1SO/TC97/5C22
Languages
Sccretariat: CANADA (SCC)

1S0/TC97/sC22

N298

TITLE: Summary of Voting and Comments Received on a
- proposal to register document 97/22 N260-First
Working Draft on Programming Language C (Draft
Proposed American National Standard) as a
Draft Proposal

February 1987

SOURCE: secretariat ISO/TC97/SC22

o
.

WORK ITEM: 97.22.20

18.3.87

Note Hu Sewvelaniok ache ovevside.,

[SSes il

N

WG-14 13 vLLiMuL Te veview a—d

‘ STATUS: New

C Farel

el
7o
oA

CROSS REFERENCE: 97/22 N260

DOCUMENT TYPE: Summary of Voting

ACTION: See attached

Nete to Parmel Meubers:
rApondk th e TW
Obviousty 4y u.K.

Address reply to: ISO/TC97/SC22 Secretariat
. J.L. C8t¢, 140 O'Connor St., 10th Floor
Ottawa, Ont., Canada K1A ORS
Telephone: (613)957-2496 Telex: 053-3336

Summary of Voting and Comments Received on
a proposal to register document 97/22 N260-
¢ First WD on Programming Language C
as a Draft Proposal

2 Letter Ballot (attachment to 97/22 N260) was circulated to
SC22 with a return date of 1987-02-13.

The following responses have beén received:

'P' Members approved the registration

>f 97/22 N260 as a DP: 12(Austria, Belgium, Canada,
Czechoslovakia, Finland,
France, Italy, Netherlands,
Sweden, UK, USA, USSR)

D' Members approving with comments: 1 (Netherlands)

"»' Members disapproving the

—————egistration of 97/22 N260 as a DP: 1(Japan)
"P' Members having abstained: 0
®' Members not voting: 3(China, Germany FR,
Norway)

D' Members approving the .
——————egistration of 97/22 N260 as a DP: 1(Romania)

-------———-omments:

— ——<=tachment 1 - Japan
—=tachment 2 - Netherlands

______—_ —~ecretariat action:

ince the majority of SC22 'P' Member Bodies have approved the
—e———agigstration of 97/22 N260 as a DP but noting that one disapproval
—————as been registered, the SC22 Secretariat will:

Request SC22/WGl4-C to review the Japanese comments in view of
Tresolving the negative vote.

Request SC22/WGl4 to prepare a response to the Japanese comments.

-Based on SC22/WGl4's recommendation, the SC22 Secretariat will
forward either 97/22 N260 or a revised version prepared in con-

_sideration of the Japanese comments, to ISO/CS for registration
as a Draft Proposal.

TR S N W R, - S TTTL U e

Japanese Comments on SC 22 N 260

We think fhat the First Working Draft (87/22 N260) is far clearer.more con-
sistent and unambiguous than the basic documents. We have a high regard for
- the effort of the ANS| commitee ,and approve -the First Working Draft in
principle.

However we found out a lot of unclear,inconsistent and ambiguous points in the
First Draft during our revies, so we cannot approve the registration of document
97/22 N260 as a Draft Proposal. We think it is necessary to continue brushing up
document 97/22 N260.

We attach Japanese comments on the First Working Oraft. We expect the

response for each our comment.

\
P.9 TITLE: Syntax notation :
PAGE : 17 LINE : 3
EXPLANATION:

A colon(:) is also used as a meta constant in the proposed standard.
Therefore, the colon defined here as a meta symbol is ambiguous.

i PROPOSAL:
The sentence in the line 3(ie. A colon following ~ .) should be :

A colon(s) following ~ .

P.10 TITLE: Tokens and preprocessing tokens
PAGE : 17 LINE : 27

" EXPLANATION:
The discussions of tokens and those of preprocessing tokens are
intermixed and are difficult to understand. For example, the following
question cannot be easily solved.

#define a8 =—x
-a

DT 0 U0 SOR PP S T PIWGR GVe) P ST ONAU W MY AL bW REVAST A Y A 220 CIANIEL Llldirbalsisld (B0 &

Is the result ——x (decrementing x) or — =—x (two unary minus
operators)? According to the Rationale. the committee seems to employ
the second interpretation. Namely, preprocessing tokens resulting from
the preprocessing phase are directly interpreted as normal tokens without
splits or joins. We agree with this token-lvel macro processing instead of
the conventional character-level macro processing.

Tematate

PR

Sons? Saee sk d LTE

However, we ceannot derive this conclusion from the text of the proposed: 7
standard. Since the discussions of token separators are given in 3.1
independently of the preprocessing, we easily misunderstand that the
tokens are parsed from scratch after the preprocessing phase.

< 2.1.1.2 gives no help about this point.

RN

PROPOSAL:

Discussion about token separators should not be given in 3.1. These
discussions should be given in 3.8. 3.1 should only mention that the
resulting preprocessing tokens are directly used as normal tokens.

Ve think that 3.8 should not be placed at the last section of the
language definition. Since it is the first phase of the compilation, it
should be discussed before the section of lexical elements.

HUINE LI 1N R 2R

QRS PV 2 2 L W PR TRV SIS T FF LWL E XV ¥ UL SR S R AR
,
roin

e~ e e =

hlasitihe.

LAATAD.

S

oL andie

s Bl S W s MM B B CING L 1 DY RD M 1 B 0l AN e B Ao VL

LR]

\

Chapter 1 Proposals

P.1

P.2

P.3

P.4

TITLE: Conforming lmplementation
PAGE : 3 LINE : 7

EXPLANATION:
The term "conforming implementation” is not defined.

PROPOSAL:
The following definition should be given.

e A conforming implementation is a conforming hosted implementation or
a conforeing freestanding implementation.

TITLE: Definition of preprocessing token
PAGE : § LINE : 37 ~ 38

EXPLANATION:

_ In the translation phase 3, the proposed standard says the source file is
decomposed into preprocessing tokens and sequences of white-space
characters. The "preprocessing token” used here is considered to be
distinct from the syntax element "preprocessing-token” defined in § 3.8.
However, the term "preprocessing token” is not explicitly defined.

PROPOSAL:
Should be explicitly defined for the preprocessing token in §3.8.

TITLE: Recursive process of the trnalation phase for a #include
preprocessing directive
PAGE : 5 LINE : 43 ~ 45

EXPLANATION:
It’s not clear that to which phase a %include preprocessing directive
causes the named header or file to be processed from phasel, recursively.

PROPOSAL:
We propose to describe that "a #include preprocessing directive causes

the nased header or file to be processed from phasel to phased.
recursively”. z

TITLE: Arguments to main function in 2 hosted environament
PAGE : 7 LINE: 3 ~ §

EXPLANATION:

The proposed standard describes that "If the hosted environment cannot
supply strings with letters in both upper-case and lower-case, the imple-
mentation shall ensure that the strings are received in lower-case.”

In this description, it is impossible that strings are received in upper-
case.

PROPOSAL: b
Considering that the strings in upper-case are received to main function,
we propose the following description.

"The implementation shall supply a means to pass the strings in lower-
case.”

3

Al OB Gl bar™ A0 e W a Wi v o B w8t n BV ot R e T AN L balas c @ b sbniew simlodnle e 4450

- -

P.5 TITLE: Definition for conforming environment

P.8

P.7

P.8

PAGE = 7 LINE : 48
EXPLANATION:

The definition for the term "conforming environment” is not given.
PROPOSAL:

The term is initially used here. Therefore, the tera should be sritten
in italic characters and it's definition should be given.

TITLE: Signal handler
PAGE : 12 LINE ¢ 5

EXPLANATION:
The definition for the term "signal handler” is not given. There is a

forward reference §4.7.1.1. However. no definition for the term is given
there either.

FROPOSAL:)
The definition for the term should be given.

(ITLE: Translation limits of pointer, array and function declarators
PAGE : 12 LINE : 26

EXPLANATION:

[t is ambiguous whether the translation limits, 12, means the total

number of pointer, array and function declarators, or the number of
each declarator.

PROPOSAL:

The description on page 12 should be changed to the following one sage
as line 43, 44 on page 56; "12 pointer, array, and function declarators
(in any combinations) modifying a basic type in a declaration™.

TITLE: Parameter and argument

PAGE : 12 LINE : 33 ~ 34
EXPLANATION: :

The term "parameter” and "argument” is not used distinctively.
PROPOSAL: :

An alternative description of line 33~34 is:

e 31 parameters in one function definition and 31 arguments in one call
* 31 parameters in one macro definition and 31 arguments in one
invocation

P.11 TITLE: Scope of tag anh enumeration constant

EXPLANATION:
(1) page 19, line 14 ~ 17
AS "tag” and "enumeration constant” are not derived from "declarator”.
the following description does not apply to the definition of their
scopes.

"All other identiifiers have scope determined by the placesent of their
declarations.” [f the declaration appears outside any block, the
identifier has file scope, which extends from the completion of its
declarator to the end of the source file. If the declaration appears
inside a block or in the list of parameter identifiers in & function
definition. the identifiers has block scope, shich extends from the
completion of it declarator to the } that closes the associated block.”

(2) page 53, line 5 page 94 , line 34

The term "declaration” is defined as a syntax element., but it seeas
that the "declaration”s in the following descriptions are not used with
the strict meaning of the syntax element. As the result. the beginning of
their scopes are unclear.

"A subsequent declaration in the same scope may then use the tag,
but the bracketed declaration list shall be omitted.”

"The scope of an enumeration constant begins after its declaration and
ends which the scope of the enumeration of which it is a member.”

PROPOSAL:

The scopes of "tag” and "enumeration constant” should be defined
explicitly.

P.12 TITLE: Escape sequences of octal integer and hexedecimal integer
PAGE : 24 ~ 25

EXPLANATION:

(1) It cannot be determined by the syntax of the escape sequence \o,
Noo and \ooo whether the sequence N\ 123 must be taken as "\\1,2,3",
N2, 8% o T \1237

(2) Non terminals o and h are not defined.

PROPOSAL: ,

(1) Add the following descriptions;
The octal integer is the longest sequence of the less than or equal
three octal digits that follow the backslash. "
The hexadecimal integer is the longest sequence of the less than or
equal three hexadecimal digits that follow the backslash and the lette
X. : g

(2) Non terminal o(or h) in the escape sequence \o, oo and N\ooo (or
N\xh, \xhh and \\xhhh) should be defined.

[

aedbia ik . 0k 0y

.ty

a8 0 QAL s J—ut,-.\i.ns-ua-..l.-AMUAM‘-““-QQM—--—-».-—.—-.—_— e b A I S
. .)

R RSP Y VT PUPT S UPVEIR IV IOIIC St § W SR VIR W R e oy g St TR TR R PR SRLL L LA

\

P.13 TITLE: Backslash in 3.1.3.4 Character Constants
PAGE : 25 LINE: T ~ 9

EXPLANATION:

The "Description” describes that the single-quote (') ghall t ~
ed by the escape sequence \', but it does not descrihe about -
backslash \.. The backslash shall also be representéd by the e<~
sequence.

PROPOSAL:
Insert the following description.
the backslash \ shall be represented by the escaps gequenc:

P.14 TITLE: Definition of "length”
PAGE : 28 LINE : 34

EXPLANATION:
There is no definition of the term "length”.

PROPOSAL:
Should define "length™ in terms of "bit” or “byte™,

P.15 TITLE: Usual arithmetic conversions
PAGE : 29 LINE : 27 ~ 28

EXPLANATION:
[t is not clear what the following description says.
"the type of the result is not changed therby”.
The above description is interpreted as a part of tde phras:
"~, provided neither~". If the above interpretation s corre"

description seems to be redundant for a standard.

PROPOSAL: .

The following paragraph should be deleted from the +-gposec ®
"Operands may be converted to other types, provides peithe
precision is lost thereby: the type of the result s pot ™"
thereby.”

P.16 TITLE: Explicit conversions

PAGE : 28 LINE : 45
EXPLANATION:
There is no definition of "explicit conversions”™. Does *\

conversions” mean “cast” operation ?

PROPOSAL:
The definition of "explicit conversions” should be gjven.

P.17 TITLE: Definition of “resrouping”
PAGE : 3l LINE : 1l ~ I6

EXPLANATION:
There is no definition of the term "regrouping”.

PROPOSAL:
Should explicitly define for "regrouping”.

8

I e v Eh ¢ A L o L e e i e i S -
" s B Ll e L S e L

P.18 TITLE: Automatic conversions of function designators

P.19

P.20

P.21

B e -

PROPOSAL:
Should give 2 rule to inhibit “Integer — Pointer” operation."

PAGE : 31 - LINE ¢ 33

EXPLANATION:

In 3.3.0.1, the proposed standard says that a function designator shich
is an expression is converted to a pointer type automatically. In 3.2.2.1.
it says that only identifiers having function types are converted. Ve
think that these two rules are conflicting.

Moreover., we cannot understand what the phrase “where & function
designator is permitted” in 3.2.2.1 means. A function designator can
appear even when the context requires a pointer to function type. The
phrase obviously does not consider this case.

PROPOSAL:
Should give a consistent description.

TITLE: Types "affected” by default argument promotions
PAGE : 34 LINE : 18
EXPLANAT [ON:

The word "affected” is not precisely defined.

PROPOSAL:
Avoid the word "affected”. For example, the rule may be given by
counting up the types "affected” by the default argument promotions.

TITLE: Definition of "common initial sequence”
PAGE : 35 LINE : 12
EXPLANATION:

The definition of the phrase "common initial sequence™ is mot given.
There are two possible interpretations. First, we can consider that if
types of initial members are the same two struct’s share a common
initial sequence. Alternatively, we can think that the watching of
pesber names is required in addition to the first interpretation. In
this interpretation, "sequence” is interpreted as "token sequence”.
¥hich is true?

PROPOSAL:
Should give a explicit description.

TITLE: Subtraction of a pointer fron an integer
PAGE : 40 LINE : 41
EXPLANATION:

Ye think that the subtraction operation of a pointer value from an
integer value should be inhibited. Currently, the Constraints of
section 3.3.6 does not give this rule.

\

P.22 TITLE: Subtraction of a pointer value pointing outﬁide of an array
PAGE : 41 LINE : 18

EXPLANATION: , o
The proposed standard says that a pointer vaiue pointing just past the {
end of an array can be an operand of a subtraction operator only when
the other operand is a pointer value pointing the last element of the
array. This restriction is too severe. It does no hare to subtract
pointer values pointing somewhere in the array from the just-out-of
-array pointer value. For example, if the follosing declarations are
given,
int a[10]; :
int xp = &a[10], xq = &a[5]:
The subtraction
pl=iiq
should be allowed.

PROPOSAAL:
- Relax the rule so as to allow the above kind of subtractions.

L adaabiad o b su Ll st sl 4 e il e ST Bl At ILBILAdAUA b el s e

P.23 TITLE: Nonzero value of pointer types

[P RPPIISARN o 3% o1

PAGE : 44 LINE : 28
PAGE : 44 LINE : 46
: PAGE : 45 LINE - 16
3 PAGE : 66 LINE - 34
: PAGE : 67 LINE : 23
EXPLANATION:

The word "nonzero” is inappropriate when the expression has a pointer
type. There are no "zero pointer value™s. Instead. there are null
pointer constants.

PROPOSAL:

Replace the sentence by the following: ... if its value is nonzero when
the expression has an arithmetic type, or if its value is not a null
pointer constant when the expression has a pointer type, ...
Alternatively, define the words "zero” and "nonzero” for pointer types.

P.24 TITLE: Definition of register storage class specifier
PAGE : 80 LINE : 12 ~ 15

RTINS PR P T YRS X TRy ST N GIOR SISt PO

EXPLANATION:

" We propose that the definition of register storage class specifier
should be changed to as follows. Because lines 12 to 15 in page 50 do
not go well with the standard, because this part does not effect
directly to programmer and implementer. Only meaningful description is
" & cannot be applied”. Lines 12 to 15 are concluded from this
description.

il Lininidel.

PROPOSAL:

A declaration with storage-class specifier register is an auto
declaration. and the unary operdator &(address of) operator shall not be
applied to an object declared with storage-class specifier register.

"with suggestion that ... implementation-defined” should be placed in
footnote.

PR RVTE NPT DRRS WA SR UV WO DR SR SR 0 NI

O W I I e Wi '

I S——

VIR NI ISRy Ve o

N

\ i
P.25 TITLE: Type scpecifiers -
PAGE : 50 ~ 51 LINE : 45(page 30) ~ 7(page 51)

EXPLANATION:
We cannot understand which type specifier may be in conjunction with
other type specifiers each other. and which lexical order is permitted.
And it is not specified that const can connect with volatile (in spite
of the example in page 55 which describes that gonst can be used in
conjunction with volatile).

PROPOSAL:

Should give a table which lists up all possible combination except for
const and volatile.(See eg.l)

And should specify that const may be in conjunction with yvolatile.

eg.l
Possible combinations of type specifiers

short int

long int

unsigned int
unsigned short
unsigned long
signed int

signed short
signed long
unsigned short int
unsigred long int
unsigned char s
signed short int
signed long int
signed char

long double

P.26 TITLE: Bit field in union
PAGE: 52 LINE: 19 to 23

EXPLANATION:
We think that there is no reason to permit the bit-field in union.
The bit-field in union should be forbldden as formar version of the
Working Draft.

PROPOSAL:
The bit-field shall not be specified in union.

Yok Jaan Ah"l.n.b".'. PO VPR R W R Ca AW B XIS W7 SRR B S S A

¥} -COMMENT :
§ The description in lines 19 to 23 cannot apply to the bit-field in
3 union. "to the union in which it reside” in line 37 is misleading
} description, because any bit-fields cannot be refered by any pointer.
; p.27 TITLE: Explanation of types
& PAGE: 56 LINE: 29 and after

EXPLANATION:

The explanation for the type in this Working Draft is difficult to
understand and is not precise. This Working Draft intend to define the
type only to identifier. Consider following example:

int xf();

In this Working Draft, the type of f is defined as follows
4 f has type "function returning TI",
i : Tl has type "pointer to 127,
j T2 has type int,
S so f has type "function returning pointer to int”. But in this Working
40 Draft the connection between D and Dl is not clear.
i And we think it is more useful to define inter-mediate declarator
5 such as f(), xf(). because when same form is appeared in expression,
5 they has the same type as declarator. So we propose following style of
< definition. g
f PROPOSAL: (underlined words mean italic)
3 3.5 DECLARATIONS
ﬁ add following statement to semantics.
i Each declarator in declaration has the type specified by
e type-specifier in the declaration.
;- 3.5.3 Declarators
g Change syntax of declarator as follows (suffix is used only for
g identification). L !
1 declaratory
; direct-declarator
’ pointer declarator,
§

And add following description to semantics. .

Nelvas

> 1.!)

> DR B o ol 3 S MAdemotas . dev or -
TR SR TP LI T WX VSRNL R D I TR RSP PF 7Y IRCY (NN FOYSST Y ST YIS
B N R

seSar AL v babom s

airt

2
_’
a
23
«
H
P
3
4%
4
)
]
|
]

3
s
';a
3
a
b §
il
b

S eemate

If declarator has type T and Sysntax of declarator, is direct-
declarator then direct-declarator has type T.
T and syntax of declarator is "pointer declara
has type "type-specifier pointer to I".

If direct-declarator; has type T, and

if direct-declarator
has type T,

if direct-declarator; is parsed as

tory then declarator,

"(declarator)”. then declarator,
has type T,

if direct-declaraor is parsed as "direct-declaratoq[constant-
eXpressionge]”, then direct-declarator has type " array of T".

if direct-declaratory is parsed as "direct-declarator(parageter-
type-list)” or "direct-declaratoq{identifier-!isg,.). then direct-
~declarator, has type "function returning I,

COMMENT:

"type-specifier 1" at line 39 in page 56
type-specifier means such as "int”
And that "type specifier”
line 10 and 42 in page 57,

azy be error, because
and T is also such as "int".
Bay be also used erroreously at

and at |ine26 in page 58.

P.28 TITLE: Definition of the sequence rules of the abstruct machine
PAGE: 55 LINE: 22 to 24

EXPLANATION:

The proposed standard says that any expression
volatile object should be evaluated strictly acco
sequence rules of the abstruct
the sequence rules is not given

PROPOSAL:

Should be explicitly defined for the sequence rules in section
2.1.2.3. = :

referring to a
rding to the
machine. However, the definition of

P.29 TITLE: Multi-dimensinal array in "3.5.3.
PAGE: 57 LINE: 34 to 44
EXPLANATION:

The following description is re
because this definition will be d

2 Array declarators”

dundant for a standard,
erived from the former syntax.

"shen several "array of” specifications are adjacent,
@ multi-dimensional array is declared.”

PROPOSAL: .
Move this description to a footnote.

If declarator; has type

is parsed as identifier, then the identifier

Q vbesee o,

des sl e et

A hivesa AN'Y L Lia el

Wedat

LIRS PR TTRCSEN)

3
:
{
1
3
3
3
g

RRTAIL B I DRELY SO PN SIS GNP 2 10 55 Wil T8 JY POV SR B

P.30 TITLE: declarator in type definition
PAGE: 56 LINE: 29

EXPLANATION:
How the identifier KLICKSP() in the examples in line 47, page 60 can
be derived from syntax definitions in the section 3.5 is confusinsg.
Though there is a forward reference to 3.5.5, the confusion occurs
from the fact that semantics of identifiers in 3.5.3 give 2 mixed-up
description of essentially different two things. namely for type
definitions and for declarations of object or function.

PROPOSAL:
The semantic descriptions for each of the following two cases of an
identifier appeared in declarators should be given separtely. .
(1). An identifier declared as a new type name in a type definition
(2). An identifier declared as an object or function

P.31 TITLE: Character array object whose members are initialized
with string literal
PAGE: 63 LINE: 1 to &

EXPLANATION:
It is ambiguous specification that the declaration
t[(3] = "abc”:
is identical to
tll= {'a’,’db",’c" }: .

PROPOSAL:
when character array size is equal to string literals,
common warning message may be generated to indicate lack of null
character. 2

P.32 TITLE: Terms "compound statesent” and "block”
PAGE: 65 LINE: 13

EXPLANATION: 4
Two different terms, "compound statement”™ and "block”, are used to
express the same concept. That is, term "block” is used in section
3.1.2.4 and "compound statement” is used in section 3.6.2.

PROPOSAL:
One of the two terms should be used to express the block concept.

P.33 TITLE: definition of "h-char”
PAGE: 74 LINE: 14 to 16
EXPLANATION: ~ ~ :

If the hierarchic file system must be described with '>',
the header-name cannot be specified. :

. PROPOSAL:

. The definition of "h-char-sequence” should be implementation-
defined.

10

L FRTC P UL Y I VO)

tewtel Bawmd S i se sl et vs o

Wl la) e L A e

vl taknd W

1A o o i

tbame d Fadaetvimdttid Aba vlaldAal AU b 487wt e Hom it s

P.34 TITLE: Fflush function
PAGE: 113 LINE: 15

EXPLANAT[ON:
A function returning value in case a write error does not occur
is not specified.

PROPOSAL:
Should be added a clause ",otherwise zero”.
(The same holds for fseek. feof and ferror functions.)

P.35 TITLE: The amount of padding specified by the precision
PAGE: 116 LINE: 8 to 10

EXPLANATION: :
The descriotion. "The amount of padding specified by the precision
overrides that specified by the field width™, is ambiguous.
1f the result of the execution of the statements, "int i=l:
printf("%6.2d\n",i):", is " 01", the above description is
insufficint to define the standard.

PROPOSAL:
Should define "amount of padding specified by the precision”
more precisely.

P.36 TITLE: Signed decimal notation,etc.
PAGE: 116 LINE: 39 to 40

EXPLANATION: .
Signed decimal, unsigned octal, unsigned decimal and unsigned
hexadecimal notations are used for defining output format. But thier
definitions are not given in this Working Draft.

PROPOSAL:
Should define sbove notations explicitly. -

P.37 TITLE: Vfprintf function
PAGE: 123 LINE: 30 to 34

EXPLANATION:
The side effect on the third formal parageter ’va-list arg’
seems to be produced by vfprintf function, but it is not well

specified.

PROPOSAL:
Should specify the effect on the ’arg’.
(The same holds for vsprintf and vprintf functions.)

. s
BN MM

RO SV SPNTY LI KPRE TSt BT FPUT JORU I INEU Y Vo1 W10 KON P S G IO SO BN R SR 0 VRS TP

Wollid Antsemin ad it Mo st) ¢ wa VA Na RS IR SINES Rb 2ot il JIUEAS AL LED aFE Mel =4

P.38 TITLE: Definition of "next character”
PAGE: 125 LINE: 10

EXPLANATION:
A term "next character” is not defined. Usuaily "next character”
will be indicated by the file position indicator, but it is not
always true.

PROPOSAL:
Should give the definition of "next character” on the appropriate
place.

P.39 TITLE: Fputc and file position indicator
PAGE: 125 LINE: 45 to 48

EXPLANATION: -

The fputc function puts a character "at the position indicated by
the associated file position indicator (if defined)”.

The explanation of append mode "a” for fopen function specifies
that "opening a file append mode causes all subsequent write to the
file to be forced to the current end-of-file. regardless of previous
calls to the fseek function”.

Consider the following case.

file = fopen(filename,"a+");

V& R

fseek(file,x,y);

c = fgetc(file);

/x ... %/

fseek(file,x,y); . /x File position indicator is well definedx/
cl = fputc(c.file); i i

In the above example, "fputc” puts the character at the end-of-file
or somewhere else? :

PROPOSAL: :
Should add such as following statement in the "Description”.
[f the stresm is opened with an append mode. the character is
appended to the output stream.

P.40 TITLE: Clearerr function
PAGE: 131 LINE: 26 to 27

EXPLANATION:
The fseek function also clgars an end-of-file indjcator._

PROPOSAL:
Should replace the word “these indicators”™ by "both of these

indicators”, and add following statement in “description” or as a
footnote.

The end-of-file indicator is also cleared by the fseek function.

il dhiig

ek Bte ot mmams b lo | wd o8B hed 0o bV L0 S e L B S 2t

(X CRTSRPI

aerend dol st daten

FERVE DN TP Y S TIOCTWSY WY VIR TPRERT . N ORI SURLPIE ST G CORRDIF S TORKIN T | S SRR P LI S

P.41 TITLE: Memory management function
PAGE: 138 LINE: 2 to 6

EXPLANATION:
The effect of referring to the space allocated. by malloc and reelloc
functions before the value is assigned is not specifically explained.

PROPOSAL:
Should add the following statement .
If the value of object on the space allocated by malloc or realloc
function is used before one is assigned. the behavior is undefined.

P.42 TITLE: System function
PAGE: 141 LINE: 7 to 8

EXPLANATION:
The return value in case of null string and of nonexistence of a
command processor is not specified.

PROPOSAL:
Should add the clause ",or zero to indicate that there is not a
command processor”. §

Chapter 2 Qestions

Q.1 TITLE: Translation limits
PAGE: 12 LINE: 21 to 22

QUESTION:
What is the meaning of the following description?

"The implementation shall be able to translate and excute at least
one program that contains at least one instance of every one of the
following limits.”

Does this mean that

"The implementation shall be able to translate and excute a program
which contains instances of every limits.”

or

"the implementation need not be able to translate and execute a program
which contains more than one instance of the limits.”

?

o bt ml e it et nalae Lle d ORTU O L PR 7Y P LN oo Al B e M 65, Ll lain Sk o 6

Q.2 TITLE: Are infinite indirections of a function allowed ?

PAGE: 31 LINE: 33
J QUESTION:
; An expression having a function type may be automatically converted to

the corresponding pointer type. According to this rule, when a function
"¢” is defined. the following function calls are all valid.
1{0)]
: (x)Q)
((xxf)()
; (xxxf)()
(xxxx{)()

~ In the second call,the identifier "f” has a function type. It is con-
verted to a pointer type, since the indirection operator requies an op-
rand of a pointer type.The result of the indirection has a function type.
Since the function name part of a function call must have a pointer type.
the result is again converted to a pointer type.For just the same reason,
two or more indirection operators may be applied to a function name.Thus,
infinitely many indirections say be applied to function name. [s this

= interpretation is correct?

b tlide Lobdicemets 45Tt

3 N

Q.3 TITLE: What is "same level”?

PAGE: 40 LINE: 18

PAGE: 40 LINE: 47

PAGE: 43 LINE: 24

PAGE: 43 LINE: 40

PAGE: 44 LINE: 16 ;
QUESTION:

According to 3.3, commutative operators may be regrouped arbitararily.
This rule may be spplied even if there are parentheses between these
operators. In this context, we cannot understand what the phrase "same
level™ means. Though of course it does not stand for the same parentheses
level. the reader may misunderstand the rule. What is "sage level™?

B e L BT X Oy DY TR A YR TP R B B o B A P

1Q

T AT AT ST T, ST T AT
N et LRI B ot 4 SRETE T ML

o

\
. Q.4 TITLE: Initialization of an array that has automatic strage duration
PAGE: 61 LINE: :

QUESTION: ,
Is it possible to initialize an array that has automatic storage
duration ?
Should describe that the initialization of an array that has automatic
starge duration is possible or not.

PO RDYREY EFEE- 1) BUTIETRRROS JUN

TAIBON TRTITIN FURTI T Hok I J ORI SRR G USRI QLY. | R

-l b @t

NPT %

DS ¥

Wita it

IO PR RS POV TR T

(4
'

FPSTIRRE JIYON, & Yo SR 303 Jeer (L) LINTY 1Y .‘.-'n'.i-f.h.‘.w!JJ.’..n ..

)
J

[RTPPARIE VPTG S PN, TR, PR B

Y 10 LN WV

Cde

T

3 i
Yodaitor anetiie

s & e @dmme

R PR

PSRRI S TRV ST Y J SR

mMoay

T O

Chapter 8 Ed}torial

E.1 Index
All meta-variable names including sub meta-variable in a syntax definition

refered from the other syntax definitions and descrintions should be added to
the index.

E.2 Array subscripting

Should specify the range of "n” as "n = 2" for the semantics of
n-dimensinal array.

E.3 Editorial errors
(1) Page 27 Line 5

There is an erroneous forword reference. "3.8.2" should be corrected by
73.:8m3r: ’

(2) Page 32 Line 6

"unary expressions(§3.3.3)" should be corrected by "unary operators(§
3.3:3)".

13” should be corrected by " §
14" should be corrected by " §
.15” should be corrected by " §
. 17" should be corrected by " §

aLiLacupcuL <

; \ - to 97/22 N298
) 3 Normalisatie-instituut

Datum: 87-02-10
Kaffiestaan 2 i

Postbus 5059. 2600 GB Det
Telefoon (015) 611061
Telex 38144 nru nl Ref: 97-22/87-06

Comments of the Netherlands accompaonying the vote of approval on the’
registration of document 22N 260 First working draft on Programming
language C as a draft proposal

source :NN1

Although the NNI currently votes yes, the incorperation of some new
features may cause the change of our vote to no on subsequent issues
of the DP.

f
{

