

which is indistinquishable from the token sequence:
increment token identifier.

It should be clearly stated that the preprocessor is token based.

Semantics of Conditional Inclusion: 3.8.1

The order of replacement of identifiers defined as macro names is
significant; and _as. this . .is .updefineéd,. it wi{ll be a source .ot
ambiguity as the following example illustrates:

fdefine a defined
fdefine b c
i Eia b

I€ 'a' is replaced first, then the ldedtiffer *pBY {s "méarieiag by
defined” _and hence an.exception i.e..not replaced. . If 'a' is not
replaced. Dafore 'BY, Ther ‘the identifiaf "b' 1d a “éandidafe-"“for
replacement.

Defining the order of replacement, e.g. left to right, will solve
this problem.

Evaluation of ## operations in a replacement list: 3.8.3.3

No clear semantics is given for the order of evaluation of the t#
operator if it appears several times. Left to right would be a
sensible rule; and be easy to understand and implement.

The current draft states that the result of a paste operation must
be a valid token (3.8.3.3); the readon for ~this restriction” "is
unclear.

Consider:

#define p3(a,b,c) akibiic
vo e PI3{LOXNE, 9999 toxt)...

If the paste of b to ¢ takes place before the Pasteas o ahl Pa bl
then the:. result of the paste '9999%text' is not a valid token angd
more significantly the behaviour is undefined. 1If a is pasted to
b first, the behaviour is defined.

Defining an order of evaluation allowing paste operations to be’
ordered. . so . that. their "behaviour. is defined =~ will solve this.
Alternatively, dropping the requirement would provide a better
solution. After all the paste operations have been carried out in
the replacement .1list, it must be a sequence of valid tokens; and
that would be a more reasonable constraint.

Einessi 4.9

WG1l4 N@33, page 5

This section implies very strongly that vertical tab and form feed
are space analogues, not newline analogues (i.e. -'a ' forin " feed
character does not of itself terminate a line). By association,
we take this to' apply te “carriage : return "-as "“well, “‘though “‘the
latter’ is ' not “mentioned " in "4.9.2.°"This' has” extreemely ‘serious
consequences.

Firstly, both ANSI Fortran 77 and ANSI C have concepts of text
files with pagination and overprinting, but it is impossible to
define a 1-1 mapping between these. The constraint in 4.9.2 that
certain text files are unchanged on reinput to C further confuses
the issue. A letter mentioning this problem has been sent to X3J3
indicating this is a common problem.

It is proposed that the following simple solution be applied:
define a line as terminated by any of newline, form feed, carriage
return or vertical tab.-!Thig'sblution'>1s ” that' ® adopted *Hi C's
recognised ancestor, BCPL.

Change to section 4.9.2, second paragragh:

A text stream is an ordered sequence of characters composed
into 1lines, each line consisting of zero or more characters
plus a terminating newline, form feed, carriage return or
vertical tab.

There will be consequential changes throughout the document in the
section on Input/Qutput (4.9).

Alternatively, drop the requirement that text files are unchanged
on reinput 1if they contain form feed or vertical tab characters.
Thus, the condition for rereading a text file unchanged is that it
—contains only printing characters, horizontal tab and newline.

Truncated Files: 4.9.3

It does not seem to be explicitly mentioned anywhere when, 1if
ever, files are truncated {except, -of course, when they are
opened) . The normal form of sequential access under IBM MVS and
CMG. . provides all. of the file a&access facilities . of ANSE ©
(including binary update and fsetpos), with the interpretation
that ‘any write operation causes the file to be immmediately
truncated beyond that point.

Asithevdraft stands, this would ' be conforming implementation,
though it would cause most programs imported from UNIX to fail
horribly. While it is desirable that this 'magnetic tape' form of
update be available, it is clearly essential that 'UNIX style'
direct-access. be available. This confusion is heightened by the
Absence of any ftruncate function to truncate a file explicitly,

ad that fact that ANSI Fortran 77 uses the ‘magnetic tape' style
for update.

N

WG1l4 N@33, page 6

Some clarification on this point is essential, even if merely to
say that the state is implementation defined.

Add te. sectiem 4.9.3:

Binary files are not truncated, except as defined in section
4 . 3653 Thus every character written to a file remains in
that file until it ls overwrltten, the file is reopened for
wiitte mode {latter Wi, or 'the file 'ig removed. Tt IS
implementation-defined whether writing a character to a text
file causes the file to be truncated immediately beyond that
point, or whether text files are handled in the same way as
binary files.

This is a possible solution; there are other solutions. The UK
position is that the standard requires a solution to be specified.

Equality operators, relation operators and (void ¥

Both the contraints for equality operators|(3:3.:9) and For
relational operators{(3.3.8) .ares do tight. For, s example: . the
current draft does not allow to compare two (void *} - pointers . teo
be compared for equality.

