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Foreword

The International Organization for Standardization (ISO) is a worldwide federation of national standards bodies

(ISO member bodies). The work of preparing International Standards is normally carried out through ISO

technical committees. Each member body interested in a subject for which a technical committee has been

established has the right to be represented on that committee. International organizations, governmental and

non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International

Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by technical committees are circulated to the member bodies for voting.

Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

This document was prepared by ISO Panel JTC1/SC22/WG19 (Rapporteur Group for Z) for project JTC1.22.45.

Its structure is in accordance with ISO Directives Part 3. The membership of JTC1/SC22/WG19 (Rapporteur

Group for Z) includes the members of BSI Panel IST/5/-/19/2 (Z Notation). Annexes A and B are normative

parts of this International Standard; the other annexes are for information only.

The normative clauses of this International Standard organise the language de�nition as a sequence of phases.

This sequence is illustrated in Figure 1 in 5.1, and the corresponding clauses are detailed in 5.3. Informative

annex C duplicates some of the de�nition reorganised by syntactic production, but there is much that does not

�t into this organisation, as explained in its introduction.

The following comparison is included only for the bene�t of reviewers; it will be excluded from the International

Standard.

Comparison with �rst Committee Draft (Version 1.2) and comments thereon

Many changes since Version 1.2 are identi�ed here, �rst those with widespread e�ects through the document, and

then those with more localised e�ects. Attention is drawn to comments that relate to those changes. After that,

those comments that are still outstanding are enumerated, and �nally the other comments are identi�ed.

Widespread changes

a) The document has been revised to comply with ISO directives (comment UK9).

b) Types have been separated from the semantics (comments UK4{6): elements and situations have gone, and

generic lifting has simpli�ed to something that happens within the semantic relation for generic axiomatic

description paragraphs. Free variable and alphabet functions have been subsumed by calculations on type

signatures. A new meta-operation called decor assists in de�ning schema operations (comment CA10).

c) More consistent metalanguage is now used | for syntactic metalanguage, ISO/IEC 14977:1996 is used

(comment CA2), and for semantic metalanguage, a Z-like syntax for ZF set theory is used, with the same

precedences as used in Z (comment JP1). Far fewer bracket shapes are used (comments CA18, US33).

d) Many Z notations were not fully de�ned but now are, e.g. sections (comments JP44, UK1), free types

(comment JP49, UK54), numbers (comment UK77), and schema operations (comments JP54, JP80, UK63,

US71, US72).

e) The organisation of the normative technical material by syntactic productions has been relegated to an

annex, with clauses now organising the normative technical material by phase of de�nition. This is because

some parts of the de�nition cannot be accommodated by the organisation by syntactic production (proposal

IT.50.8).

f) Schema has been merged into Expression (proposal IT.48.2 part c, comments CA36, UK34). The term text

or expression is no longer used, as the traditional term schema text now su�ces (comment JP4 part 2).

g) Only a few changes have been done to the Z notation itself:
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1) free type paragraphs can now de�ne mutually recursive free types;

2) schema piping is included;

3) let and 9 notations with == local declarations are used in place of substitution � and � notations. If

the substitution notation were wanted, it could be de�ned by the following syntactic transformations.

e0 � e =) � fe0g � e
e0 � p =) 9 fe0g � p

Localised changes

a) Acknowledgements of contributors and membership of the Z Standards Panel have been omitted (proposal

IT.48.4). There does not seem to be any mention of acknowledgements in ISO directives. I expect my name

to disappear from the cover; it is there on this Working Draft so that you know who to send your comments

to.

b) The Foreword is where commentary on a particular draft appears, and so is necessarily di�erent from Version

1.2. Two paragraphs of \boilerplate text" provided by the LATEX macros start the Foreword. They are similar

to (though not word-for-word the same as) text present in another standard, though there does not seem to

be an ISO directive requiring them (proposal IT.48.1 part c).

c) An alternative Introduction is presented (proposal IT.48.7).

d) A title page has been added, as required by ISO directive 6.1.1 (proposal IT.48.1 part a).

e) The Scope clause has been rewritten in the style required by ISO directive 6.2.1 (proposal IT.48.1 part b).

f) The Conformance clause has been extended. (Comments CA6, CA8 and UK12 noted the need for this.) It

has also been moved later in the document, according to ISO directive 5.1.3 (proposal IT.48.3). Discussion

of the structure of this standard document has been included here.

g) In Normative references, ISO directive 6.2.2 requires a paragraph of \boilerplate text" at the start, the

omission of which in 1.2 has been corrected (proposal IT.48.1 part c). A reference to the ISO standard on

which Unicode is based has been added (US13).

h) The three clauses Semantic metalanguage, Semantic universe and Language description have been replaced

by the two clauses Terms and de�nitions, and Symbols and de�nitions, those being the headings required

by ISO for the clauses that introduce the terminology and notation that is to be used in de�ning the Z

notation. The separation of types from the semantics (comments UK4{6) has led to substantial changes in

content here. Within Terms and de�nitions, a style that allows an occurrence of a term to be replaced by

its de�nition in such a way that the sentence in which it appears remains grammatically correct has been

used, as required by ISO directive C.1.5.3 (proposal IT.48.1 part b). Within Symbols and de�nitions, more

explanation of the semantic metalanguage has been included (comment US14).

i) Z characters are now de�ned in terms of Unicode (proposal IT.51.1). The Z characters clause and Mark-ups

annex have been separated from Lexis (proposal IT.48.2 part a), arising from progress that allows de�nition

of the widely-used LATEX mark-up, which was not present in 1.2, and description of how formal and informal

parts are delimited (comment US11). The Z characters corresponding to schema outlines are explicitly

permitted to be rendered in either of two di�erent ways, corresponding to past practice. UP and DOWN

have evolved (comment US146), and digit strokes are speci�ed di�erently. The syntax is speci�ed in terms

of individual strokes, decoration being what is done to a schema by a stroke (comment US40). There are

more characters in the SPECIAL class, to reduce the need for spaces between tokens (proposal IT.48.13).

The turnstile ` has been replaced by j=?.
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j) Throughout the syntaxes, the ISO standard syntactic metalanguage has been used (comments CA2, US125,

US141), and the usual typeset representation of Z symbols is used for corresponding tokens (comments

CA3, US5, US122). (This is somewhat of a contradiction, since the current version of the ISO standard

syntactic metalanguage does not permit use of mathematical symbols as meta-identi�er characters. Worse,

reserved characters of the syntactic metalanguage are also used as meta-identi�er characters, distinguished

by the su�x -tok and the use of spaces around every symbol | see 4.1. This latter deviation from the

metalanguage standard could be avoided by the use of capitalised names for those tokens, but the use of such

capitalised names for all tokens would seriously a�ect the readability of this standard.) The representation

syntax has been merged with the concrete syntax (comments CA17, UK11). Non-terminals are named

consistently across di�erent syntaxes (comment JP64).

k) The syntax of paragraphs has been simpli�ed (comment JP58). The operator templates have been simpli�ed

somewhat, replacing generic arguments by a separate generic category of operator (comments CA38, JP62).

Binding extensions can be empty (comments UK33, US52), and their names shall be distinct (comments

CA23, US51). Set extensions can be empty (comments UK30, US44). The syntactic ambiguity concerning

logical operators used in schemas that are used as predicates no longer has any semantic signi�cance (comment

CA29). Table 27 clari�es where numeric operator precedences interleave with the precedences of syntactic

productions (comment CA37). String literals are no longer in the syntax (comments JP4 part 1, UK69,

US15, US132). Schema piping expressions have been added (proposal IT.48.14). Semicolon can be used as

a conjunction operator between predicates (proposal IT.48.19).

l) The Characterisation rules have been separated into a new clause (proposal IT.50.3). This change in presenta-

tion emphasises that these rules e�ect a separate phase in the de�nition: they have to be applied exhaustively

before the other syntactic transformations, and they are applicable to the concrete syntax, being independent

of annotations. Characteristic tuples have been de�ned by syntactic transformation (comments JP12, US46).

m) The Annotated syntax (renamed from Abstract syntax) has shrunk, as syntactic transformation rules (com-

ments JP55, US123) have been more widely exploited. Given types and generic types have been distinguished,

as required by the type inference rules. The e�ects of operator templates have been formalised using syntactic

transformation rules (comment CA40).

n) The Prelude has been introduced, for de�ning the semantics of number literal expressions.

o) The Type inference rules ban rede�nition at top-level (comments CA35, US105). The type rule for schema

renaming has been relaxed (comments CA31, CA32, CA33). In type sequents, the syntactic class is dis-

tinguished by a superscript on the turnstile instead of :: or
p

(proposal IT.48.9). A notation has been

introduced for generic types (proposal IT.48.10).

p) A new clause de�nes the inference of implicit generic instantiations (comments CA5, US7 and proposal

IT.50.4), along with an operation for the substitution of types for generic parameters (proposal IT.48.18).

The �lling-in of implicit generic instantiations cannot be done until after type inference has been completed,

so presenting this phase of processing separately is clearer. Carrier sets have been de�ned by syntactic

transformation, clarifying that they can be empty (comment UK17).

q) The Semantic transformation rules clause has been added. (Hence the other transformations have been

renamed as Syntactic transformation rules.) The only available de�nition of free type paragraphs is a

semantic transformation rule. Other semantic transformation rules are exploited to minimise the number of

notations that have to be de�ned by direct relation to ZF set theory.

r) The Semantic relations (renamed from Semantic equations because that for � is not an equation, Japan

[16-1]) are presented in a �rst-order style (proposal IT.48.2 part d), omitting relations for notations that are

now de�ned by transformations. A little more is said about looseness (comment CA15), the position having

changed (proposal SHV.50.1) so that all expressions denote values, though leaving unspeci�ed the values
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of unde�ned de�nite description and application expressions, and all predicates are either true or false as

determined from the values of their constituent expressions.

s) In Mathematical toolkit, the operator template paragraphs have been rewritten to be consistent with the

revised concrete syntax (comments CA45, CA46, UK76). The mathematical toolkit is now based on the

2nd edition of the Z Reference Manual, but with bags excluded (proposal IT.48.2 part e). The domains

of some operations have been widened (e.g. comment CA42). The set A has been added to represent all

numbers (comments CA43, UK17, UK82, US157). De�nitions for numeric operations have been added

(comment UK77), though only over integers (comment UK88), with div and mod de�ned as in comment

CA44. Negation has been made shorter than subtraction (comment UK85). Tuple selection notation has

been exploited (comment CA41). Domain restriction, domain subtraction and extraction have been made

right associative (an option that was not available before the introduction of operator templates). As only one

name is de�ned at once, and there are no laws, the sub-headings such as Name, De�nition and Description

have been omitted, resulting in a presentation more like the other phases of the standard. The mathematical

toolkit is presented as a hierarchy of sections, allowing those sections to be reused individually (proposal

SHV.51.4).

t) The Interchange format annex has ceased to exist, as no revision of it is available.

u) The Logical theory of Z annex has been omitted (proposal SHV.51.3), as it is not necessary to standardise

any particular set of logical inference rules, the semantics being su�cient for verifying the soundness of logical

inference rules.

v) The Tutorial annex, illustrating the interpretation of fragments of Z, has been added (comment UK10 and

proposal IT.51.3).

w) The Conventions for state-based descriptions annex has been added (comments JP81, UK3, US4).

x) The References annex has been renamed Bibliography (directive 5.2.7), and contains only those items cur-

rently referenced.

y) An Index has been added (comments JP82, US2, US3).

Other comments

The following comments on the �rst CD are those that have not been mentioned above. They either note

minor mistakes that are no longer made, have become no longer applicable because of other changes (but were

nevertheless valuable at the time), or were rejected: CAf1, 4, 7, 9, 11{14, 16, 19{22, 24{28, 30, 34, 39, 48-62g,
JPf2, 3, 5{11, 13{43, 45{48, 50{53, 56, 57, 59{61, 63, 65{79g, UKf2, 7, 8, 13{16, 18{29, 31, 32, 35{53, 55{62,
64{68, 70{75, 78{81, 83, 84, 86, 87, 89{99g, USf1, 6, 8{10, 12, 16{32, 34{39, 41{43, 45, 47{50, 53{70, 73{104,
106{121, 124, 126{131, 133{140, 142{145, 147{156, 158{174g.
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Introduction

This International Standard speci�es the syntax, type and semantics of the Z notation, as used in formal speci�-

cation.

A speci�cation of a system should aid understanding of that system, assisting development and maintenance of the

system. Speci�cations need express only abstract properties, unlike implementations such as detailed algorithms,

physical circuits, etc. Speci�cations may be loose, allowing re�nement to many di�erent implementations. Such

abstract and loose speci�cations can be written in Z.

A speci�cation written in Z models the speci�ed system: it names the components of the system and expresses

the constraints between those components. The meaning of a Z speci�cation | its semantics | is de�ned as the

set of interpretations (values for the named components) that are consistent with the constraints.

Z uses mathematical notation, hence speci�cations written in Z are said to be formal: the meaning is captured

by the form of the mathematics used, independent of the names chosen. This formal basis enables mathematical

reasoning, and hence proofs that desired properties are consequences of the speci�cation. The soundness of

inference rules used in such reasoning should be proven relative to the semantics of the Z notation.

This International Standard establishes a precise syntax and semantics for some mathematics, providing a basis

on which further mathematics can be formalized.

Particular characteristics of Z include:

� its extensible toolkit of mathematical notation;

� its schema notation for specifying structures in the system and for structuring the speci�cation itself; and

� its decidable type system, which allows some well-formedness checks to be performed automatically on a

speci�cation.

Examples of the kinds of systems that have been speci�ed in Z include:

� safety critical systems, such as railway signalling, medical devices, and nuclear power systems;

� security systems, such as transaction processing systems, and communications; and

� general software and hardware developments.

Standard Z will also be appropriate for use in:

� formalizing the semantics of other notations, especially in standards documents.

This is the �rst ISO standard for the Z notation. Much has already been published about Z. Most uses of the

Z notation have been based on the examples in the book \Speci�cation Case Studies" edited by Hayes [3][4].

Early de�nitions of the notation were made by Sufrin [16] and by King et al [9]. Spivey's doctoral thesis showed
that the semantics of the notation could be de�ned in terms of sets of models in ZF set theory [13]. His book

\The Z Notation | A Reference Manual" [14][15] is the most complete de�nition of the notation, prior to this

International Standard. This International Standard aims to address issues that have been resolved in di�erent

ways by di�erent users, and hence encourage interchange of speci�cations between diverse tools. It also aims to

be a complete formal de�nition of Z.
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1 Scope

The following are within the scope of this International Standard:

� the syntax of the Z notation;

� the type system of the Z notation;

� the semantics of the Z notation;

� a toolkit of widely used mathematical operators;

� some mark-ups of the Z notation.

The following are outside the scope of this International Standard:

� any method of using Z.
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2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions

of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these

publications do not apply. However, parties to agreements based on this International Standard are encouraged

to investigate the possibility of applying the most recent editions of the normative documents indicated below.

For undated references, the latest edition of the normative document referred to applies. Members of ISO and

IEC maintain registers of currently valid International Standards.

ISO/IEC 14977:1996, Information Technology | Syntactic Metalanguage | Extended BNF

ISO 8879:1986(E), Information Processing | Text and O�ce Systems | Standard Generalized Mark-up Lan-
guage (SGML)

ISO/IEC 10646-1:1993, Information Technology | Universal Multiple-Octet Coded Character Set (UCS) | Part
1: Architecture and Basic Multilingual Plane
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3 Terms and de�nitions

For the purposes of this International Standard, the following de�nitions of terms apply. Italicized terms in

de�nitions are themselves de�ned in this list.

3.1

binding

function from names to values

3.2

capture

cause a reference expression to refer to a di�erent declaration from that intended

3.3

carrier set

set of all values in a type

3.4

conservative extension

extended theory such that every model of the unextended theory is a subset of a model for the extended theory

3.5

consistent theory

theory whose set of models is non-empty

3.6

constraint

property that is either true or false

3.7

environment

function from names to information used in type inference

3.8

inconsistent theory

theory whose set of models is empty

3.9

interpretation

function from global names of a section to values in the semantic universe

3.10

loose theory

theory whose set of models has more than one member

3.11

metalanguage

language used for de�ning another language

3.12

metavariable

symbol denoting an arbitrary phrase of a particular syntactic class

3.13

model

interpretation that makes the de�ning constraints of the corresponding section be true

3.14

satis�able section

section having a consistent theory
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3.15

schema

set of bindings

3.16

scope of a declaration

part of a speci�cation in which a reference expression whose name is the same as a particular declaration refers

to that declaration

3.17

scope rules

rules determining the scope of a declaration

3.18

semantic universe

set of all semantic values, providing representations for both non-generic and generic Z values

3.19

signature

function from names to types

3.20

theorem

conjecture known to be valid

3.21

theory

name of a section and models of that section

3.22

type universe

set of all type values, providing representations for all Z types

3.23

uniquely satis�able section

section whose theory has exactly one model

3.24

unsatis�able section

section having an inconsistent theory

3.25

ZF set theory

Zermelo-Fraenkel set theory
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4 Symbols and de�nitions

For the purposes of this International Standard, the following de�nitions of symbols apply.

4.1 Syntactic metalanguage

The syntactic metalanguage used is the subset of the standard ISO/IEC 14977:1996 [8] summarised in Table 1,

with modi�cations so that the mathematical symbols of Z can be presented in a more comprehensible way.

Table 1 { Syntactic metalanguage

Symbol De�nition

= de�nes a non-terminal to be some syntax.

j separates alternatives.

, separates notations to be concatenated.

| separates notation on the left from notation to be excepted on the right.

f g bracket notation to be repeated zero or more times.

[ ] bracket optional notation.

( ) are grouping brackets (parentheses).

' ' encloses terminal symbols.

; terminates a de�nition.

(* *) brackets commentary.

The in�x operators j and , have precedence such that parentheses are needed when concatenating alternations,

but not when alternating between concatenations. The exception notation is used infrequently, so is always used

with parentheses, making its precedence irrelevant.

EXAMPLE 1 The lexis of a NUMBER token, and its informal reading, are as follows.

NUMBER = DIGIT , f DIGIT g ;

The non-terminal symbol NUMBER stands for a maximal sequence of one or more digit characters (without intervening

white space).

The changes to ISO/IEC 14977:1996 allow use of mathematical symbols in the names of non-terminals, and are

formally de�ned as follows.

?

Meta identifier character = all cases from ISO/IEC 14977:1996
j 'j=' j '8 ' j '9 ' j '�' j ',' j ')' j '_' j '^' j ': ' j '2'
j '� ' j '� ' j 'o

9
' j '>>' j '�' j '�' j 'P' j '� '

j 'f' j 'g' j '(' j ')' j '[' j ']' j 'hj' j 'ji' j 'hh' j 'ii'
j 'j' j ';' j ':' j '=' j '; ' j ':' j '=' j 'n' j ' ' j '&' j ' oo '
;

?

NOTE 1 It is expected that a future version of ISO/IEC 14977:1996 will permit use of Unicode characters, and that

a future version of Unicode will permit use of these mathematical symbols.

The new Meta identifier characters '(', ')', '[', ']', 'f', 'g', ';', 'j', '&', '; ' and '=' overload existing metalan-

guage characters. Uses of them as Meta identifier characters are with the common su�x -tok, e.g. (-tok,

which may be viewed as a post�x metalanguage operator.

A further change to ISO/IEC 14977:1996 is the use of multiple fonts: metalanguage characters are in Roman,

those non-terminals that correspond to Z tokens appear as those Z tokens normally appear, other non-terminals

are in Typewriter, and comments are in Italic.

The syntactic metalanguage is used in de�ning Z characters, lexis, concrete syntax and annotated syntax.
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4.2 Mathematical metalanguage

4.2.1 Introduction

Logic and Zermelo-Fraenkel set theory are the basis for the semantics of Z. In this section the speci�c notations

used are described.

4.2.2 General syntax

The notations used here are deliberately similar in appearance to those of Z itself, but are grounded only on the

logic and set theory developed by the wider mathematical community.

The forms of proposition and expression are given below. Where there could be any ambiguity in the parsing,

usually parentheses have been used to clarify, but in any other case the precedence conventions of Z itself are

intended to be used.

The use of parentheses is given in tabular form in Table 2, where e stands for any proposition or expression. Note
that the parentheses containing a Cartesian tuple written with commas may not be elided.

Table 2 { Use of parentheses in metalanguage

Notation Equivalent to

(e) e provided e is not of the form x ; y ; :::; z

4.2.3 Propositions

4.2.3.1 Introduction

A Proposition is an expression whose value is either true or false. The values true and false are distinct. In a

consistent theory a proposition cannot be both true and false, and the theory in this International Standard is

intended to be consistent. Furthermore, every proposition is presumed to be either true or false, even where it

is not possible to say which; that is, the logic is two-valued. In this International Standard it is intended that no

use is made of the value of a proposition except where it is possible to establish that value.

4.2.3.2 Propositional connectives

The propositional connectives of negation, conjunction and disjunction are used. In Table 3, P and Q represent

arbitrary propositions.

Table 3 { Propositional connectives in metalanguage

Notation Name Explanation

: P negation true i� P is false
P ^ Q conjunction true i� P and Q are both true
P _ Q disjunction false i� P and Q are both false

Conjunction is also sometimes indicated by writing propositions on successive lines, as a vertical list.

4.2.3.3 Quanti�ers

Existential, universal and unique-existential quanti�ers are used. In Tables 4 and 5, i ; :::; k are arbitrary identi�ers,
S ; :::;U are arbitrary sets, and P(i ; :::; k) and Q(i ; :::; k) are arbitrary propositions which may contain references

to i ; :::; k .

Certain abbreviations in the writing of quanti�cations are permitted, as given in Table 5. They shall be applied

repeatedly until none of them is applicable.
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Table 4 { Quanti�ers in metalanguage

Notation Name Explanation

9 i : S ; :::; k : U � P(i ; :::; k) existential quanti�cation there exists values of i in S , ..., k in U
such that P(i ; :::; k) is true

8 i : S ; :::; k : U � P(i ; :::; k) universal quanti�cation for all i in S , ..., k in U , P(i ; :::; k) is true

91 i : S ; :::; k : U � P(i ; :::; k) unique existential quanti�cation there exists exactly one con�guration of

values i in S , ..., k in U such that

P(i ; :::; k) is true

Table 5 { Abbreviations in quanti�cations in metalanguage

Notation Equivalent to

i ; j ; :::; k : S i : S ; j ; :::; k : S
9 i : S ; :::; k : U j P(i ; :::; k) � Q(i ; :::; k) 9 i : S ; :::; k : U � P(i ; :::; k) ^ Q(i ; :::; k)
8 i : S ; :::; k : U j P(i ; :::; k) � Q(i ; :::; k) 8 i : S ; :::; k : U � (: P(i ; :::; k)) _ Q(i ; :::; k)
91 i : S ; :::; k : U j P(i ; :::; k) � Q(i ; :::; k) 91 i : S ; :::; k : U � P(i ; :::; k) ^ Q(i ; :::; k)

4.2.3.4 Conditional expression and let

The conditional expression allows the choice between two alternative values according to the truth or falsehood

of a given proposition. Its form is given in Table 6, where P is some proposition and x and y any two expressions.

The let expression is used to bind the values of variables which are then referred to in the contained clause. Here

i ; :::; k are identi�ers, x ; :::; z are expressions and e(i ; :::; k) is an expression containing references to i ; :::; k .

Table 6 { Conditional expression and let in metalanguage

Notation Explanation

if P then x else y either P is true and x is the value, or P is false and y is the value

let i == x ; :::; k == z � e(i ; :::; k) e with value of x substituted for i , ..., value of z substituted for k

4.2.4 Sets

4.2.4.1 Introduction

The notation used here is based on Zermelo-Fraenkel theory, as described in for example [2], and the presentation

here is guided by the order given there. In that theory there are only sets. Members of sets can only be other

sets. The word \element" may be used loosely when referring to set members treated as atomic, without regard

to their set nature, and abstracting from their representation.

4.2.4.2 Propositions about sets and elements

The simplest propositions about sets are the relationships of membership, non-membership, subset and equality

between sets or their elements. In Table 7, x is any element (which may be a set) and S is a set.

4.2.4.3 Basic set operations

ZF set theory constructs its repertoire of set operations starting with the axiom of empty set, then showing how to

build up sets using the axioms of pairing and of union, and trimming back with the axiom of subset or separation.

In the current notation there are corresponding denotations for the empty set, �nite set extensions, and set union,

and the simple case of comprehensions using the axiom of separation directly. Set intersection and di�erence are

then de�ned using comprehensions. These are given in Table 8.
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Table 7 { Propositions about sets in metalanguage

Notation Name Explanation

x 2 S membership true i� x is a member of S
x 62 S non-membership : x 2 S
S � T subset 8 x : S � x 2 T
x = y equality for x and y considered as sets, x � y ^ y � x

Table 8 { Set extensions and unions in metalanguage

Notation Name Explanation

? empty set x 2 ? always false

fg empty set = ?

fxg singleton set y 2 fxg i� y = x
S [ T union the set of x such that x 2 S _ x 2 T
fx ; y ; :::; zg set extension = fxg [ fy ; :::; zg
fi : S j P(i)g comprehension subset of elements i of S such that P(i), by axiom of

separation

S \ T intersection fx : S j x 2 Tg
S n T di�erence fx : S j x 62 Tg

4.2.4.4 Powersets

The axiom of powers asserts the existence of powersets. The set of all �nite subsets is a subset of this. The

notation for these two forms is shown in Table 9.

Table 9 { Powerset in metalanguage

Notation Name Explanation

P S set of all subsets T 2 P S i� T � S
F S set of all �nite subsets the smallest set containing the empty set and all singleton subsets of

S and closed under the operation of forming the union of two sets

4.2.4.5 Numbers

Numbers are not primitive in Zermelo-Fraenkel set theory, but there are several well established ways of repre-

senting them. The choice of coding is not speci�ed here. There are notations to measure the cardinality of a �nite

set, to de�ne addition of natural numbers and to form the set of natural numbers between two stated natural

numbers, as given in Table 10, where m and n stand for any expressions whose values are natural numbers.

Table 10 { Operations on numbers in metalanguage

Notation Explanation

m + n sum of natural numbers m and n
# S cardinality of �nite set S
m : : n set of natural numbers between m and n inclusive

4.2.5 Names

Names are needed for this International Standard. There are several ways of representing them in Zermelo-

Fraenkel set theory. The choice of coding is not speci�ed here. Only one operation is needed on names, as de�ned

in Table 11.
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Table 11 { Decorations of names in metalanguage

Notation Explanation

decor +
i name formed by addition of stroke + to name i

4.2.5.1 Tuples and Cartesian products

Tuples and Cartesian products are not primitive in Zermelo-Fraenkel set theory, but there are various ways in

which they may be represented within that theory, such as the well-known encoding given by Kuratowski [2]. The

choice of coding is not speci�ed here. In this International Standard, particular variables are always known either

to have tuples or Cartesian products as their values, or not to have such values. Therefore there is never any

possibility of accidental confusion between the encoding used to represent the tuple and any other value which is

not a tuple.

In Z, tuples and Cartesian products may have two or more components. In this mathematical language, however,

only pairs, which may be iterated, are used.

The syntactic forms are given in Table 12, where p is any pair, x ; :::; z are any expressions, and S ; :::;U are any

sets.

Table 12 { Tuples and Cartesian products in metalanguage

Notation Explanation

(x ; y) pair

x 7! y using \maplet", identical to (x ; y)
�rst p �rst(x ; y) = x
second p second(x ; y) = y
S � T Cartesian product, set of ordered pairs whose �rst element is in S and

whose second element is in T
(x ; y ; :::; z ) abbreviates (x ; (y ; :::; z ))
S � T � :::�U abbreviates S � (T � :::�U )

4.2.5.2 Further comprehensions and �

There are notations for more 
exible forms of comprehension, whose relationship with the simple form are

explained with rewriting rules given in Table 13. In these rules, w is any identi�er distinct from those already in

use. The rules also refer to a set W , which is required to contain all possible values of the result. In Z itself, the

type is used here. The use of mathematical language in this International Standard conforms to an informal type

system, as a result of which it is always possible to �nd a containing set for the value of any comprehension.

This table also explains the notation for � , which is a form of comprehension convenient when de�ning functions.

4.2.5.3 Relations

A relation is de�ned to be a set of Cartesian pairs. There are several operations involving relations, which are

given equivalences in Table 14, where Q and R are any relations, and S any set. A proposition about relations

is given in Table 15.

4.2.5.4 Functions

A function is identi�ed with a particular form of relation, where each domain element has only one corresponding

range element. The phrase \partial function" means exactly the same as the word \function" without quali�cation.

Table 16 shows the various forms of function that are identi�ed. In the table S and T are any sets, and the

resultant expressions are sets of functions of various sorts.
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Table 13 { Further comprehensions in metalanguage

Notation Equivalent to

fi : S ; :::; k : U � e(i ; :::; k)g fw : W j 9 i : S ; :::; k : U � w = e(i ; :::; k)g where W is any

set containing all values of e(i ; :::; k)
fi : S ; :::; k : U j P(i ; :::; k) � e(i ; :::; k)g fw : W j 9 i : S ; :::; k : U � P(i ; :::; k) ^ w = e(i ; :::; k)g

where W is any set containing all values of e(i ; :::; k)
� i : S � e(i) fi : S � i 7! e(i)g
� i : S j P(i) � e(i) fi : S j P(i) � i 7! e(i)g
� i : S ; :::; k : U � e(i ; :::; k) fi : S ; :::; k : U � (i ; :::; k) 7! e(i ; :::; k)g
� i : S ; :::; k : U j P(i ; :::; k) � e(i ; :::; k) fi : S ; :::; k : U j P(i ; :::; k) � (i ; :::; k) 7! e(i ; :::; k)g

Table 14 { Relations in metalanguage

Notation Name De�nition

id S identity function � x : S � x
dom R domain fp : R � �rst pg
R� relational inversion fp : R � second p 7! �rst pg
S CR domain restriction fp : R j �rst p 2 Sg
S �CR domain subtraction fp : R j �rst p 62 Sg
R(j S j) relational image fp : R j �rst p 2 S � second pg
Q o

9
R relational composition fq : Q ; r : R j second q = �rst r � �rst q 7! second rg

Q �R relational overriding ((dom R)�CQ) [ R

Table 15 { Proposition about relations in metalanguage

Notation Name De�nition

Q � R compatible relations (dom R)CQ = (dom Q)CR

Table 16 { Functions in metalanguage

Notation Name De�nition

S 7! T partial functions ff : P (S �T ) j 8 p; q : f j �rst p = �rst q � second p = second qg
S ! T total functions ff : S 7! T j dom f = Sg
S �! T bijections ff : S ! T j f � 2 T ! Sg
S 7 7! T �nite functions ff : F (S � T ) j f 2 S 7! Tg
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4.2.5.5 Function use

If f is a function and x is a value in its domain, f x represent the corresponding range value, as shown in Table

17. In any case where the value referred to in the table does not exist uniquely, the result of the application is

some unknown value.

Table 17 { Function use in metalanguage

Notation Name Explanation

f x application the unique value y such that x 7! y 2 f

The mathematical metalanguage is used in type inference rules and in semantic relations.

4.3 Transformation metalanguage

Each transformation rule is written in the following form.

concrete phrase template =) less concrete phrase template

The phrase templates are patterns; they are not speci�c sentences and they are not written in the syntactic

metalanguage. These patterns are written in a notation based on the concrete and annotated syntaxes, with

metavariables appearing in place of syntactically well-formed phrases. Where several phrases of the same syntactic

classes have to be distinguished, these metavariables are given distinct numeric subscripts. The letters k , m , n , r
are used as metavariables for such numeric subscripts. The patterns can be viewed either as using the non-terminal

symbols of the Z lexis with the -tok su�xes omitted from mathematical symbols, or as using the mathematical

rendering with the box tokens in place of paragraph outlines. Transformations map parse trees of phrases to

other parse trees. The metavariables are de�ned in Tables 18 and 19 (the corresponding syntactic phrases being

de�ned in the syntaxes).

Table 18 { Metavariables for phrases

Symbol De�nition

b denotes a sequence of digits within a NUMBER token.

c denotes a digit within a NUMBER token.

d denotes a Paragraph phrase (d for de�nition/description).

de denotes a Declaration phrase.

e denotes an Expression phrase.

f denotes a free type NAME token.

g denotes an injection NAME token (g for ingection).

h denotes an element NAME token (h for helement).

i, j denote NAME tokens or DeclName or RefName phrases (i for identi�er).

p denotes a Predicate phrase.

s denotes a Section phrase.

se denotes an ExpressionList phrase (se for sequence of expressions).

t denotes a SchemaText phrase (t for text).

u, v , w , x , y denote distinct names for new local declarations.

z denotes a Specification sentence.

� denotes a Type phrase.

� denotes a Signature phrase.
+ denotes a STROKE token.
� denotes a f STROKE g phrase.
... denotes elision of repetitions of surrounding phrases, the total number of

repetitions depending on syntax.
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Table 19 { Metavariables for operator words

Symbol De�nition

el denotes an EL token.

elp denotes an ELP token.

er denotes an ER token.

ere denotes an ERE token.

erep denotes an EREP token.

erp denotes an ERP token.

es denotes an ES token.

ess denotes an ES token or SS token.

in denotes an I token.

ip denotes an IP token or 2 token or = token.

ln denotes an L token.

lp denotes an LP token.

post denotes a POST token.

postp denotes a POSTP token.

pre denotes a PRE token.

prep denotes a PREP token.

sr denotes an SR token.

sre denotes an SRE token.

srep denotes an SREP token.

srp denotes an SRP token.

ss denotes an SS token.

EXAMPLE 1 The syntactic transformation rule for a schema de�nition paragraph, and an informal reading of it,

are as follows.

SCH i t END =) AX [i == t] END

A schema de�nition paragraph is formed from a box token SCH, a name i, a schema text t, and an END token. An

equivalent axiomatic description paragraph is that which would be written textually as a box token AX, a [ token, the

original name i, a == token, the original schema text t, a ] token, and an END token.

EXAMPLE 2 The semantic transformation rule for a schema hiding expression, and an informal reading of it, are

as follows.

(e o

o P[�]) n (i1; :::; in) =) 9 i1 : carrier (� i1); :::; in : carrier (� in) � e

A schema with signature � from which some names are hidden is semantically equivalent to the schema existential

quanti�cation of the hidden names from the schema. Each name is declared with the set that is the carrier set of the

type of the name in the signature of the schema.

1 is used as a reserved stroke, for the generation of new names that are consequently guaranteed not to result

in any captures.

The applicability of a transformation rule can be guarded by a condition written above the =) symbol. Local

de�nitions can be associated with a transformation rule by appending a where clause.

The transformation rule metalanguage is used in de�ning characterisation rules, syntactic transformation rules,

type inference rules, instantiation, and semantic transformation rules.

4.4 Type inference rule metalanguage

Each type inference rule is written in the following form.

type subsequents

type sequent
(side�condition)
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where local�declaration
and :::

This can be read as: if the type subsequents are valid, and the side-condition is true, then the type sequent is

valid, in the context of the zero-or-more local declarations. The side-condition is optional; if omitted, the type

inference rule is equivalent to one with a true side-condition.

The annotated syntax establishes notation for writing types as Type phrases and for writing signatures as

Signature phrases. The o

o operator allows annotations such as types to be associated with other phrases.

Determining whether a type sequent is valid or not involves manipulation of types and signatures. This requires

viewing types and signatures as values, and having a mathematical notation to do the manipulation. Signatures

are viewed as functions from names to type values. Type is used to denote the set of type values as well as the set

of type phrases, the appropriate interpretation being distinguished by context of use. Similarly, NAME is also used

to denote a set of name values. These values all lie within the type universe. A type's NAME has a corresponding

type value in the type universe whereas its carrier set is in the semantic universe.

Type values are formed from just �nite sets and ordered pairs, so the mathematical metalanguage introduced in

section 4.2 su�ces for their manipulation.

Details of which names are in scope are kept in environments. The various kinds of environment are de�ned in

Table 20, and the names used to denote speci�c environments are de�ned in Table 21.

Table 20 { Environments

Symbol De�nition

TypeEnv denotes type environments, where TypeEnv == NAME 7 7! Type. Type en-

vironments associate names with types. They are like signatures, but are

used in di�erent contexts.

SectTypeEnv denotes section-type environments, where SectTypeEnv == NAME 7 7!
(NAME� Type). Section-type environments associate variable names with

the name of the ancestral section that originally declared the variable

paired with its type.

SectEnv denotes section environments, where SectEnv == NAME 7 7! SectTypeEnv.

Section environments associate section names with section-type environ-

ments. They are analogous to theories, but with (section name, type) pairs

in place of values.

Table 21 { Variables over environments

Symbol De�nition

� denotes a type environment, � : TypeEnv.

� denotes a section-type environment, � : SectTypeEnv.

� denotes a section environment, � : SectEnv.

Type sequents are written using the traditional ` notation, but superscripted with a mnemonic letter to distinguish
the syntax of the phrase appearing to its right | see Table 22.

NOTE 1 These superscripts are the same as the superscripts used on the [[ ]] semantic brackets in the semantic

relations below.

The annotated phrases to the right of ` in type sequents are phrase templates written using the same metavariables
as the syntactic transformation rules; see Table 18.

EXAMPLE 1 The type inference rule for a schema conjunction expression, and its informal reading, are as follows.
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Table 22 { Type sequents

Symbol De�nition

`Z z a type sequent asserting that speci�cation z is well-typed.

� `S s o

o � a type sequent asserting that, in the context of section environment �,

section s has section-type environment �.

� `D d o

o [�] a type sequent asserting that, in the context of type environment �, the

paragraph d has signature �.

� `P p a type sequent asserting that, in the context of type environment �, the

predicate p is well-typed.

� `E e o

o � a type sequent asserting that, in the context of type environment �, the

expression e has type �.

� `
E

e1 o

o P[�1] � `
E

e2 o

o P[�2]

� `
E

e1 ^ e2 o

o P[�1 [ �2]
(�1 � �2)

In a schema conjunction expression e1 ^ e2, expressions e1 and e2 shall be schemas, and their signatures shall be

compatible. The type of the whole expression is that of the schema whose signature is the union of those of expressions

e1 and e2.

NOTE 2 The metavariables �1 and �2 denote syntactic phrases. These are mapped implicitly to type values,

so that the set union can be computed, and the resulting signature is implicitly mapped back to a syntactic

phrase. These mappings are not made explicit as they would make the type inference rules harder to read, e.g.

[[ [[�1]] [ [[�2]] ]].

This metalanguage is used in de�ning type inference rules.

4.5 Semantic relation metalanguage

Most semantic relations are equations written in the following form.

[[phrase template]] = semantics

Where the de�nition is only partial, the equality notation is not appropriate, and instead a lower bound is speci�ed

on the semantics.

semantics � [[ � e1 � e2 ]]E

The phrase templates use the same metavariables as used by the syntactic transformation rules | see Table 18.

NOTE 1 The semantics parts of semantic relations use the mathematical notation introduced in section 4.2 to

manipulate both type values and semantic values. Every Z expression has a semantic value, but the semantic relations

do not specify the value to use for unde�ned expressions. This is why the mathematical metalanguage operations

produce values rather than failing when applied to inappropriate arguments.

Symbols concerned with the domain of the semantic de�nitions are listed in Tables 23 and 24.

The formation of a suitable W comprising models of sets, tuples and bindings, as needed to model Z, is well-known

in ZF set theory and is assumed in this International Standard.

The meaning of a phrase template is given by a semantic relation from the Z phrase in terms of operations of ZF

set theory on the semantic universe. There are di�erent semantic relations for each syntactic notation, written

using the conventional [[ ]] semantic brackets, but here superscripted with a mnemonic letter to distinguish the

syntax of phrase appearing within them | see Table 25.

NOTE 2 The superscripts are the same as those used on the ` of type sequents in the type inference rules above.

~ and � are reserved strokes used in de�ning the semantics of given types and generic types respectively.
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Table 23 { Semantic universe

Symbol De�nition

W denotes a world of sets, providing semantic values for Z expressions. W

has to be big enough: it shall contain the set NAME from which Z names

are drawn and an in�nite set and be closed under formation of powersets

and products.

U denotes the semantic universe, providing semantic values for all Z values,

where U == W [ (W ! W ). U comprises W and Z generic de�nitions each

as a function from the semantic values of its instantiating expressions (a

tuple in W ) to a member of W .

Model denotes models, where Model == NAME 7 7! U. Models associate variable

names with semantic values. They are applied only to names in their

domains, as guaranteed by well-typedness.

Theory denotes named theories, where Theory == NAME 7 7! PModel . Theories

associate section names with sets of models.

Table 24 { Variables over semantic universe

Symbol De�nition

M denotes a model, M : Model .
T denotes a named theory, T : Theory .
t denotes a binding semantic value, t : NAME 7 7! W .

g denotes a generic semantic value, g : W ! W .

w ; x ; y denote non-generic semantic values, w : W ; x : W ; y : W .

EXAMPLE 1 The semantic relation for a conjunction predicate, and its informal reading, are as follows. The

conjunction predicate p1 ^ p2 is true if and only if p1 and p2 are true.

[[ p1 ^ p2 ]]
P

= [[ p1 ]]
P \ [[ p2 ]]

P

In terms of the semantic universe, it is true in those models in which both p1 and p2 are true, and is false otherwise.

Within the semantic relations, the idioms listed in Table 26 occur repeatedly.

Semantic relation metalanguage is used in de�ning semantic relations.
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Table 25 { Semantic relations

Symbol De�nition

[[ z ]]
Z

denotes the meaning of speci�cation z, where [[ z ]]
Z 2 Theory . The mean-

ing of a speci�cation is the set of named theories established by its sections.

[[ s ]]
S

denotes the meaning of section s, where [[ s ]]
S 2 Theory 7! Theory . The

meaning of a section is the function from a set of named theories to the

set that is the same apart from having an additional member for the given

section.

[[ d ]]
D

denotes the meaning of paragraph d, where [[ d ]]
D 2 Model $ Model . The

meaning of a paragraph relates a model to that model extended according

to that paragraph.

[[ p ]]
P

denotes the meaning of predicate p, where [[ p ]]
P 2 PModel . The meaning

of a predicate is the set of all models in which that predicate is true.

[[ e ]]
E

denotes the meaning of expression e, where [[ e ]]
E 2 Model ! W . The

meaning of an expression is a function returning the semantic value of the

expression in the given model.

[[ � ]]
T

denotes the meaning of type �, where [[ � ]]
T 2 Model 7! P U. The meaning

of a type is the semantic value of its carrier set, as determined from the

given model.

Table 26 { Semantic idioms

Idiom Description

[[ e ]]
E

M denotes the value of expression e in model M
M � t denotes the model M giving semantic values for more global declarations

overridden by the binding t giving the semantic values of locally declared

variables
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5 Conformance

5.1 Phases of the de�nition

The de�nition of the Z notation is divided into a sequence of phases, as illustrated in Figure 1. Each arrow

represents a phase from a representation of a Z speci�cation at its source to another representation of the Z

speci�cation at its target. The phase is named at the left margin. Some phases detect errors in the speci�cation;

these are shown drawn o� to the right-hand side.

NOTE 1 The arrows are analogous to total and partial function arrows in the Z mathematical toolkit, but drawn

vertically.

Figure 1 { Phases of the de�nition

source text

mark-up

?

mark-up error

sequence of Z characters

lexing

?
lexical error

sequence of tokens

parsing

?

syntax error

parse tree of concrete syntax sentence

characterising

?

characterised parse tree of concrete syntax sentence

syntactic transformation

?

parse tree of annotated syntax sentence

type inference

?

type error

fully annotated parse tree of annotated syntax sentence

instantiating

?
fully instantiated parse tree of annotated syntax sentence

semantic transformation
?

parse tree of kernel syntax sentence

semantic relation
?

meaning in ZF set theory
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5.2 Conformance requirements

5.2.1 Speci�cation conformance

For a Z speci�cation to conform to this International Standard, no errors shall be detected by any of the phases

shown in Figure 1. In words, for a Z speci�cation to conform to this International Standard, its formal text shall

be valid mark-up of a sequence of Z characters, that can be lexed as a valid sequence of tokens, that can be parsed

as a sentence of the concrete syntax, and which is well-typed according to the type inference system.

NOTE 1 A conforming Z speci�cation may have an inconsistent theory, and consequently be unsatis�able.

5.2.2 Mark-up conformance

A mark-up for Z based on LATEX conforms to this International Standard if and only if it follows the rules given

for LATEX mark-up in A.2.

A mark-up for Z used in email communications conforms to this International Standard if and only if it follows

the rules given for email mark-up in A.3.

NOTE 1 Mark-up for Z based on any other mark-up language is permitted; it shall be possible to de�ne a functional

mapping from that mark-up to sequences of Z characters that are conforming Z concrete sentences.

5.2.3 Deductive system conformance

A Z deductive system conforms to this International Standard if and only if its rules are sound with respect to

the semantics, i.e. if both of the following conditions hold:

a) all of its axioms hold in all models of all Z speci�cations, i.e. for any axiom p,

[[ p ]]
P

= Model

b) all of its rules of inference have the property that the intersection of the sets of models of each of the premisses

is contained in the model of the conclusion, i.e. for any rule of inference where p is deduced from p1, ... pn,

[[ p1 ]]
P \ ::: \ [[ pn ]]

P � [[ p ]]
P

The semantic relation is de�ned loosely in this International Standard, so as to permit alternative treatments of

unde�nedness. A Z deductive system may take a particular position on unde�nedness. That position should be

clearly documented.

5.2.4 Mathematical toolkit conformance

A mathematical toolkit conforms to this International Standard if and only if it de�nes the same theories as the

mathematical toolkit in annex B.

NOTE 1 This permits di�erent formulations of the same de�nitions.

A Z section whose name is the same as a section of the mathematical toolkit conforms to this International

Standard if and only if it de�nes the same set of models as that section of the mathematical toolkit.

NOTE 2 Alternative and additional toolkits are not precluded, but are required to have di�erent section names to

avoid confusion.

5.2.5 Support tool conformance

A strongly conforming Z support tool shall accept all conforming Z speci�cations and reject all non-conforming Z

speci�cations. A weakly conforming Z support tool shall never accept a non-conforming Z speci�cation, nor reject

a conforming Z speci�cation, but it may state that it is unable to determine whether or not a Z speci�cation

conforms.
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NOTE 1 Strong conformance can be summarised as always being right, whereas weak conformance is never being

wrong.

EXAMPLE 1 A tool would be weakly conformant if it were to announce its inability to determine the conformance

of a Z speci�cation that used names longer than the tool could handle, but would be non-conformant if it silently

truncated long names.

EXAMPLE 2 The following Z speci�cation conforms to this standard, but a tool might not be able to �nd the

unique assignment of type annotations.

S [X ] == X

s == S

fs j x = yg = fg ^ s = [x ; y ; z : A ]

EXAMPLE 3 This next example is a trickier variation on Example 2.

S [X ] == X

s == S

t == S

s = [x ; y : A ; z : ft j x = yg]

^

t = [x ; y : A j �(s n (z )):x = x ]

5.3 Structure of this document

The phases in the de�nition of the Z notation, and the representations of speci�cations manipulated by those

phases, as illustrated in Figure 1, are speci�ed in the following clauses and annexes.

Annex A, Mark-ups, speci�es two source text representations and corresponding mark-up phases for translating

source text to sequences of Z characters.

Clause 6 speci�es the Z characters by their appearances and their representation in Unicode.

Clause 7, Lexis, speci�es tokens and the lexing phase that translates a sequence of Z characters to a sequence of

tokens.

Clause 8 speci�es the grammar of the concrete syntax, and hence abstractly speci�es the parsing phase that

translates a sequence of tokens to a parse tree of a concrete syntax sentence. Some information from parsing

operator template paragraphs is fed back to the lexis phase.

Clause 9 speci�es the characterising phase, during which characteristic tuples are made explicit in the parse tree

of a concrete syntax sentence.

Clause 10 speci�es the grammar of the annotated syntax, de�ning the target language for the syntactic transfor-

mation phase.

Clause 11 speci�es the prelude section, providing an initial environment of de�nitions (which is not apparent in

Figure 1).

Clause 12 speci�es the syntactic transformation phase that translates a parse tree of a concrete syntax sentence

to a parse tree of an equivalent annotated syntax sentence.

Clause 13 speci�es the type inference phase, during which type annotations are added to the parse tree of the

annotated syntax sentence.
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Clause 14 speci�es the instantiation phase, during which reference expressions that refer to generic de�nitions are

translated to generic instantiation expressions.

Clause 15 speci�es the semantic transformation phase, during which some annotated parse trees are translated

to equivalent other annotated parse trees of a kernel syntax.

Clause 16 speci�es the semantic relation between a sentence of the kernel syntax and its meaning in ZF set theory.

Annex C duplicates those parts of the de�nition that �t into an organisation by concrete syntax production.
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6 Z characters

6.1 Introduction

A Z character is the smallest unit of information in this International Standard; Z characters are used to build

tokens (clause 7), which are in turn the units of information in the concrete syntax (clause 8). The Z characters

are de�ned both by their appearances and by relation to 16-bit Unicode [7].

Many Z characters are not present in the standard 7-bit ASCII encoding [5]. It is possible to represent Z

characters in ASCII, by de�ning a mark-up, where several ASCII characters are used together to represent a

single Z character. This International Standard de�nes some ASCII mark-ups in annex A. Other encodings of Z

characters can similarly be de�ned by relation to the Unicode representation.

6.2 Formal de�nition of Z characters

ZCHAR = DIGIT j LETTER j SPECIAL j SYMBOL ;
DIGIT = '0' j '1' j '2' j '3' j '4' j '5' j '6' j '7' j '8' j '9'

j any other Unicode character with the `decimal' property (as supported)

;

LETTER = LATIN j GREEK j OTHERLETTER
j any characters of the mathematical toolkit with Unicode `letter' property (as supported)

j any other Unicode characters with the `letter' property (as supported)
;

LATIN = 'A' j 'B ' j 'C ' j 'D ' j 'E ' j 'F ' j 'G ' j 'H ' j 'I '
j 'J ' j 'K ' j 'L' j 'M ' j 'N ' j 'O ' j 'P ' j 'Q ' j 'R'
j 'S ' j 'T ' j 'U ' j 'V ' j 'W ' j 'X ' j 'Y ' j 'Z '
j 'a' j 'b' j 'c' j 'd ' j 'e' j 'f ' j 'g ' j 'h' j 'i '
j 'j ' j 'k ' j 'l ' j 'm' j 'n' j 'o' j 'p' j 'q ' j 'r '
j 's ' j 't ' j 'u' j 'v ' j 'w ' j 'x ' j 'y ' j 'z '
;

GREEK = '�' j '�' j '�' j '�' j '�' ;
OTHERLETTER = 'A ' j 'N' j 'P' ;
SPECIAL = STROKECHAR j WORDGLUE j BRACKET j BOXCHAR j SPACE ;

STROKECHAR = '0' j '!' j '?' ;
WORDGLUE = '%' j '.' j '&' j '-' j ' ' ;
BRACKET = '(' j ')' j '[' j ']' j 'f' j 'g' j 'hj' j 'ji' j 'hh' j 'ii' ;
BOXCHAR = AXCHAR j SCHCHAR j GENCHAR j ENDCHAR j NLCHAR ;

SYMBOL = 'j' j '&' j 'j=' j '^' j '_' j ')' j ',' j ': ' j '8' j '9'
j '�' j '=' j '=' j '2' j ':' j '; ' j ';' j ':' j '�'
j 'n' j '�' j 'o

9
' j '>>' j '+'

j any characters of the mathematical toolkit not included above (as supported)
j any other Unicode characters not included above (as supported)

;

6.3 Additional restrictions and notes

The characters enumerated in the formal de�nition are those used by the core language; they shall be supported. If

the mathematical toolkit is supported, then its characters shall be supported. The \other Unicode characters"may

also be supported, extending DIGIT, LETTER or SYMBOL according to their property, but not extending SPECIAL.
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Use of characters that are absent from Unicode is permitted, but there is no standard way of distinguishing

which of DIGIT, LETTER or SYMBOL (not SPECIAL) they extend, and speci�cations using them might not be

interchangeable between tools.

NOTE 1 STROKECHAR characters are used in STROKE tokens in the lexis.

NOTE 2 WORDGLUE characters are used in building NAME tokens in the lexis.

NOTE 3 BOXCHAR characters correspond to Z's distinctive boxes around paragraphs.

NOTE 4 SPACE is a Z character that serves to separate two sequences of Z characters that would otherwise be

mis-lexed as a single token.

6.4 Z character representations

6.4.1 Introduction

The following tables show the Z characters in their mathematical representation. (Other representations are given

in annex A.) The columns give:

Math: The representation for rendering the character on a high resolution device, such as a bit-mapped

screen, or on paper (either hand-written, or printed).

Unicode: The Unicode value of the Z character.

Spoken name: A suggested form for reading the character out loud, suitable for use in reviews, or for

discussing speci�cations over the telephone. In the following, an English language form is given; for other

natural languages, other forms may be de�ned.

NOTE 1 Not all Z characters are currently supported by Unicode; the exceptions are shown as U+xxxx, and are

included in the AMS/STIX mathematical character proposal for the next version of Unicode.

6.4.2 Digit characters

Math Unicode Spoken name

0 U+0030 zero j nought
...

...
...

9 U+0039 nine

6.4.3 Letter characters

6.4.3.1 Latin alphabet characters

Math Unicode Spoken name

A U+0041 capital a
...

...
...

Z U+005A capital z

a U+0061 [small] a
...

...
...

z U+007A [small] z

6.4.3.2 Greek alphabet characters

The Greek alphabet characters used by the core language are those listed here.
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Math Unicode Spoken name

� U+0394 capital delta

� U+039E capital xi

� U+03B8 [small] theta

� U+03BB [small] lambda

� U+03BC [small] mu

6.4.3.3 Other Z core language letter characters

The other Z core language characters with the Unicode `letter' property are listed here. (These characters are

introduced in the prelude, clause 11.)

Math Unicode Spoken name

A U+xxxx number j arithmos
N U+xxxx nat[ural [number]]

P U+xxxx power [set]

6.4.4 Special characters

6.4.4.1 Stroke characters

Math Unicode Spoken name

0 U+0027 dash j prime
! U+0021 pling j bang j shriek j exclamation mark

? U+003F query j question mark

6.4.4.2 Word glue characters

The characters '%', '.', '&', and '-' may be presented as in-line literals, or they may indicate a raising/lowering

of the text, and possible size change. Such rendering details are not de�ned here.

Math Unicode Spoken name

% U+2197 up

. U+2199 end up

& U+2198 down

- U+2196 end down

U+005F underscore
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6.4.4.3 Bracket characters

Math Unicode Spoken name

( U+0028 ( left j open ) ( round bracket j parenthesis )
) U+0029 ( right j close ) ( round bracket j parenthesis )
[ U+005B ( left j open ) square [bracket]

] U+005D ( right j close ) square [bracket]
f U+007B ( left j open ) brace

g U+007D ( right j close ) brace
hj U+xxxx ( left j open ) binding [bracket]

ji U+xxxx ( right j close ) binding [bracket]
hh U+300A ( left j open ) chevron [bracket]

ii U+300B ( right j close ) chevron [bracket]

6.4.4.4 Box characters

The ENDCHAR character is used to mark the end of a Paragraph. The NLCHAR character is used to mark a hard

newline (see section 7.5). The box rendering of the BOXCHAR characters is as lines drawn around the Z text (see

section 8.5).

Z character Simple rendering Unicode Spoken name

AXCHAR j U+2577 begin axiomatic

SCHCHAR p U+250C begin schema

GENCHAR = U+2550 generic

ENDCHAR (new line) U+2029 paragraph end

NLCHAR (new line) U+2028 line end

6.4.4.5 SPACE character

The Unicode value of the SPACE character is U+0020.

6.4.5 Symbol characters except mathematical toolkit characters

Math Unicode Spoken name

j U+007C bar

& U+0026 ampersand

j= U+22A8 double turnstile

^ U+2227 [logical] and

_ U+2228 [logical] or

) U+21D2 implies

, U+21D4 equivalent j if and only if

: U+00AC not

8 U+2200 for all

9 U+2203 exists
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� U+00D7 cross

= U+002F [forward] slash

= U+003D equals

2 U+2208 member of j in j element of
: U+003A colon

; U+003B semi[colon]

; U+002C comma

: U+002E full stop j period j dot
� U+xxxx fat dot j spot j bullet

n U+xxxx hide

� U+xxxx project
o

9
U+xxxx [schema] compose

>> U+xxxx [schema] pipe

+ U+002B plus

6.4.6 Mathematical toolkit characters

The mathematical toolkit (annex B) need not be supported by an implementation. If it is supported, it shall use

the representations given here.

Mathematical toolkit names that use only Z core language characters, or combinations of Z characters de�ned

here, are not themselves listed here.

Math Unicode Spoken name

$ U+2194 relation

! U+2192 total function

6= U+2260 not equal

62 U+2209 not in

? U+2205 empty [set]

� U+2286 subset

� U+2282 proper subset

[ U+222A [set] union j cup
\ U+2229 [set] intersection j cap
n U+005C set di�erence

	 U+2296 symmetric set di�erenceS
U+22C3 generalised unionT
U+22C2 generalised intersection

F U+xxxx �nite sets

7! U+21A6 maplet
o

9
U+xxxx [relational] compose

� U+2218 functional compose

C U+25C1 domain restrict

B U+25B7 range restrict
�C U+xxxx domain subtract

�B U+xxxx range subtract
� U+007E inverse

(j U+xxxx ( left j open ) relational image [bracket]

j) U+xxxx ( right j close ) relational image [bracket]
� U+2295 [relational] override
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7! U+xxxx [partial] function

7� U+xxxx [partial] injection

� U+21A3 total injection

7!! U+xxxx [partial] surjection

!! U+21A0 total surjection

�! U+xx bijection

7 7! U+xxxx �nite function

7 7� U+xxxx �nite injection

Z U+xxxx integer

- U+002D [unary] minus

� U+2212 [binary] minus

� U+2264 less than or equal to

< U+003C less than

� U+2265 greater than or equal to

> U+003E greater than

# U+0023 cardinality j hash

h U+2329 ( left j open ) sequence [bracket]

i U+232A ( right j close ) sequence [bracket]
a U+xxxx concatenate

� U+21BF extract

� U+21BE �lter

6.4.7 Renderings of Z characters

Renderings of Z characters are called glyphs (following the terminology in the Unicode Standard). A rendering

of a Z character on a graphics screen is typically di�erent from its rendering on a piece of paper: the glyphs used

for Z characters are device-dependent.

A Z character may also be rendered using di�erent glyphs at di�erent places in a speci�cation, for reasons of

emphasis or aesthetics, but such di�erent glyphs still represent the same Z character. For example, `d ', `d', `d'
and `d' are all the same Z character. Although `dom', `dom', `dom' and `dom' all represent the same token,

tokens shall be rendered consistently throughout a speci�cation, to avoid confusion.

For historical reasons, some di�erent Z characters have similar-looking renderings. In particular:

� schema composition `o
9
' and the mathematical toolkit character relational composition `o

9
' are di�erent Z

characters;

� schema projection `�' and the mathematical toolkit character �lter `�' are di�erent Z characters;

� schema hiding `n' and the mathematical toolkit character set minus `n' are di�erent Z characters.
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7 Lexis

7.1 Introduction

The lexis speci�es a function from sequences of Z characters to sequences of tokens. The domain of the function

involves all the Z characters of clause 6. The range of the function involves all the tokens used in clause 8. The

function is partial: sequences of Z characters that do not conform to the lexis are excluded from consideration at

this stage.

A lexer produces a stream of tokens for consumption by a parser. In the formal de�nition below, TOKENSTREAM

is the start symbol. The tokens are those non-terminal symbols that are enumerated within the TOKEN rule. The

SPACE characters are eliminated from the token stream and not passed to the parser.

7.2 Formal de�nition of lexis

TOKENSTREAM = f SPACE g , f TOKEN , f SPACE g g ;
TOKEN = NAME j NUMBER j STROKE

j (-tok j )-tok j [-tok j ]-tok j f-tok j g-tok j NL
j section j parents j true j false j let j if j then j else
j pre j relation j function j generic j leftassoc j rightassoc
j : j == j ;-tok j ::= j j-tok j & j n j = j :
j ; -tok j j ; ; j =-tok j hh j ii j j=? j 8 j �
j 9 j 91 j , j ) j _ j ^ j : j 2 j �
j � j hj j ji j � j � j � j o

9
j >>

j PREP j PRE j POSTP j POST j IP j I j LP j L j ELP j EL
j ERP j ER j SRP j SR j EREP j ERE j SREP j SRE j ES j SS
j AX j GENAX j SCH j GENSCH j END
;

AX = AXCHAR ;

SCH = SCHCHAR ;

GENAX = AXCHAR , GENCHAR ;

GENSCH = SCHCHAR , GENCHAR ;

END = ENDCHAR ;

NL = NLCHAR ;

NUMBER = DIGIT , f DIGIT g ;
(-tok = '(' ;

)-tok = ')' ;

[-tok = '[' ;

]-tok = ']' ;

f-tok = 'f' ;
g-tok = 'g' ;
STROKE = STROKECHAR

j '&' , DIGIT , '-'

;

NAME = WORD , f STROKE g ;
WORD = WORDPART , f WORDPART g

j LETTER , ALPHASTR , f WORDPART g
j SYMBOL , SYMBOLSTR , f WORDPART g
;
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WORDPART = WORDGLUE , ( ALPHASTR j SYMBOLSTR ) ;
ALPHASTR = f LETTER j DIGIT g ;
SYMBOLSTR = f SYMBOL g ;
7.3 Additional lexical restrictions, notes and examples

The non-terminal symbols that appear to be unde�ned in the formal de�nition of lexis are keyword tokens (see

7.4).

SPACE is not itself lexed as part of any token. It can be used freely between tokens. The cases where its use is

necessary are: between two WORDs, which would otherwise be lexed as a single WORD; between an alphabetic WORD

and a NUMBER, which would otherwise be lexed as a single WORD; between a NAME and a STROKE (a decoration

expression), which would otherwise be lexed as a single NAME; and between two consecutive NUMBERs, which would

otherwise be lexed as a single NUMBER.

Some tools may impose restrictions on the forms of some names. For example, mapping section names to �lenames

might be eased by banning decorations and non-ASCII characters.

For every '&' character in a WORD, there shall be a paired following '-' character; for every '%' character in a

WORD, there shall be a paired following '.' character. These shall occur only in nested pairs.

EXAMPLE 1 The following strings of Z characters are single words: `&+=', `x + y ', `x+y ', `x
+
y ', `x++y '. However,

`x+y ' comprises the three words `x ', `+' and `y '.

EXAMPLE 2 The following strings of Z characters are single words: `�S ', `�S ', `9�', `9 X ', `9X '. However, `9X '

is the keyword token `9', followed by the word `X '.

EXAMPLE 3 The following strings of Z characters are single words: `�:2', `x : e', `x :e '. However, `x :e' is the word

`x ', followed by the keyword token `:', followed by the word `e'.

The concrete syntax allows a RefName, which may be a NAME that includes strokes; it also allows an expression

to be decorated with a stroke. When the decorated expression is a NAME, the lexis disambiguates the two cases

by using the white space between the NAME and the STROKE: in the absence of any white space, the stroke shall

be lexed as part of the NAME; in the presence of white space, the stroke shall be lexed as a decoration on the

expression.

EXAMPLE 4 x ! is the NAME comprising the WORD `x ' followed by the STROKE `!'.

x ! is the decorated expression comprising the RefName expression `x ' decorated with the STROKE `!'.

x ! ! is the decorated expression comprising the RefName expression `x !' decorated with the STROKE `!'.

The lexis allows a WORD to include subscript digits; it also allows a NAME to be decorated with subscript digits.

Trailing subscript digits shall be lexed as strokes, not as part of a WORD.

EXAMPLE 5 xa1 is a NAME comprising the WORD `xa ' and the STROKE `1'.

xa? is a NAME comprising the WORD `xa ' and the STROKE `?'.

x1a is a NAME comprising the WORD `x1a ' and no strokes.

A multi-digit last WORDPART enclosed in a & . . .- pair is deprecated, because of the visual ambiguity with

multiple STROKE subscript digits.

NOTE 1 There is no need for any particular mark-up to follow these rules; this syntax applies only to tokens built

from Z characters.

NOTE 2 Although a parser does not need to know the spelling of particular instances of NAME, NUMBER, STROKE, etc

tokens, subsequent phases of processing such as typechecking do. This relation is not explicitly formalized here.

7.4 Keyword tokens

7.4.1 Introduction

The keywords of the Z core language conform to the lexis of NAME, but the concrete syntax requires distinct tokens

to be generated for them: the tokens of the alphabetic and symbolic keywords can be generated only from the
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speci�ed sequences of Z characters, not from any other spellings. The following tables show the keywords of the

Z core language in their mathematical representation. The columns give:

Math: The sequence of Z characters representing the rendering of the token on a high resolution device,

such as a bit-mapped screen, or on paper (either hand-written, or printed).

Token: The token used for that keyword in the concrete syntax.

Spoken name: A suggested form for reading the keyword out loud, suitable for use in reviews, or for

discussing speci�cations over the telephone. In the following, an English language form is given; for other

natural languages, other forms may be de�ned.

NOTE 1 Even where a keyword consists of a single Z character, the spoken names may di�er. The spoken

name of a character tends to re
ect its form; that of the token tends to re
ect its function.

7.4.2 Alphabetic keywords

Math Token Spoken name

else else else

false false false

function function function

generic generic generic

if if if

leftassoc leftassoc left [associative]

let let let

parents parents parents

pre pre pre[condition]

relation relation relation

rightassoc rightassoc right [associative]

section section section

then then then

true true true

7.4.3 Symbolic keywords

Math Token Spoken name

: : colon

== == de�ne equal

; ;-tok comma

::= ::= free equals

j j-tok bar

& & and also [free type]

n n hide

= = rename

: : select j dot
; ; -tok semi[colon]

arg[ument]

; ; ; ; sequence arg[ument]

= =-tok equals

EXAMPLE 1 = is recognised as the keyword token =-tok; := is recognised as a NAME token; ::= is recognised as the

keyword token.
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Math Token Spoken name

hh hh ( left j open ) chevron [bracket]

ii ii ( right j close ) chevron [bracket]

j=? j=? conjecture

8 8 for all

� � fat dot j spot
9 9 exists

91 91 unique exists

, , equivalent j if and only if

) ) implies

_ _ or

^ ^ and

: : not

2 2 member of j in j element of
� � project

� � cross

hj hj ( left j open ) binding [bracket]

ji ji ( right j close ) binding [bracket]
� � lambda

� � mu

� � theta
o

9

o

9
schema compose

>> >> schema pipe

EXAMPLE 2 9 and 9
1
(`9', `&', `1', `-') are recognised as keyword tokens; 9

0
(`9', `&', `0', `-') is recognised as

a NAME token.

EXAMPLE 3 � is recognised as the keyword token; �x is recognised as a NAME token.

7.4.4 User-de�ned operators

Each operator template creates additional keyword-like associations between strings of Z characters (WORDs) and

appropriate tokens. These associations are disabled at the end of the Z section, and may be restored by a parents

phrase. An operator template paragraph cannot introduce a token for a WORD that is already in the mapping,

because that paragraph cannot be parsed. A parent is not permitted to introduce a token for a WORD that already

has a token associated with it, unless both tokens were introduced by the same operator template paragraph in

a common ancestor section. Hence the set of active associations is always a function.

As could be deduced from the concrete syntax, the appropriate token for an operator word is as follows.
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PREP pre�x unary relation

PRE pre�x unary function or generic

POSTP post�x unary relation

POST post�x unary function or generic

IP in�x binary relation

I in�x binary function or generic

LP left bracket of non-unary relation

L left bracket of non-unary function or generic

ELP �rst word preceded by expression of non-unary relation

EL �rst word preceded by expression of non-unary function or generic

ERP right bracket preceded by expression of non-unary relation

ER right bracket preceded by expression of non-unary function or generic

SRP right bracket preceded by sequence of non-unary relation

SR right bracket preceded by sequence of non-unary function or generic

EREP last word followed by expression and preceded by expression of tertiary or higher relation

ERE last word followed by expression and preceded by expression of tertiary or higher function or generic

SREP last word followed by expression and preceded by sequence of tertiary or higher relation

SRE last word followed by expression and preceded by sequence of tertiary or higher function or generic

ES middle word preceded by expression of non-unary operator

SS middle word preceded by sequence of non-unary operator

EXAMPLE 1 The operator template paragraph for the ( + ) operator adds one entry to the mapping.

Math Token

+ I

EXAMPLE 2 The operator template paragraph for the ( (j j)) operator adds two entries to the mapping.

Math Token

(j EL

j) ER

EXAMPLE 3 The operator template paragraph for the (disjoint ) operator adds one entry to the mapping.

Math Token

disjoint PREP

EXAMPLE 4 The operator template paragraph for the (h i) operator adds two entries to the mapping.

Math Token

h L

i SR

7.5 Newlines

The Z character NLCHAR is lexed either as a token separator (like the SPACE character) or as the token NL,

depending on its context. A soft newline is a NLCHAR that is lexed as a token separator. A hard newline is a

NLCHAR that is lexed as a NL token.

Tokens are assigned to a newline category, namely BOTH, AFTER, BEFORE or NEITHER, based on whether

that token could start or end a Z phrase.
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� BOTH: newlines are soft before and after the token, because it is in�x, something else has to appear before

it and after it.

function generic leftassoc parents relation rightassoc section else then

::= j-tok hh ii & j=? ; ; ^ _ ) , � = =-tok 2 == : ; -tok ;-tok : � n � o

9
>>

I IP EL ELP ERE EREP ES SS SRE SREP

NOTE 1 All newlines are soft outside a DeclPart or a Predicate. So tokens that cannot appear in these

contexts are in category BOTH. This also includes the box tokens.

� AFTER: newlines are soft after the token, because it is pre�x, something else has to appear after it.

if let pre

[�tok : 8 9 91 (�tok f�tok hj � � �

PRE PREP L LP

� BEFORE: newlines are soft before the token, because it is post�x, something else has to appear before it.

]�tok )�tok g�tok ji
POST POSTP ER ERP SR SRP

� NEITHER: no newlines are soft, because such a token is no�x, nothing else need appear before or after it.

false true

NAME NUMBER STROKE

For each NLCHAR, the newline categories of the closest token generated from the preceding Z characters and the

token generated from the immediately following Z characters are examined. If either token allows the newline to

be soft in that position, it is soft, otherwise it is hard (and hence recognised as a NL token).

The operator template paragraph allows the de�nition of various mix�x names (see section 7.4.4), which are

placed in the appropriate newline category. Other (ordinary) user declared names are no�x, and so are placed in

NEITHER.

Consecutive NLCHARs are treated the same as a single NLCHAR.
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8 Concrete syntax

8.1 Introduction

The concrete syntax de�nes the syntax of the Z language: every sentence of the Z language is recognised by

this syntax, and all sentences recognised by this syntax are sentences of the Z language. The concrete syntax is

written in terms of the tokens generated by the lexis; there are no terminal symbols within this syntax, so as not

to impose any particular mark-up of the notation. Sequences of tokens that are not recognised by this syntax are

not sentences of the Z language and are thus excluded from consideration by subsequent phases and so are not

given a semantics by this International Standard.

A parser conforming to this concrete syntax converts a concrete sentence to a parse tree.

The non-terminal symbols of the concrete syntax that are written as mathematical symbols or are entirely

CAPITALIZED or Roman are Z tokens de�ned in the lexis. The other non-terminal symbols are written in

MixedCase and are de�ned within the concrete syntax.

NOTE 1 This concrete syntax aims to de�ne the language clearly to the human reader; it is not necessarily a

grammar suitable for processing by machines, as a parser based on these rules would have to look-ahead many tokens

to decide which productions to use. A grammar for a larger language that requires only a single token of look-ahead

(given a lexical analyser that itself looks-ahead to distinguish the commas in the set extension fa; b; cg from the

commas in the set comprehension fa; b; c : tg, and the commas in the generic instantion e [a; b; c] from the commas

in the application to a schema e [a; b; c : t ]) has been written and found to be unambiguous by the parser-generator

yacc. The extra sentences recognised by a parser using that grammar can be eliminated by postprocessing.

8.2 Formal de�nition of concrete syntax

Specification = f Section g (* sectioned speci�cation *)
j f Paragraph g (* anonymous speci�cation *)

;

Section = section , NAME , parents , [ NAME , f ;-tok , NAME g ] , END , f Paragraph g
(* inheriting section *)

j section , NAME , END , f Paragraph g (* base section *)
;

Paragraph = [-tok , NAME , f ;-tok , NAME g , ]-tok , END (* given types *)
j AX , SchemaText , END (* axiomatic description *)

j SCH , NAME , SchemaText , END (* schema de�nition *)
j GENAX , [-tok , Formals , ]-tok , SchemaText , END (* generic axiomatic description *)

j GENSCH , NAME , [-tok , Formals , ]-tok , SchemaText , END

(* generic schema de�nition *)
j DeclName , == , Expression , END (* horizontal de�nition *)

j NAME , [-tok , Formals , ]-tok , == , Expression , END

(* generic horizontal de�nition *)

j GenName , == , Expression , END (* generic operator de�nition *)
j Freetype , f & , Freetype g , END (* free type *)

j j=? , Predicate , END (* conjecture *)
j [-tok , Formals , ]-tok , j=? , Predicate , END (* generic conjecture *)

j OperatorTemplate , END (* operator template *)
;

Freetype = NAME , ::= , Branch , f j-tok , Branch g ; (* free type *)

Branch = DeclName , [ hh , Expression , ii ] ; (* element or injection *)

Formals = NAME , f ;-tok , NAME g ; (* generic parameters *)
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Predicate = Predicate , NL , Predicate (* newline conjunction *)

j Predicate , ; -tok , Predicate (* semicolon conjunction *)
j 8 , SchemaText , � , Predicate (* universal quanti�cation *)
j 9 , SchemaText , � , Predicate (* existential quanti�cation *)

j 91 , SchemaText , � , Predicate (* unique existential quanti�cation *)
j Predicate , , , Predicate (* equivalence *)

j Predicate , ) , Predicate (* implication *)
j Predicate , _ , Predicate (* disjunction *)

j Predicate , ^ , Predicate (* conjunction *)
j : , Predicate (* negation *)

j Relation (* relation operator application *)
j Expression (* schema predicate *)

j true (* truth *)
j false (* falsity *)
j (-tok , Predicate , )-tok (* parenthesized predicate *)

;

Expression = 8 , SchemaText , � , Expression (* schema universal quanti�cation *)
j 9 , SchemaText , � , Expression (* schema existential quanti�cation *)
j 91 , SchemaText , � , Expression (* schema unique existential quanti�cation *)

j � , SchemaText , � , Expression (* function construction *)
j � , SchemaText , � , Expression (* de�nite description *)

j let , DeclName , == , Expression , f ; -tok , DeclName , == , Expression g ,
� , Expression (* substitution expression *)

j Expression , , , Expression (* schema equivalence *)
j Expression , ) , Expression (* schema implication *)

j Expression , _ , Expression (* schema disjunction *)
j Expression , ^ , Expression (* schema conjunction *)

j : , Expression (* schema negation *)
j if , Predicate , then , Expression , else , Expression (* conditional *)

j Expression , o
9
, Expression (* schema composition *)

j Expression , >> , Expression (* schema piping *)

j Expression , n , (-tok , DeclName , f ;-tok , DeclName g , )-tok (* schema hiding *)

j Expression , � , Expression (* schema projection *)
j pre , Expression (* schema precondition *)
j Expression , � , Expression , f � , Expression g (* Cartesian product *)

j Application (* function or generic operator application *)
j Expression , Expression (* application *)

j Expression , STROKE (* schema decoration *)
j Expression ,

[-tok , DeclName , = , DeclName , f ;-tok , DeclName , = , DeclName g , ]-tok
(* schema renaming *)

j Expression , : , RefName (* binding selection *)

j Expression , : , NUMBER (* tuple selection *)
j � , Expression , f STROKE g (* binding construction *)

j RefName (* reference *)
j RefName , [-tok , Expression , f ;-tok , Expression g , ]-tok

(* generic instantiation *)
j NUMBER (* number literal *)
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j f-tok , [ Expression , f ;-tok , Expression g ] , g-tok (* set extension *)

j f-tok , SchemaText , � , Expression , g-tok (* set comprehension *)
j ( ( f-tok , SchemaText , g-tok ) | ( f-tok , g-tok ) )

| ( f-tok , Expression , g-tok )

(* characteristic set comprehension *)
j ( [-tok , SchemaText , ]-tok ) | ( [-tok , Expression , ]-tok )

(* schema construction *)
j hj , [ DeclName , == , Expression , f ;-tok , DeclName , == , Expression g ] , ji

(* binding extension *)
j (-tok , Expression , ;-tok , Expression , f ;-tok , Expression g , )-tok

(* tuple extension *)
j (-tok , � , SchemaText , )-tok (* characteristic de�nite description *)

j (-tok , Expression , )-tok (* parenthesized expression *)
;

SchemaText = [ DeclPart ] , [ j-tok , Predicate ] ;

DeclPart = Declaration , f ( ; -tok j NL ) , Declaration g ;
Declaration = DeclName , f ;-tok , DeclName g , : , Expression

j DeclName , == , Expression

j Expression

;

OperatorTemplate = relation , Template

j function , CategoryTemplate

j generic , CategoryTemplate

;

CategoryTemplate = Prec , PrefixTemplate

j Prec , PostfixTemplate

j Prec , Assoc , InfixTemplate

j NofixTemplate

;

Prec = NUMBER ;

Assoc = leftassoc

j rightassoc

;

Template = PrefixTemplate

j PostfixTemplate

j InfixTemplate

j NofixTemplate

;

PrefixTemplate = (-tok , NAME , f ( j ; ; ) , NAME g , , )-tok ;

PostfixTemplate = (-tok , , NAME , f ( j ; ; ) , NAME g , )-tok ;

InfixTemplate = (-tok , , NAME , f ( j ; ; ) , NAME g , , )-tok ;

NofixTemplate = (-tok , NAME , f ( j ; ; ) , NAME g , )-tok ;

DeclName = NAME

j OpName

;
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RefName = NAME

j (-tok , OpName , )-tok

;

OpName = PrefixName

j PostfixName

j InfixName

j NofixName

;

PrefixName = PRE ,

j PREP ,

j L , f , ( ES j SS ) g , , ( ERE j SRE ) ,

j LP , f , ( ES j SS ) g , , ( EREP j SREP ) ,

;

PostfixName = , POST

j , POSTP

j , EL , f , ( ES j SS ) g , , ( ER j SR )

j , ELP , f , ( ES j SS ) g , , ( ERP j SRP )

;

InfixName = , I ,

j , IP ,

j , EL , f , ( ES j SS ) g , , ( ERE j SRE ) ,

j , ELP , f , ( ES j SS ) g , , ( EREP j SREP ) ,

;

NofixName = L , f , ( ES j SS ) g , , ( ER j SR )

j LP , f , ( ES j SS ) g , , ( ERP j SRP )

;

GenName = PrefixGenName

j PostfixGenName

j InfixGenName

j NofixGenName

;

PrefixGenName = PRE , NAME

j L , f NAME , ( ES j SS ) g , NAME , ( ERE j SRE ) , NAME

;

PostfixGenName = NAME , POST

j NAME , EL , f NAME , ( ES j SS ) g , NAME , ( ER j SR )

;

InfixGenName = NAME , I , NAME

j NAME , EL , f NAME , ( ES j SS ) g , NAME , ( ERE j SRE ) , NAME

;

NofixGenName = L , f NAME , ( ES j SS ) g , NAME , ( ER j SR ) ;

Relation = PrefixRel

j PostfixRel

j InfixRel

j NofixRel

;
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PrefixRel = PREP , Expression

j LP , ExpSep , ( Expression , EREP j ExpressionList , SREP ) , Expression

;

PostfixRel = Expression , POSTP

j Expression , ELP , ExpSep , ( Expression , ERP j ExpressionList , SRP )

;

InfixRel = Expression , ( 2 j =-tok j IP ) , Expression , f ( 2 j =-tok j IP ) , Expression g
j Expression , ELP , ExpSep ,

( Expression , EREP j ExpressionList , SREP ) , Expression

;

NofixRel = LP , ExpSep , ( Expression , ERP j ExpressionList , SRP ) ;

Application = PrefixApp

j PostfixApp

j InfixApp

j NofixApp

;

PrefixApp = PRE , Expression

j L , ExpSep , ( Expression , ERE j ExpressionList , SRE ) , Expression

;

PostfixApp = Expression , POST

j Expression , EL , ExpSep , ( Expression , ER j ExpressionList , SR )

;

InfixApp = Expression , I , Expression

j Expression , EL , ExpSep ,

( Expression , ERE j ExpressionList , SRE ) , Expression

;

NofixApp = L , ExpSep , ( Expression , ER j ExpressionList , SR ) ;

ExpSep = f Expression , ES j ExpressionList , SS g ;
ExpressionList = [ Expression , f ;-tok , Expression g ] ;

8.3 Operator precedences and associativities

Table 27 de�nes the relative precedences of the productions of Expression and Predicate. The rows in the table

are ordered so that the entries with higher precedence (and so bind more strongly) appear nearer the top of the

table than those with lower precedence (that bind more weakly). Associativity has signi�cance only in determining

the nesting of applications involving non-associative operators of the same precedence. Explicitly-de�ned function

and generic operator applications have a range of precedences speci�ed numerically in the corresponding operator

template paragraph. Cartesian product expressions have precedence value 8 within that numeric range.

8.4 Additional syntactic restrictions and notes

Operator template paragraphs shall not give di�erent associativities to operators at the same precedence.

STROKE is used in three contexts: within NAMEs, in binding construction expressions, and in schema decoration

expressions. The condition for a STROKE to be considered as part of a NAME was given in 6.2. Other STROKEs

are considered to be parts of binding construction expressions if they can be. The schema decoration expression

interpretation is considered last.

The names within an operator name, i.e. all the NAMEs in the Template rule's four auxiliaries, shall not have any
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Table 27 { Operator precedences and associativities

Productions Associativity

binding construction

binding selection, tuple selection

schema renaming

schema decoration

application left

Cartesian product, function or generic operator application

schema precondition

schema projection left

schema hiding

schema piping

schema composition

conditional

schema negation

schema conjunction

schema disjunction

schema implication right

schema equivalence

substitution expression

de�nite description

function construction

schema quanti�cations

relation operator application

negation

conjunction

disjunction

implication right

equivalence

predicate quanti�cations

newline conjunction, semicolon conjunction

STROKEs. This is so that any common decoration of those words can be treated as an application of a decorated

instance of that operator. Indeed, in an OpName, any STROKEs shall be the same on every component NAME.

A predicate can be just an expression, yet the same logical operators (^, _, : , ), ,, 8 , 9 , 91 ) can be used

in both expressions and predicates. Where a predicate is expected, and one of these logical operators is used on

expressions, there is an ambiguity: either the whole logical operation is an expression and that expression is used

as a predicate, or the whole logical operation is a predicate involving expressions each used as a predicate. This

ambiguity is benign, as the same meaning is ascribed to both interpretations.

The NUMBER in a tuple selection expression is interpreted in decimal (base ten). That the number is in the

appropriate range is checked by the relevant type inference rule. Leading zeroes shall be accepted and ignored.

NOTE 1 The order of productions in the Predicate and Expression rules is based roughly on the precedences of

their operators. Some productions have the same precedence as their neighbours, and so the separate table of operator

precedences is necessary.

NOTE 2 One way of parsing nested operator applications at di�erent user-de�ned levels of precedence and associa-

tivity is explained by Lalonde and des Rivieres [10]. Using distinct variants of the operator tokens PRE j ::: j SS for

relational operators from those for function and generic operators allows that transformation to avoid dealing with

those notations whose precedences lie between the relations and the functions, such as the schema operations.

NOTE 3 The juxtaposition of two expressions e1e2 is always parsed as the application of function e1 to argument
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e2, never as the application of relation e1 to argument e2 which in some previous dialects of Z, e.g. King et al [9], was

equivalent to the relation e2 2 e1. In Standard Z, juxtaposition is the normal form (canonical representation) of all

application expressions, and membership is the normal form of all relational predicates.

NOTE 4 There is no production speci�cally for powerset. It is introduced as a generic operator in the prelude, as

otherwise P
1
in the mathematical toolkit could not be parsed.

NOTE 5 The syntax of conjectures is deliberately simple. This is so as to be compatible with the syntaxes of

sequents as found in as many di�erent theorem provers as possible, while establishing a common form to enable

interchange.

NOTE 6 The token ;-tok serves several purposes: it separates DeclNames in a DeclPart, bindings in a binding ex-

tension expression, expressions in a set extension expression, parents in a section header, names in a formal parameter

list, names in a hiding list, expressions in a tuple extension expression, renames in a renaming expression, expressions

in an instantiation list, and expressions in a sequence argument. Most of these notations occur in unique distinguish-

able contexts. There are two exceptions, as mentioned in the note in the introduction. One is a DeclPart in a set

comprehension expression, for example the set comprehension fx ; y ; z : A g, which is tricky for a parser to distinguish

from the set extension expression fx ; y ; zg. The other is a generic instantiation expression i [x ; y ; z ], which is tricky

to distinguish from the application to a schema construction i [x ; y ; z : t ]. One solution to this problem is to try both

parses and accept the one that works. Alternatively, a lexer can help a parser by providing it with a token that is

distinct from ;-tok in the case of a DeclPart. A lexer can distinguish commas in a DeclPart by looking ahead over

alternating DeclName phrases and ;-toks to see if that sequence is ended by a ':' or '==' token. This lookahead also

results in the commas between bindings in a binding extension expression being represented by the distinct token.

8.5 Box rendering

There are two di�erent sets of box renderings in widespread use, as illustrated here. Any particular speci�cation

should use one set or the other throughout. The middle line shall be omitted when the paragraph has no

predicates, but otherwise shall be retained if the paragraph has no declarations. The outlines need be only as

wide as the text, but are here shown as wide as the page. The following four paragraphs illustrate the �rst of two

alternative renderings of box tokens.

An axiomatic paragraph, involving the AX, j-tok and END tokens, shall have this box rendering.

DeclPart

Predicate

A schema paragraph, involving the SCH, j-tok and END tokens, shall have this box rendering.

NAME

DeclPart

Predicate

A generic axiomatic paragraph, involving the GENAX, j-tok and END tokens, shall have this box rendering.

[Formals]

DeclPart

Predicate

A generic schema paragraph, involving the GENSCH, j-tok and END tokens, shall have this box rendering.

NAME [Formals]

DeclPart

Predicate
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The following four paragraphs illustrate the second of two alternative renderings of box tokens.

An axiomatic paragraph, involving the AX, j-tok and END tokens, shall have this box rendering.

DeclPart

Predicate

A schema paragraph, involving the SCH, j-tok and END tokens, shall have this box rendering.

NAME

DeclPart

Predicate

A generic axiomatic paragraph, involving the GENAX, j-tok and END tokens, shall have this box rendering.

[Formals]

DeclPart

Predicate

A generic schema paragraph, involving the GENSCH, j-tok and END tokens, shall have this box rendering.

NAME [Formals]

DeclPart

Predicate
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9 Characterisation rules

9.1 Introduction

The characterisation rules together map the parse tree of a concrete syntax sentence to the parse tree of an

equivalent concrete syntax sentence in which all implicit characteristic tuples have been made explicit.

Characterisation rules are given for only concrete trees to which they are applicable. The characterisation rules

are listed in the same order as the corresponding productions of the concrete syntax.

Characteristic tuples are calculated from schema texts by the auxiliary function chartuple.

9.2 Characteristic tuple

A characteristic tuple is computed in two phases: charac, which returns a sequence of expressions, and mktuple,
which converts that sequence into the characteristic tuple.

chartuple t =) mktuple (charac t)

charac (de1; :::; den j p) =) charac (de1; :::; den)

charac (de1; :::; den) =) charac de1
a :::a charac den

charac () =) hhj jii
charac (i1; :::; in : e) =) hi1; :::; ini

charac (i == e) =) hii
charac e =) h� ei

mktuple hei =) e

mktuple he1; :::; eni =) (e1; :::; en)

NOTE 1 In the last case of charac, the type rules ensure that e is a schema.

9.3 Formal de�nition of characterisation rules

9.3.1 Function construction expression

The value of the function construction expression � t � e is the function associating values of the characteristic

tuple of t with corresponding values of e.

� t � e =) ft � (chartuple t; e)g

It is semantically equivalent to the set of pairs representation of that function.

9.3.2 Characteristic set comprehension expression

The value of the characteristic set comprehension expression ftg is the set of the values of the characteristic tuple
of t.

ftg =) ft � chartuple tg

It is semantically equivalent to the corresponding set comprehension expression in which the characteristic tuple

is made explicit.
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9.3.3 Characteristic de�nite description expression

The value of the characteristic de�nite description expression (� t) is the sole value of the characteristic tuple of

schema text t.

(� t) =) � t � chartuple t

It is semantically equivalent to the corresponding de�nite description expression in which the characteristic tuple

is made explicit.
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10 Annotated syntax

10.1 Introduction

The annotated syntax de�nes a language that includes all sentences that could be produced by application of

the syntactic transformation rules (clause 12) to sentences of the concrete syntax (clause 8). This language's set

of sentences would be a subset of that de�ned by the concrete syntax but for introduction of type annotations

and use of expressions in place of schema texts. This annotated syntax permits some veri�cation of the syntactic

transformation rules to be performed.

Like the concrete syntax, this annotated syntax is written in terms of the tokens generated by the lexis; there

are no terminal symbols within this syntax. Three additional tokens are used besides those de�ned in the lexis:

GIVEN, GENTYPE, and o

o . One additional character, 1, is included in the WORDGLUE class; it is assumed that 1 is

distinct from the Z characters used in concrete phrases.

There are no parentheses in the annotated syntax as de�ned here. A sentence or phrase of the annotated

syntax should be thought of as a tree structure of nested formulae. When presented as linear text, however, the

precedences of the concrete syntax may be assumed and parentheses may be inserted to override those precedences.

The precedence of the type annotation o

o operator is then weaker than all other operators, and the precedences

and associativities of the type notations are analogous to those of the concrete notations of similar appearance.

NOTE 1 The annotated syntax is similar to an abstract syntax used in a tool, but the level of abstraction e�ected

by the characterizations and syntactic transformations might not be appropriate for a tool.

10.2 Formal de�nition of annotated syntax

Specification = f Section g ;
Section = section , NAME , parents , [ NAME , f ;-tok , NAME g ] , END , f Paragraph g ,

[ o

o , SectTypeEnv ] ;

Paragraph = [-tok , NAME , f ;-tok , NAME g , ]-tok , END ,

[ o

o , [-tok , Signature , ]-tok ] (* given types *)

j AX , Expression , END ,

[ o

o , [-tok , Signature , ]-tok ] (* axiomatic description *)

j GENAX , [-tok , NAME , f ;-tok , NAME g , ]-tok , Expression , END ,

[ o

o , [-tok , Signature , ]-tok ] (* generic axiomatic description *)
j NAME , ::= , NAME , [ hh , Expression , ii ] ,

f j-tok , NAME , [ hh , Expression , ii ] g ,
f & , NAME , ::= , NAME , [ hh , Expression , ii ] ,
f j-tok , NAME , [ hh , Expression , ii ] g g , END ,

[ o

o , [-tok , Signature , ]-tok ] (* free type *)

j j=? , Predicate , END ,

[ o

o , [-tok , Signature , ]-tok ] (* conjecture *)

j [-tok , NAME , f ;-tok , NAME g , ]-tok , j=? , Predicate , END ,

[ o

o , [-tok , Signature , ]-tok ] (* generic conjecture *)

;

Predicate = Expression , 2 , Expression (* membership *)
j true (* truth *)

j : , Predicate (* negation *)
j Predicate , ^ , Predicate (* conjunction *)

j 8 , Expression , � , Predicate (* universal quanti�cation *)
j 91 , Expression , � , Predicate (* unique existential quanti�cation *)

;
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Expression = NAME ,

[ o

o , Type ] (* reference *)
j NAME , [-tok , Expression , f ;-tok , Expression g , ]-tok ,

[ o

o , Type ] (* generic instantiation *)

j f-tok , [ Expression , f ;-tok , Expression g ] , g-tok ,

[ o

o , Type ] (* set extension *)

j f-tok , Expression , � , Expression , g-tok ,
[ o

o , Type ] (* set comprehension *)

j P , Expression ,

[ o

o , Type ] (* powerset *)

j (-tok , Expression , ;-tok , Expression , f ;-tok , Expression g , )-tok ,

[ o

o , Type ] (* tuple extension *)

j Expression , : , NUMBER ,

[ o

o , Type ] (* tuple selection *)
j hj , [ NAME , == , Expression , f ;-tok , NAME , == , Expression g ] , ji ,

[ o

o , Type ] (* binding extension *)
j � , Expression , f STROKE g ,

[ o

o , Type ] (* binding construction *)
j Expression , : , NAME ,

[ o

o , Type ] (* binding selection *)
j Expression , Expression ,

[ o

o , Type ] (* application *)
j � , Expression , � , Expression ,

[ o

o , Type ] (* de�nite description *)
j [-tok , NAME , : , Expression , ]-tok ,

[ o

o , Type ] (* variable construction *)

j [-tok , Expression , j-tok , Predicate , ]-tok ,

[ o

o , Type ] (* schema construction *)

j : , Expression ,

[ o

o , Type ] (* schema negation *)

j Expression , ^ , Expression ,

[ o

o , Type ] (* schema conjunction *)

j Expression , n , (-tok , NAME , f ;-tok , NAME g , )-tok ,

[ o

o , Type ] (* schema hiding *)

j 8 , Expression , � , Expression ,
[ o

o , Type ] (* schema universal quanti�cation *)

j 91 , Expression , � , Expression ,
[ o

o , Type ] (* schema unique existential quanti�cation *)

j Expression , [-tok , NAME , = , NAME , f ;-tok , NAME , = , NAME g , ]-tok ,

[ o

o , Type ] (* schema renaming *)
j pre , Expression ,

[ o

o , Type ] (* schema precondition *)

j Expression , o
9
, Expression ,

[ o

o , Type ] (* schema composition *)
j Expression , >> , Expression ,

[ o

o , Type ] (* schema piping *)
j Expression , STROKE ,

[ o

o , Type ] (* schema decoration *)
;

SectTypeEnv = [ NAME , : , (-tok , NAME , ;-tok , Type , )-tok ,

f ; -tok , NAME , : , (-tok , NAME , ;-tok , Type , )-tok g ] ;
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Type = GIVEN , NAME (* given type *)

j GENTYPE , NAME (* generic parameter type *)
j P , Type (* set type *)
j Type , � , Type , f � , Type g (* Cartesian product type *)

j [-tok , Signature , ]-tok (* schema type *)
j [-tok , NAME , f ;-tok , NAME g , ]-tok , Type , [ ;-tok , Type ] (* generic type *)

j � -tok , f STROKE g (* variable type *)
;

Signature = [ NAME , : , Type , f ; -tok , NAME , : , Type g ] ;

10.3 Notes

NOTE 1 More free types than necessary are permitted by this syntax: as a result of syntactic transformation

12.2.3.5, all elements appear before all injections.

NOTE 2 More types than necessary are permitted by this syntax: generic type notation is used at only the outermost

level of a type.
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11 Prelude

11.1 Introduction

The prelude is a Z section. It is an implicit parent of every other section. It assists in de�ning the meaning of

number literal expressions, and the sequence arguments of operators, via syntactic transformation rules later in

this International Standard (see 12.2.5.9). The prelude is presented here using the mathematical lexis.

11.2 Formal de�nition of prelude

section prelude

The section is called prelude and has no parents.

generic 80 (P )

The precedence of the pre�x generic operator P is 80.

[A ]

The given type A provides a supply of values for use in specifying number systems.

N : PA

The set of natural numbers, N, is a subset of A .

number literal 0 : N
number literal 1 : N

0 and 1 are natural numbers, all uses of which are transformed to references to these declarations (see 12.2.5.9).

function 30 leftassoc ( + )

+ : P ((A � A ) � A )

8m;n : N � 91 p : ( + ) � p:1 = (m;n)
8m;n : N � m + n 2 N
8m;n : N j m + 1 = n + 1 � m = n
8m : N � : m + 1 = 0

8w : P N j 0 2 w ^ (8 y : w � y + 1 2 w) � w = N

8m : N � m + 0 = m
8m;n : N � m + (n + 1) = m + n + 1

Addition is de�ned here for natural numbers. (It is extended to integers in the mathematical toolkit, annex B.)

Addition is a function. The sum of two natural numbers is a natural number. The operation of adding 1 is an

injection on natural numbers, and produces a result disjoint from 0. There is an induction constraint that all

natural numbers are either 0 or are formed by adding 1 to another natural number. 0 is an identity of addition.

Addition is associative.

NOTE 1 The de�nition of addition is equivalent to the following de�nition, which is written using notation from

the mathematical toolkit (and so is unsuitable as the normative de�nition here).

+ : A � A $ A

(N � N) C ( + ) 2 (N � N) ! N

�n : N � n + 1 2 N � N

disjointhf0g; fn : N � n + 1gi

8w : PN j f0g [ fn : w � n + 1g � w � w = N

8m : N � m + 0 = m

8m; n : N � m + (n + 1) = m + n + 1
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12 Syntactic transformation rules

12.1 Introduction

The syntactic transformation rules together map the parse tree of a concrete syntax sentence to the parse tree of

a semantically equivalent annotated syntax sentence. The resulting annotated parse trees may refer to de�nitions

of the prelude.

Some syntactic transformation rules do not produce annotated parse trees directly, but exhaustive application of

the syntactic transformation rules always results in annotated parse trees.

Syntactic transformation rules are given for only concrete trees that are not in the annotated syntax. The syntactic

transformation rules are listed in the same order as the corresponding productions of the concrete syntax. Where

an individual concrete syntax production is expressed using alternations, a separate syntactic transformation rule

is given for each alternative.

All applications of syntactic transformation rules that generate new declarations shall choose the names of those

declarations to be such that they do not capture references during subsequent typechecking.

12.2 Formal de�nition of syntactic transformation rules

12.2.1 Speci�cation

12.2.1.1 Anonymous speci�cation

The anonymous speci�cation d1 ::: dn is semantically equivalent to the sectioned speci�cation comprising a

single section that has a name | shown here as Speci�cation | and whose parents are (implicitly prelude and)

standard toolkit .

d1 ::: dn =) section Speci�cation parents standard toolkit END d1 ::: dn

The name given to the section is not important: it need not be Speci�cation, though it may not be prelude or

that of any section of the mathematical toolkit.

NOTE 1 If the section is contained in a �le, then the name of that �le might be a good choice.

12.2.2 Section

12.2.2.1 Base section

The base section section i END d1 ::: dn is semantically equivalent to the inheriting section that inherits from no

parents (bar prelude).

section i END d1 ::: dn =) section i parents END d1 ::: dn

12.2.3 Paragraph

12.2.3.1 Schema de�nition paragraph

The schema de�nition paragraph SCH i t END introduces the global name i, associating it with the schema that

is the value of t.

SCH i t END =) AX [i == t] END

The paragraph is semantically equivalent to the axiomatic description paragraph whose sole declaration associates

the schema's name with the expression resulting from syntactic transformation of the schema text.

12.2.3.2 Generic schema de�nition paragraph

The generic schema de�nition paragraph GENSCH i [i1; :::; in] t END can be instantiated to produce a schema

de�nition paragraph.

GENSCH i [i1; :::; in] t END =) GENAX [i1; :::; in] [i == t] END
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It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters and

whose sole declaration associates the schema's name with the expression resulting from syntactic transformation

of the schema text.

12.2.3.3 Horizontal de�nition paragraph

The horizontal de�nition paragraph i == e END introduces the global name i, associating with it the value of e.

i == e END =) AX [i == e] END

It is semantically equivalent to the axiomatic description paragraph that introduces the same single declaration.

12.2.3.4 Generic horizontal de�nition paragraph

The generic horizontal de�nition paragraph i [i1; :::; in] == e END can be instantiated to produce a horizontal

de�nition paragraph.

i [i1; :::; in] == e END =) GENAX [i1; :::; in] [i == e] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters

and that introduces the same single declaration.

12.2.3.5 Free type paragraph

The transformation of free type paragraphs is done in two stages. First, the branches are permuted to bring

elements to the front and injections to the rear.

::: j ghheii j h j ::: =) ::: j h j ghheii j :::

Exhaustive application of this syntactic transformation rule e�ects a sort.

The second stage requires implicit generic instantiation expressions to have been �lled in, which is done during

typechecking. Hence that second stage is delayed until after typechecking, where it appears in the form of a

semantic transformation rule (section 15.2.3).

12.2.4 Predicate

12.2.4.1 Newline conjunction predicate

The newline conjunction predicate p1 NL p2 is true if and only if both its predicates are true.

p1 NL p2 =) p1 ^ p2

It is semantically equivalent to the conjunction predicate p1 ^ p2.

12.2.4.2 Semicolon conjunction predicate

The semicolon conjunction predicate p1; p2 is true if and only if both its predicates are true.

p1; p2 =) p1 ^ p2

It is semantically equivalent to the conjunction predicate p1 ^ p2.

12.2.4.3 Existential quanti�cation predicate

The existential quanti�cation predicate 9 t � p is true if and only if p is true for at least one value of t.

9 t � p =) : 8 t � : p

It is semantically equivalent to p being false for not all values of t.
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12.2.4.4 Equivalence predicate

The equivalence predicate p1 , p2 is true if and only if both p1 and p2 are true or neither is true.

p1 , p2 =) (p1 ) p2) ^ (p2 ) p1)

It is semantically equivalent to each of p1 and p2 being true if the other is true.

12.2.4.5 Implication predicate

The implication predicate p1 ) p2 is true if and only if p2 is true if p1 is true.

p1 ) p2 =) : p1 _ p2

It is semantically equivalent to p1 being false disjoined with p2 being true.

12.2.4.6 Disjunction predicate

The disjunction predicate p1 _ p2 is true if and only if at least one of p1 and p2 is true.

p1 _ p2 =) : (: p1 ^ : p2)

It is semantically equivalent to not both of them being false.

12.2.4.7 Schema predicate

The schema predicate e is true if and only if the binding of the names in the signature of schema e satis�es the

constraints of that schema.

e =) � e 2 e

It is semantically equivalent to the binding constructed by � e being a member of the set denoted by schema e.

12.2.4.8 Falsity predicate

The falsity predicate false is never true.

false =) : true

It is semantically equivalent to the negation of true.

12.2.4.9 Parenthesized predicate

The parenthesized predicate (p) is true if and only if p is true.

(p) =) p

It is semantically equivalent to p.

12.2.5 Expression

12.2.5.1 Schema existential quanti�cation expression

The value of the schema existential quanti�cation expression 9 t � e is the set of bindings of schema e restricted

to exclude names that are in the signature of t, for at least one binding of the schema t.

9 t � e =) : 8 t � : e

It is semantically equivalent to the result of applying de Morgan's law.

12.2.5.2 Substitution expression

The value of the substitution expression let i1 == e1; :::; in == en � e is the value of e when all of its references

to the names have been substituted by the values of the corresponding expressions.

let i1 == e1; :::; in == en � e =) � i1 == e1; :::; in == in � e
It is semantically equivalent to the similar de�nite description expression.
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12.2.5.3 Schema equivalence expression

The value of the schema equivalence expression e1 , e2 is that schema whose signature is the union of those of

schemas e1 and e2, and whose bindings are those whose relevant restrictions are either both or neither in e1 and

e2.

e1 , e2 =) (e1 ) e2) ^ (e2 ) e1)

It is semantically equivalent to a schema conjunction.

12.2.5.4 Schema implication expression

The value of the schema implication expression e1 ) e2 is that schema whose signature is the union of those of

schemas e1 and e2, and whose bindings are those whose restriction to the signature of e2 is in the value of e2 if

its restriction to the signature of e1 is in the value of e1.

e1 ) e2 =) : e1 _ e2

It is semantically equivalent to a schema disjunction.

12.2.5.5 Schema disjunction expression

The value of the schema disjunction expression e1 _ e2 is that schema whose signature is the union of those of

schemas e1 and e2, and whose bindings are those whose restriction to the signature of e1 is in the value of e1 or

its restriction to the signature of e2 is in the value of e2.

e1 _ e2 =) : (: e1 ^ : e2)

It is semantically equivalent to a schema negation.

12.2.5.6 Conditional expression

The value of the conditional expression if p then e1 else e2 is the value of e1 if p is true, and is the value of e2 if

p is false.

if p then e1 else e2 =) � i : fe1; e2g j p ^ i = e1 _ : p ^ i = e2 � i

It is semantically equivalent to the de�nite description expression whose value is either that of e1 or that of e2
such that if p is true then it is e1 or if p is false then it is e2.

12.2.5.7 Schema projection expression

The value of the schema projection expression e1 � e2 is the schema that is like the conjunction e1 ^ e2 but whose

signature is restricted to just that of schema e2.

e1 � e2 =) fe1; e2 � � e2g

It is semantically equivalent to that set of bindings of names in the signature of e2 to values that satisfy the

constraints of both e1 and e2.

12.2.5.8 Cartesian product expression

The value of the Cartesian product expression e1� :::� en is the set of all tuples whose components are members

of the corresponding sets that are the values of its expressions.

e1 � :::� en =) fi1 : e1; :::; in : en � (i1; :::; in)g

It is semantically equivalent to the set comprehension expression that declares members of the sets and assembles

those members into tuples.
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12.2.5.9 Number literal expression

The value of the multiple-digit number literal expression bc is the number that it denotes.

bc =) b + b + b + b + b +

b + b + b + b + b + c

It is semantically equivalent to the sum of ten repetitions of the number literal expression b formed from all but

the last digit, added to that last digit.

0 =) number literal 0

1 =) number literal 1

2 =) 1 + 1

3 =) 2 + 1

4 =) 3 + 1

5 =) 4 + 1

6 =) 5 + 1

7 =) 6 + 1

8 =) 7 + 1

9 =) 8 + 1

The number literal expressions 0 and 1 are semantically equivalent to number literal 0 and number literal 1 re-
spectively as de�ned in section prelude. The remaining digits are de�ned as being successors of their predecessors,
using the function + as de�ned in section prelude.

NOTE 1 These syntactic transformations are applied only to NUMBER tokens that form number literal expressions,

not to other NUMBER tokens (those in tuple selection expressions and operator template paragraphs), as those other

occurrences of NUMBER do not have semantic values associated with them.

12.2.5.10 Schema construction expression

The value of the schema construction expression [t] is that schema whose signature is the names declared by the

schema text t, and whose bindings are those that satisfy the constraints in t.

[t] =) t

It is semantically equivalent to the schema resulting from syntactic transformation of the schema text t.

12.2.5.11 Parenthesized expression

The value of the parenthesized expression (e) is the value of expression e.

(e) =) e

It is semantically equivalent to e.

12.2.6 Schema text

There is no separate schema text class in the annotated syntax: all concrete schema texts are transformed to

expressions.

12.2.6.1 Declaration

Each declaration is transformed to an expression.

A constant declaration is equivalent to a variable construction expression in which the variable ranges over a

singleton set.

i == e =) [i : feg]
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A comma-separated multiple declaration is equivalent to the conjunction of variable construction expressions in

which all variables are constrained to be of the same type.

i1; :::; in : e =) [i1 : e o

o �1] ^ ::: ^ [in : e o

o �1]

12.2.6.2 DeclPart

Each declaration part is transformed to an expression.

de1; :::; den =) de1 ^ ::: ^ den

If NL tokens have been used in place of any ; s, the same transformation to ^ applies.

12.2.6.3 SchemaText

Given the above transformations of Declaration and DeclPart, any DeclPart in a SchemaText can be assumed

to be a single expression.

A SchemaText with non-empty DeclPart and Predicate is equivalent to a schema construction expression.

e j p =) [e j p]

If both DeclPart and Predicate are omitted, the schema text is equivalent to the set containing the empty

binding.

=) fhj jig

If just the DeclPart is omitted, the schema text is equivalent to the schema construction expression in which

there is a set containing the empty binding.

j p =) [fhj jig j p]

12.2.7 Operator template

There are no syntactic transformation rules for operator template paragraphs; rather, operator template para-

graphs determine which syntactic transformation rule to use for each phrase that refers to or applies an operator.

12.2.8 Name

These syntactic transformation rules address the concrete syntax productions DeclName, RefName, and OpName.

All operator names are transformed to NAMEs, by removing spaces and replacing each by a Z character that is

not acceptable in concrete NAMEs. The Z character 1 is used for this purpose here. The resulting name is given

the same STROKEs as the component names of the operator.

12.2.8.1 PrefixName

pre =) pre1

prep =) prep1

ln ess ::: ess ere =) ln1ess:::1ess1ere1

ln ess ::: ess sre =) ln1ess:::1ess1sre1

lp ess ::: ess erep =) lp1ess:::1ess1erep1

lp ess ::: ess srep =) lp1ess:::1ess1srep1
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12.2.8.2 PostfixName

post =) 1post

postp =) 1postp

el ess ::: ess er =) 1el1ess:::1ess1er

el ess ::: ess sr =) 1el1ess:::1ess1sr

elp ess ::: ess erp =) 1elp1ess:::1ess1erp

elp ess ::: ess srp =) 1elp1ess:::1ess1srp

12.2.8.3 InfixName

in =) 1in1

ip =) 1ip1

el ess ::: ess ere =) 1el1ess:::1ess1ere1

el ess ::: ess sre =) 1el1ess:::1ess1sre1

elp ess ::: ess erep =) 1elp1ess:::1ess1erep1

elp ess ::: ess srep =) 1elp1ess:::1ess1srep1

12.2.8.4 NofixName

ln ess ::: ess er =) ln1ess:::1ess1er

ln ess ::: ess sr =) ln1ess:::1ess1sr

lp ess ::: ess erp =) ln1ess:::1ess1erp

lp ess ::: ess srp =) ln1ess:::1ess1srp

12.2.9 Generic name

All generic names are transformed to juxtapositions of NAMEs and generic parameter lists. This causes the generic

operator de�nition paragraphs in which they appear to become generic horizontal de�nition paragraphs, and thus

be amenable to further syntactic transformation.

12.2.9.1 PrefixGenName

pre i =) pre1 [i]

ln i1 ess ::: in�2 ess in�1 ere in =) ln1ess:::1ess1ere1 [i1; :::; in�2; in�1; in]

ln i1 ess ::: in�2 ess in�1 sre in =) ln1ess:::1ess1sre1 [i1; :::; in�2; in�1; in]

12.2.9.2 PostfixGenName

i post =) 1post [i]
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i1el i2 ess ::: in�1 ess in er =) 1el1ess:::1ess1er [i1; i2; :::; in�1; in]

i1el i2 ess ::: in�1 ess in sr =) 1el1ess:::1ess1sr [i1; i2; :::; in�1; in]

12.2.9.3 InfixGenName

i1in i2 =) 1in1 [i1; i2]

i1el i2 ess ::: in�2 ess in�1 ere in =) 1el1ess:::1ess1ere1 [i1; i2; :::; in�2; in�1; in]

i1el i2 ess ::: in�2 ess in�1 sre in =) 1el1ess:::1ess1sre1 [i1; i2; :::; in�2; in�1; in]

12.2.9.4 NofixGenName

ln i1 ess ::: in�1 ess in er =) ln1ess:::1ess1er [i1; :::; in�1; in]

ln i1 ess ::: in�1 ess in sr =) ln1ess:::1ess1sr [i1; :::; in�1; in]

12.2.10 Relation operator application

All relation operator applications are transformed to annotated membership predicates.

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.

None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is speci�ed, not

the ExpressionList SS case. Where the latter case occurs in a speci�cation, the ExpressionList shall be

transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that speci�ed for the

former case can be performed, di�ering only in that a ss appears in the relation name in place of an es.

12.2.10.1 PrefixRel

prep e =) e 2 prep1

lp e1 es ::: en�2 es en�1 erep en =) (e1; :::; en�2; en�1; en) 2 lp1es:::1es1erep1

lp e1 es ::: en�2 es sen�1 srep en =) (e1; :::; en�2; sen�1; en) 2 lp1es:::1es1srep1

12.2.10.2 PostfixRel

e postp =) e 21postp
e1 elp e2 es ::: en�1 es en erp =) (e1; e2; :::; en�1; en) 21elp1es:::1es1erp
e1 elp e2 es ::: en�1 es sen srp =) (e1; e2; :::; en�1; sen) 21elp1es:::1es1srp

12.2.10.3 InfixRel

e1 ip
1
e2 ip

2
e3 ::: =) e1 ip

1
e2

o

o �1 ^ e2
o

o �1 ip
2
e3

o

o �2 :::
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The chained relation e1 ip
1
e2 ip

2
e3 ::: is semantically equivalent to a conjunction of relational predicates, with

the constraint that duplicated expressions be of the same type.

e1 = e2 =) e1 2 fe2g
e1 ip e2 =) (e1; e2) 2 ( ip )

ip in the above transformation is excluded from being 2 or =, whereas ip
1
; ip

2
; ::: can be 2 or =.

e1 elp e2 es ::: en�2 es en�1 erep en =) (e1; e2; :::; en�2; en�1; en) 21elp1es:::1es1erep1
e1 elp e2 es ::: en�2 es sen�1 srep en =) (e1; e2; :::; en�2; sen�1; en) 21elp1es:::1es1srep1

12.2.10.4 NofixRel

lp e1 es ::: en�1 es en erp =) (e1; :::; en�1; en) 2 lp1es:::1es1erp

lp e1 es ::: en�1 es sen srp =) (e1; :::; en�1; sen) 2 lp1es:::1es1srp

12.2.11 Function or generic operator application

All function operator applications are transformed to annotated application expressions.

All generic operator applications are transformed to annotated generic instantiation expressions.

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.

None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is speci�ed, not

the ExpressionList SS case. Where the latter case occurs in a speci�cation, the ExpressionList shall be

transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that speci�ed for the

former case can be performed, di�ering only in that a ss appears in the function or generic name in place of an

es.

12.2.11.1 PrefixApp

pre e =) pre1e

ln e1 es ::: en�2 es en�1 ere en =) ln1es:::1es1ere1 (e1; :::; en�2; en�1; en)

ln e1 es ::: en�2 es sen�1 sre en =) ln1es:::1es1sre1 (e1; :::; en�2; sen�1; en)

P e =) P e

An application of the pre�x generic operator P (that speci�c PRE token) is transformed to a powerset phrase of

the annotated notation. Other applications of pre�x generic operators are transformed to generic instantiation

expressions.

pre e =) pre1 [e]

ln e1 es ::: en�2 es en�1 ere en =) ln1es:::1es1ere1 [e1; :::; en�2; en�1; en]

ln e1 es ::: en�2 es sen�1 sre en =) ln1es:::1es1sre1 [e1; :::; en�2; sen�1; en]
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12.2.11.2 PostfixApp

e post =) 1post e

e1 el e2 es ::: en�1 es en er =) 1el1es:::1es1er (e1; e2; :::; en�1; en)

e1 el e2 es ::: en�1 es sen sr =) 1el1es:::1es1sr (e1; e2; :::; en�1; sen)

e post =) 1post [e]

e1 el e2 es ::: en�1 es en er =) 1el1es:::1es1er [e1; e2; :::; en�1; en]

e1 el e2 es ::: en�1 es sen sr =) 1el1es:::1es1sr [e1; e2; :::; en�1; sen]

12.2.11.3 InfixApp

e1 in e2 =) 1in1 (e1; e2)

e1 el e2 es ::: en�2 es en�1 ere en =) 1el1es:::1es1ere1 (e1; e2; :::; en�2; en�1; en)

e1 el e2 es ::: en�2 es sen�1 sre en =) 1el1es:::1es1sre1 (e1; e2; :::; en�2; sen�1; en)

e1 in e2 =) 1in1 [e1; e2]

e1 el e2 es ::: en�2 es en�1 ere en =) 1el1es:::1es1ere1 [e1; e2; :::; en�2; en�1; en]

e1 el e2 es ::: en�2 es sen�1 sre en =) 1el1es:::1es1sre1 [e1; e2; :::; en�2; sen�1; en]

12.2.11.4 NofixApp

ln e1 es ::: en�1 es en er =) ln1es:::1es1er (e1; :::; en�1; en)

ln e1 es ::: en�1 es sen sr =) ln1es:::1es1sr (e1; :::; en�1; sen)

ln e1 es ::: en�1 es en er =) ln1es:::1es1er [e1; :::; en�1; en]

ln e1 es ::: en�1 es sen sr =) ln1es:::1es1sr [e1; :::; en�1; sen]

12.2.12 Expression list

e1; :::; en =) f(1; e1); :::; (n; en)g

Within an operator application, each expression list is syntactically transformed to the equivalent explicit repre-

sentation of a sequence, which is a set of pairs of position and corresponding component expression.
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13 Type inference rules

13.1 Introduction

The type inference rules together can be viewed as a partial function that maps a parse tree of an annotated

syntax sentence to the unique parse tree of an annotated syntax sentence that is like the given parse tree but

with all of the optional annotations present.

All expressions in Z are typed, allowing some of the logical anomalies that can arise when sets are de�ned in

terms of their properties to be avoided, and allowing well-typedness checks on Z phrases to be automated. An

example of a Z phrase that is not well-typed is the predicate 2 2 3, because the second expression of a membership

predicate is required to be a set of values, each of the same type as the �rst expression.

The type constraints that shall be satis�ed between the various parts of a Z phrase are speci�ed by type inference

rules, of which there is one corresponding to each annotated syntax production. The conjunction of all the

type constraints is called the well-typedness condition. A sentence is well-typed if and only if its well-typedness

condition has a solution that provides a unique assignment of type annotations. Sentences that are not well-

typed, either because the well-typedness condition has no solution and hence there is no consistent assignment

of type annotations, or because the well-typedness condition allows more than one possible assignment of type

annotations, are excluded at this stage.

Starting with a Z sentence, the type inference rule for sectioned speci�cation deduces type subsequents for each of

the sentence's sections, along with one for the prelude. The type inference rule for inheriting section corresponds

to each of those type subsequents. This is the start of a tree of deductions that extends to the atomic phrases of

the sentence, namely given types paragraphs, truth predicates, and reference expressions.

The type constraints speci�ed by each deduction are equalities between occurrences of �, �, �, � and � variables

with formulae on the other side of the deduction, and also the side-conditions of the type inference rules. (Each

use of a type inference rule creates new instances of the variables.)

13.2 Formal de�nition of type inference rules

13.2.1 Speci�cation

13.2.1.1 Sectioned speci�cation

fg `S sprelude
o

o �0
fprelude 7! �0g `S s�(1)

o

o ��(1)
:::

fprelude 7! �0; i�(1) 7! ��(1); :::; i�(n�1) 7! ��(n�1)g `S s�(n)
o

o ��(n)

`Z s1::: sn

(� 2 1 : : n �! 1 : : n)

The sections of a speci�cation can be presented in any order. For a speci�cation to be well-typed, there shall exist a

bijection � specifying a permutation of the sections so that each section is well-typed in the corresponding section-

type environment. The parents relation constrains the permutations that produce a well-typed speci�cation.

The prelude is speci�ed as being included in the environment �rst. However, when typechecking `Z sprelude, the

prelude shall be omitted from the environment.

13.2.2 Section

13.2.2.1 Inheriting section

�0 `D d1
o

o [�1] ::: �n�1 `D dn
o

o [�n] � `S s

� `S section i parents i1; :::; im END

d1
o

o [�1] ::: dn o

o [�n] o

o �

0
BBBBBBB@

i 62 dom �

fi1; :::; img � dom �

dom �1 \ dom �2 = ? ^ ::: ^ dom �1 \ dom �n = ?

^ ...

^ dom �n�1 \ dom �n = ?

� 2 ( 7! )

1
CCCCCCCA
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where ��1 = if i = prelude then fg else � prelude
and �0 = ��1 [ � i1 [ ::: [ � im

and � = �0 [ fj : NAME; � : Type j j 7! � 2 �1 [ ::: [ �n � j 7! (i; �)g
and �0 = �0 o

9
second

and �1 = �0 [ �1 and ::: and �n�1 = �n�2 [ �n�1

and s = section i parents i1; :::; im END d1 ::: dn�1

Each paragraph of an inheriting section is typechecked in an environment formed from those of the parent sections

extended with the signatures of the preceding paragraphs of this section. A further type subsequent checks that

the section that remains when the last paragraph is omitted is also well-typed. If the section has no paragraphs,

no such type subsequent shall be generated.

NOTE 1 In other words, separate well-typedness conditions are checked for each paragraph-sized pre�x of each

section. This ensures that the instantiations of references to generics are fully determined before the de�nition

containing those references is used in subsequent paragraphs, and so excludes examples such as the following.

EXAMPLE 1

empty == ?

inst == empty [ f1; 2g

This apparent ine�ciency can be avoided in a tool implementation | see 13.3.5.

Taking the side-conditions in order, this type inference rule ensures that:

a) the name of the section is di�erent from that of any previous section;

b) the names in the parents list are names of known sections;

c) there is no global rede�nition between any pair of paragraphs of the section (speci�ed by an enumeration of

pairwise disjointness constraints);

d) a name which is common to the environments of multiple parents shall have originated in a common ancestral

section, and a name introduced by a paragraph of this section shall not also be introduced by another

paragraph or parent section (all ensured by the partial function).

NOTE 2 Ancestors need not be immediate parents, and a section cannot be amongst its own ancestors (no cycles

in the parent relation).

NOTE 3 The name of a section can be the same as the name of a declaration | the two are not confused.

13.2.3 Paragraph

13.2.3.1 Given types paragraph

� `D [i1; :::; in] END o

o [i1 : P(GIVEN i1); :::; in : P(GIVEN in)]
(# fi1; :::; ing = n)

In a given types paragraph, the annotation of the paragraph is a signature associating the given type names with

set types. There shall be no duplication of names within a given types paragraph.

13.2.3.2 Axiomatic description paragraph

� `E e o

o P[�]

� `D AX e END o

o [�]

In an axiomatic description paragraph AX e END, the expression e shall be a schema. The annotation of the

paragraph is the signature of that schema.
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13.2.3.3 Generic axiomatic description paragraph

� � fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in)g `E e o

o P[�]

� `D GENAX [i1; :::; in] e END o

o [� j : dom � � [i1; :::; in](� j)]
(# fi1; :::; ing = n)

In a generic axiomatic description paragraph GENAX [i1; :::; in] e END, the expression e is typechecked, in an

environment overridden by the generic parameters, and shall be a schema. The annotation of the paragraph is

formed from the signature of that schema, having the same names, but associated with types that are generic.

There shall be no duplication of names within the generic parameters of a generic axiomatic description paragraph.

13.2.3.4 Free type paragraph

�0 `E e1 1
o

o P �1 1 ::: �0 `E e1n1
o

o P �1 n1
...

�0 `E er 1
o

o P �r 1 ::: �0 `E er nr
o

o P �r nr

� `D d o

o [�]

0
BBB@

# ff1; h1 1; :::; h1m1
; g1 1; :::; g1n1 ;

...;

fr; hr 1; :::; hrmr
; gr 1; :::; gr nrg

= r +m1 + :::+mr + n1 + :::+ nr

1
CCCA

where �0 = � � ff1 7! P f1; :::; fr 7! P frg
and d = f1 ::= h1 1 j ::: j h1m1

j g1 1hhe1 1ii j ::: j g1n1hhe1 n1ii
& ::: &

fr ::= hr 1 j ::: j hrmr
j gr 1hher 1ii j ::: j gr nrhher nrii END

and � = f1 : Pf1; h1 1 : f1; :::; h1m1
: f1; g1 1 : P(�1 1 � f1); :::; g1n1 : P(�1 n1 � f1)

; :::;

fr : P fr; hr 1 : fr; :::; hrmr
: fr; gr 1 : P(�r 1 � fr); :::; gr nr : P(�r nr � fr)

In a free type paragraph d, as expanded in the second local de�nition, the expressions representing the domains

of the injections are typechecked in an environment overridden by the names of the free types, and shall all be

sets. The annotation of the paragraph is the signature whose names are those of all the free types, the elements,

and the injections, each associated with the relevant type. There shall be no duplication of names amongst the

free types, elements and injections of a free type paragraph.

13.2.3.5 Conjecture paragraph

� `P p

� `D j=? p END o

o [ ]

In a conjecture paragraph j=? p END, the predicate p shall be well-typed. The annotation of the paragraph is the

empty signature.

13.2.3.6 Generic conjecture paragraph

� � fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in)g `P p

� `D [i1; :::; in] j=? p END o

o [ ]
(# fi1; :::; ing = n)

In a generic conjecture paragraph [i1; :::; in] j=? p END, the predicate p shall be well-typed in an environment

overridden by the generic parameters. The annotation of the paragraph is the empty signature. There shall be

no duplication of names within the generic parameters of a generic conjecture paragraph.

13.2.4 Predicate

13.2.4.1 Membership predicate

� `E e1
o

o � � `E e2
o

o P �

� `P e1 2 e2

In a membership predicate e1 2 e2, expression e2 shall be a set, and expression e1 shall be of the same type as

the members of set e2.
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13.2.4.2 Truth predicate

� `P true

A truth predicate is always well-typed.

13.2.4.3 Negation predicate

� `P p

� `P : p

A negation predicate : p is well-typed if and only if predicate p is well-typed.

13.2.4.4 Conjunction predicate

� `P p1 � `P p2

� `P p1 ^ p2

A conjunction predicate p1 ^ p2 is well-typed if and only if predicates p1 and p2 are well-typed.

13.2.4.5 Universal quanti�cation predicate

� `E e o

o P[�] � � � `P p

� `P 8 e � p
In a universal quanti�cation predicate 8 e � p, expression e shall be a schema, and predicate p shall be well-typed

in the environment overridden by the signature of schema e.

13.2.4.6 Unique existential quanti�cation predicate

� `E e o

o P[�] � � � `P p

� `P 91 e � p
In a unique existential quanti�cation predicate 91 e � p, expression e shall be a schema, and predicate p shall be

well-typed in the environment overridden by the signature of schema e.

13.2.5 Expression

13.2.5.1 Reference expression

In a reference expression, if the name is of the form �i and no declaration of this name yet appears in the

environment, then the following syntactic transformation is applied.

�i
�i 62dom �

=) [i; i 0]

This syntactic transformation makes the otherwise unde�ned name be equivalent to the corresponding schema

construction expression, which is then typechecked.

Similarly, if the name is of the form �i and no declaration of this name yet appears in the environment, then the

following syntactic transformation is applied.

�i
�i 62dom �

=) [i; i 0 j � i = � i
0]

NOTE 1 Type inference could be done without these syntactic transformations, but they are necessary steps in

de�ning the formal semantics.

NOTE 2 Only occurrences of � and � that are in such reference expressions are so transformed, not others such as

those in the names of declarations.
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� `E i o

o �
(i 2 dom �)

where � = if � i = [i1; :::; in]�0 then � i; (� i) [�1; :::; �n] else � i

In any other reference expression i, the name i shall be associated with a type in the environment. If that type

is generic, the annotation of the whole expression is a pair of both the uninstantiated type (for the Instantiation

clause to determine that this is a reference to a generic de�nition) and the type instantiated with new distinct

variable types (which the context should constrain to non-generic types). Otherwise (if the type in the environment

is non-generic), that is the type of the whole expression.

NOTE 3 The operation of generic type instantiation is de�ned in 14.3.

NOTE 4 If the type is generic, the next phase of processing makes the implicit instantiation explicit, transforming

the reference expression to a generic instantiation expression. That cannot be done here, as the new variable types

�1; :::; �n have yet to be constrained.

13.2.5.2 Generic instantiation expression

� `E e1
o

o P �1 ::: � `E en
o

o P �n

� `E i [e1; :::; en] o

o (� i) [�1; :::; �n]
(i 2 dom �)

In a generic instantiation expression i [e1; :::; en], the expressions shall be sets, and the name i shall be associated

with a generic type in the environment. The type of the whole expression is the instantiation of that generic type

by the types of those sets.

NOTE 1 The operation of generic type instantiation is de�ned in 14.3.

13.2.5.3 Set extension expression

� `E e1
o

o � ::: � `E en
o

o �

� `E fe1; :::; eng o

o P �

In a set extension expression, every component expression shall be of the same type. The type of the whole

expression is a set of the components' type.

13.2.5.4 Set comprehension expression

� `E e1
o

o P[�] � � � `E e2
o

o �

� `E fe1 � e2g o

o P �

In a set comprehension expression fe1 � e2g, expression e1 shall be a schema. The type of the whole expression

is a set of the type of expression e2, as determined in an environment overridden by the signature of schema e1.

13.2.5.5 Powerset expression

� `E e o

o P �

� `E P e o

o PP �

In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a set of the

type of expression e.

13.2.5.6 Tuple extension expression

� `E e1
o

o �1 ::: � `E en
o

o �n

� `E (e1; :::; en) o

o �1 � :::� �n

In a tuple extension expression (e1; :::; en), the type of the whole expression is the Cartesian product of the types

of the individual component expressions.
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13.2.5.7 Tuple selection expression

� `E e o

o �1 � :::� �n

� `E e : b o

o �b

(b 2 1 : : n)

In a tuple selection expression e : b, the type of expression e shall be a Cartesian product, and number b shall

select one of its components. The type of the whole expression is the type of the selected component.

13.2.5.8 Binding extension expression

� `E e1
o

o �1 ::: � `E en
o

o �n

� `E hj i1 == e1; :::; in == en ji o

o [i1 : �1; :::; in : �n]
(# fi1; :::; ing = n)

In a binding extension expression hj i1 == e1; :::; in == en ji, the type of the whole expression is that of a

binding whose signature associates the names with the types of the corresponding expressions. There shall be no

duplication of names within a binding extension expression.

13.2.5.9 Binding construction expression

� `E e o

o P[i1 : �1; :::; in : �n] � `E i1
� o

o �1 ::: � `E in
� o

o �n

� `E � e
� o

o [i1 : �1; :::; in : �n]

In a binding construction expression � e
�, the expression e shall be a schema, and in the environment shall

appear names, like those in the signature of the schema but with the (optional) strokes appended, associated with

the same types as those names have in the signature of schema e. The type of the whole expression is that of a

binding whose signature is that of the schema.

NOTE 1 The reference expressions i1
�:::in

� cannot refer to generic declarations, because �1:::�n are the types of

schema components, which cannot be generic types.

13.2.5.10 Binding selection expression

� `E e o

o [�]

� `E e : i o

o � i
(i 2 dom �)

In a binding selection expression e : i, expression e shall be a binding, and name i shall select one of its

components. The type of the whole expression is the type of the selected component.

13.2.5.11 Application expression

� `E e1
o

o P(�1 � �2) � `E e2
o

o �1

� `E e1 e2
o

o �2

In an application expression e1 e2, the expression e1 shall be a set of pairs, and expression e2 shall be of the

same type as the �rst components of those pairs. The type of the whole expression is the type of the second

components of those pairs.

13.2.5.12 De�nite description expression

� `E e1
o

o P[�] � � � `E e2
o

o �

� `E � e1 � e2 o

o �

In a de�nite description expression � e1 � e2, expression e1 shall be a schema. The type of the whole expression

is the type of expression e2, as determined in an environment overridden by the signature of schema e1.

13.2.5.13 Variable construction expression

� `E e o

o P �

� `E [i : e] o

o P[i : �]

In a variable construction expression [i : e], expression e shall be a set. The type of the whole expression is that

of a schema whose signature associates the name i with the type of a member of set e.
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13.2.5.14 Schema construction expression

� `E e o

o P[�] � � � `P p

� `E [e j p] o

o P[�]

In a schema construction expression [e j p], expression e shall be a schema, and predicate p shall be well-typed

in an environment overridden by the signature of schema e. The type of the whole expression is the same as the

type of expression e.

13.2.5.15 Schema negation expression

� `E e o

o P[�]

� `E : e o

o P[�]

In a schema negation expression : e, expression e shall be a schema. The type of the whole expression is the

same as the type of expression e.

13.2.5.16 Schema conjunction expression

� `E e1
o

o P[�1] � `E e2
o

o P[�2]

� `E e1 ^ e2
o

o P[�1 [ �2]
(�1 � �2)

In a schema conjunction expression e1 ^ e2, expressions e1 and e2 shall be schemas, and their signatures shall

be compatible. The type of the whole expression is that of the schema whose signature is the union of those of

expressions e1 and e2.

13.2.5.17 Schema hiding expression

� `E e o

o P[�]

� `E e n (i1; :::; in) o

o P[fi1; :::; ing �C �]
(fi1; :::; img � dom �)

In a schema hiding expression e n (i1; :::; in), expression e shall be a schema, and the names shall all be in the

signature of that schema. The type of the whole expression is that of a schema whose signature is computed by

subtracting from the signature of expression e those pairs whose names are to be hidden.

13.2.5.18 Schema universal quanti�cation expression

� `E e1
o

o P[�1] � � �1 `E e2
o

o P[�2]

� `E 8 e1 � e2 o

o P[dom �1 �C �2]
(�1 � �2)

In a schema universal quanti�cation expression 8 e1 � e2, expression e1 shall be a schema, and expression e2, in

an environment overridden by the signature of schema e1, shall also be a schema, and the signatures of these two

schemas shall be compatible. The type of the whole expression is that of a schema whose signature is computed

by subtracting from the signature of e2 those pairs whose names are in the signature of e1.

13.2.5.19 Schema unique existential quanti�cation expression

� `E e1
o

o P[�1] � � �1 `E e2
o

o P[�2]

� `E 91 e1 � e2 o

o P[dom �1 �C �2]
(�1 � �2)

In a schema unique existential quanti�cation expression 91 e1 � e2, expression e1 shall be a schema, and expression

e2, in an environment overridden by the signature of schema e1, shall also be a schema, and the signatures of

these two schemas shall be compatible. The type of the whole expression is that of a schema whose signature is

computed by subtracting from the signature of e2 those pairs whose names are in the signature of e1.

13.2.5.20 Schema renaming expression

� `E e o

o P[�1]

� `E e [j1 = i1; :::; jn = in] o

o P[�2]

�
# fi1; :::; ing = n
�2 2 ( 7! )

�
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where �2 = (id (dom �1)� fi1 7! j1; :::; in 7! jng)� o

9
�1

In a schema renaming expression e [j1 = i1; :::; jn = in], expression e shall be a schema. There shall be no

duplicates amongst the old names i1; :::; in. Declarations that are merged by the renaming shall have the same

type. The type of the whole expression is that of a schema whose signature is like that of expression e but with

the new names in place of corresponding old names.

NOTE 1 Old names need not be in the signature of the schema. This is so as to permit renaming to distribute over

other notations such as disjunction.

13.2.5.21 Schema precondition expression

� `E e o

o P[�]

� `E pre e o

o P[fi; j : NAME j j 2 dom � ^ (j = decor 0
i _ j = decor ! i) � jg �C �]

In a schema precondition expression pre e, expression e shall be a schema. The type of the whole expression is

that of a schema whose signature is computed by subtracting from the signature of e those pairs whose names

have primed or shrieked decorations.

13.2.5.22 Schema composition expression

� `E e1
o

o P[�1] � `E e2
o

o P[�2]

� `E e1
o

9
e2

o

o P[�3 [ �4]

�
�3 � �4

fi : match � i 7! �1(decor
0
i)g � fi : match � i 7! �2ig

�

where match = f i : dom �2 j decor 0
i 2 dom �1 ^ (8 j : NAME � : i = decor 0

j) � ig
and �3 = fi : match � decor 0

ig �C �1

and �4 = match �C �2

In a schema composition expression e1
o

9
e2, expressions e1 and e2 shall be schemas. Let match be the set

of unprimed names in schema e2 for which there are matching primed names in schema e1. Let �3 be the

signature formed from the components of e1 excluding the matched primed components. Let �4 be the signature

formed from the components of e2 excluding the matched unprimed components. Signatures �3 and �4 shall be

compatible. The types of the excluded matched pairs of components shall be the same. The type of the whole

expression is that of a schema whose signature is the union of �3 and �4.

NOTE 1 This notation would not be associative without the restriction concerning names being unprimed.

13.2.5.23 Schema piping expression

� `E e1
o

o P[�1] � `E e2
o

o P[�2]

� `E e1 >> e2
o

o P[�3 [ �4]

�
�3 � �4

fi : match � i 7! �1(decor ! i)g � fi : match � i 7! �2(decor ? i)g
�

where match = f i : NAME j decor ! i 2 dom �1 ^ decor ? i 2 dom �2 ^ (8 j : NAME � : i = decor ! j) � ig
and �3 = fi : match � decor ! ig �C �1

and �4 = fi : match � decor ? ig �C �2

In a schema piping expression e1>>e2, expressions e1 and e2 shall be schemas. Let match be the set of unshrieked

names for which there are shrieked names in schema e1 matching queried names in schema e2. Let �3 be the

signature formed from the components of e1 excluding the matched shrieked components. Let �4 be the signature

formed from the components of e2 excluding the matched queried components. Signatures �3 and �4 shall be

compatible. The types of the excluded matched pairs of components shall be the same. The type of the whole

expression is that of a schema whose signature is the union of �3 and �4.

NOTE 1 This notation would not be associative without the restriction concerning names being unshrieked.

13.2.5.24 Schema decoration expression

� `E e o

o P[�]

� `E e
+ o

o P[fi : dom � � decor +
i 7! � ig]
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In a schema decoration expression e
+, expression e shall be a schema. The type of the whole expression is that

of a schema whose signature is like that of e but with the decoration appended to each of its names.

13.3 Notes on properties of the type inference system

13.3.1 Termination

NOTE 1 In every type inference rule bar one, the formula to the right of the turnstile in each of the premiss type

sequents above the line appears as a sub-formula of the formula to the right of the turnstile in the type sequent below

the line (ignoring any type annotations on those formulae). The exceptional case is the type inference rule for binding

construction (� ) expressions, which generates additional premiss type sequents for the optionally decorated names

from the operand expression's signature. Type inference on those additional premisses is immediate. The decrease in

formula size is thus su�cient to guarantee termination.

13.3.2 Uniqueness

NOTE 1 For any syntactically well-formed Z speci�cation, the one-to-one mapping between annotated syntax pro-

ductions and type inference rules guarantees that a unique �nite type deduction tree of inferences can be generated,

along with a unique well-typedness condition comprising a �nite number of conjuncts. Only if there is a unique

solution to the well-typedness condition is the Z speci�cation well-typed.

13.3.3 E�ciency

NOTE 1 The above arguments for termination and uniqueness show that the cost of applying the type system is

linear in the number of formulae in the sentence.

13.3.4 Scope rules

NOTE 1 Here is an informal explanation of the scope rules implied by the above type inference rules.

A scope is static: it depends on only the structure of the text, not on the value of any predicate or expression.

A declaration can be either: a given type, a free type, a formal generic parameter, or an instance of Declaration

usually within a DeclPart.

The scopes of given types and free types (which occur only at paragraph level), and Declarations at paragraph level

(such as those of schema de�nitions and those of the outermost DeclPart in axiomatic descriptions), are the whole

of the rest of the section and any sections of which that is an ancestor.

Redeclaration at paragraph level of any name already declared at paragraph level is prohibited. Redeclaration at an

inner level of any name already declared with larger scope makes a hole in the scope of the outer declaration.

In a free type paragraph, the scopes of the declarations of the free types include the right-hand sides of the free type

declarations, whereas the scopes of the declarations of the elements and injections of the free types do not include

the free type paragraph itself.

The scope of a formal generic parameter is the rest of the paragraph in which it appears.

A DeclPart is not in the scope of its declarations.

The declarations of a schema declaration are distinct from those in the signature of the schema itself, and so have

separate scopes.

A name may be declared more than once within a DeclPart provided the types of the several declarations are identical.

In this case, the declarations are merged, so that they share the same scope, and the corresponding properties are

conjoined.

The scope of the declarations in the DeclPart of a quanti�cation, set comprehension, function construction, de�nite

description or schema construction expression is the j part of the SchemaText and any � part of that construct.
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13.3.5 Implementation

NOTE 1 The well-typedness condition is likely to be solved by uni�cation. Some uni�cation may be done as each

deduction generates new type constraints, rather than leaving it until all type constraints are known. The check that

any solution is unique can then be implemented by a separate normalization phase, which searches for any remaining

genericity. Applying that phase to each individual paragraph immediately after typechecking the paragraph e�ciently

implements the multiple well-typedness conditions noted under the inheriting section type inference rule (13.2.2.1).

Note that the type system is formulated as being applicable only to a whole Z speci�cation sentence, not a smaller

phrase. Typechecking smaller phrases in isolation is not a concern in this International Standard, but the only real

di�culty is easily identi�ed: all type inference rules except that for a whole speci�cation have an original type sequent

below the line in which there is a type environment; so to typecheck a phrase, a suitable type environment shall be

provided.
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14 Instantiation

14.1 Introduction

The instantiation rule maps each reference expression of generic type to a generic instantiation expression. The

transformation is performed on the parse trees of the phrases. Its formal de�nition requires two auxiliaries: carrier

set and generic type instantiation.

14.2 Carrier set

The meta-function carrier syntactically transforms a type phrase to an expression phrase denoting the carrier

set of that type. As well as being used in this clause for the calculation of implicit generic actuals, it is also used

later in semantic transformation rules.

carrier (GIVEN i) =) i o

o P(GIVEN i)

carrier (GENTYPE i) =) i o

o P(GENTYPE i)

carrier (P �) =) P(carrier �) o

o PP �

carrier (�1 � :::� �n) =) (carrier �1 � :::� carrier �n) o

o P(�1 � :::� �n)

carrier ([in : �n; :::; in : �n]) =) [in : carrier �n; :::; in : carrier �n] o

o P[in : �n; :::; in : �n]

NOTE 1 The expressions are generated with type annotations, to avoid needing to apply type inference again, and

so avoid the potential problem of type names being captured by local declarations.

NOTE 2 But for the GIVEN/GENTYPE distinction and the generation of type annotations, each of these transforma-

tions generates an expression that has the same textual appearance as the type.

NOTE 3 There is no transformation rule for variable type because in a well-typed speci�cation all variable types

have been uni�ed with other types. There is no transformation rule for generic types because they appear in only the

type annotation of generic axiomatic paragraphs, and carrier is never applied there.

14.3 Generic type instantiation

The meta-function of instantiating a generic type syntactically transforms a generic type and a sequence of

argument types to a Z expression denoting the type in which each reference to a generic parameter is substituted

with the corresponding argument type. This meta-function is used in two places: in the type inference rule for

generic instantiation expressions, where the argument types are all variable types, and in the instantiation rule

later in this clause, where the argument types are as already determined by type inference.

([i1; :::; in] GIVEN i) [�1; :::; �n] =) GIVEN i

([i1; :::; in] GENTYPE ik) [�1; :::; �n] =) �k

([i1; :::; in] P �) [�1; :::; �n] =) P(([i1; :::; in] �) [�1; :::; �n])

([i1; :::; in] �
0

1
� :::� �

0

m
) [�1; :::; �n] =) ([i1; :::; in] �

0

1
) [�1; :::; �n]� :::� ([i1; :::; in] �

0

m
) [�1; :::; �n]

([i1; :::; in] [i
0

1
: � 0

1
; :::; i0

m
: � 0

m
]) [�1; :::; �n]

=) [i0
1
: [i1; :::; in] �

0

1
[�1; :::; �n]; :::; i

0

m
: [i1; :::; in] �

0

m
[�1; :::; �n]]

NOTE 1 There is no transformation rule for variable type because in a well-typed speci�cation all variable types

have been uni�ed with other types.

14.4 Formal de�nition of instantiation rule

The value of a reference expression that refers to a generic de�nition is an inferred instantiation of that generic

de�nition.

i o

o [i1; :::; in]�; �
0 =) i [carrier �1; :::; carrier �n] o

o �
0

where 91 �1; :::; �n : Type � � 0 = ([i1; :::; in]�) [�1; :::; �n]
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It is semantically equivalent to the generic instantiation expression whose generic actuals are the carrier sets of

the types inferred for the generic parameters.

NOTE 1 � 0 is an instantiation of the generic type appearing as the �rst component of the pair. The types �1; :::; �n
can be determined by comparison of � with � 0 as suggested by the where clause.
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15 Semantic transformation rules

15.1 Introduction

The semantic transformation rules de�ne some annotated notations as being equivalent to other annotated no-

tations. The only sentences of concern here are ones that are already known to be well-formed syntactically

and well-typed. These semantic transformations are transformations that could not appear earlier as syntactic

transformations because they depend on type annotations or generic instantiations or are applicable only to parse

trees of phrases that are not in the concrete syntax.

Some semantic transformation rules generate other transformable notation, though exhaustive application of these

rules always terminates. They introduce no type errors. It is not intended that type inference be repeated on the

generated notation, though type annotations are needed on that notation for the semantic relations. Nevertheless,

the manipulation of type annotations is not made explicit throughout these rules, as that would be obfuscatory

and can easily be derived by the reader. Indeed, some rules exploit concrete notation for brevity and clarity.

The semantic transformation rules are listed in the same order as the corresponding productions of the annotated

syntax.

All applications of transformation rules that generate new declarations shall choose the names of those declarations

to be such that they do not capture references.

15.2 Formal de�nition of semantic transformation rules

15.2.1 Speci�cation

There are no semantic transformation rules for speci�cations.

15.2.2 Section

There are no semantic transformation rules for sections.

15.2.3 Paragraph

15.2.3.1 Free type paragraph

A free type paragraph is semantically equivalent to the sequence of given type paragraph and axiomatic de�nition

paragraph de�ned here.

f1 ::= h1 1 j ::: j h1m1
j g1 1hhe1 1ii j ::: j g1n1hhe1 n1ii

& ::: &

fr ::= hr 1 j ::: j hrmr
j gr 1hher 1ii j ::: j gr nrhher nrii

=)

[f1; :::; fr]

END
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AX

h1 1; :::; h1m1
: f1

...

hr 1; :::; hrmr
: fr

g11 : P(e1 1 � f1); :::; g1n1 : P(e1 n1 � f1)
...

gr 1 : P(er 1 � fr); :::; gr nr : P(er nr � fr)

j
8 u : e1 1 � 91 x : g1 1 � x : 1 = u ^ ::: ^ 8 u : e1n1 � 91 x : g1n1 � x : 1 = u
... ^
8 u : er 1 � 91 x : gr 1 � x : 1 = u ^ ::: ^ 8 u : er nr � 91 x : gr nr � x : 1 = u

8 u; v : e1 1 j g1 1u = g1 1v � u = v ^ ::: ^ 8 u; v : e1n1 j g1n1u = g1n1v � u = v
... ^
8 u; v : er 1 j gr 1u = gr 1v � u = v ^ ::: ^ 8 u; v : er nr j gr nru = gr nrv � u = v

8 b1; b2 : N �
(8 w : f1 j

(b1 = 1 ^ w = h1 1 _ ::: _ b1 = m1 ^ w = h1m1
_

b1 = m1 + 1 ^ w 2 fx : g11 � x : 2g _ ::: _ b1 = m1 + n1 ^ w 2 fx : g1n1 � x : 2g)
^ (b2 = 1 ^ w = h1 1 _ ::: _ b2 = m1 ^ w = h1m1

_
b2 = m1 + 1 ^ w 2 fx : g11 � x : 2g _ ::: _ b2 = m1 + n1 ^ w 2 fx : g1n1 � x : 2g) �

b1 = b2) ^
... ^
(8 w : fr j

(b1 = 1 ^ w = hr 1 _ ::: _ b1 = mr ^ w = hrmr
_

b1 = mr + 1 ^ w 2 fx : gr 1 � x : 2g _ ::: _ b1 = mr + nr ^ w 2 fx : gr nr � x : 2g)
^ (b2 = 1 ^ w = hr 1 _ ::: _ b2 = mr ^ w = hrmr

_
b2 = mr + 1 ^ w 2 fx : gr 1 � x : 2g _ ::: _ b2 = mr + nr ^ w 2 fx : gr nr � x : 2g) �

b1 = b2)

8 w1 : Pf1; :::; wr : Pfr j
h1 1 2 w1 ^ ::: ^ h1m1

2 w1 ^
... ^
hr 1 2 wr ^ ::: ^ hrmr

2 wr ^
(8 y : (� f1 == w1; :::; fr == wr � e1 1) � g1 1y 2 w1) ^
::: ^ (8 y : (� f1 == w1; :::; fr == wr � e1n1) � g1n1y 2 w1) ^
... ^
(8 y : (� f1 == w1; :::; fr == wr � er 1) � gr 1y 2 wr) ^
::: ^ (8 y : (� f1 == w1; :::; fr == wr � er nr ) � gr nry 2 wr) �

w1 = f1 ^ ::: ^ wr = fr

END

The type names are introduced by the given types paragraph. The elements are declared as members of their cor-

responding free types. The injections are declared as functions from values in their domains to their corresponding

free type.

The �rst of the four blank-line separated predicates is the total functionality property. It ensures that for every

injection, the injection is functional at every value in its domain.
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The second of the four blank-line separated predicates is the injectivity property. It ensures that for every

injection, any pair of values in its domain for which the injection returns the same value shall be a pair of equal

values (hence the name injection).

The third of the four blank-line separated predicates is the disjointness property. It ensures that for every free

type, every pair of values of the free type are equal only if they are the same element or are returned by application

of the same injection to equal values.

The fourth of the four blank-line separated predicates is the induction property. It ensures that for every free

type, its members are its elements, the values returned by its injections, and nothing else.

The generated � expressions in the induction property are intended to e�ect substitutions of all references to the

free type names, including any such references within generic instantiation lists in the e expressions.

NOTE 1 That is why this is a semantic transformation not a syntactic one: all implicit generic instantiations shall

have been made explicit before it is applied.

NOTE 2 The right-hand side of this transformation could have been expressed using the following notation from

the mathematical toolkit, but for the desire to de�ne the core language separately from the mathematical toolkit.

[f1; :::; fr]

END

AX

h1 1; :::; h1m1
: f1

...

hr 1; :::; hr mr
: fr

g1 1 : e1 1� f1; :::; g1n1 : e1n1 � f1
...

gr 1 : er 1� fr; :::; gr nr : er nr � fr

j

disjointhfh1 1g; :::; fh1m1
g; ran g1 1; :::; ran g1n1i

...

disjointhfhr 1g; :::; fhr mr
g; ran gr 1; :::; ran gr nr i

8 w1 : Pf1; :::; wr : Pfr j

fh1 1; :::; h1m1
g [ g1 1(j � f1 == w1; :::; fr == wr � e1 1 j)

[::: [ g1n1(j � f1 == w1; :::; fr == wr � e1n1 j) � w1 ^
... ^

fhr 1; :::; hrmr
g [ gr 1(j � f1 == w1; :::; fr == wr � er 1 j)

[::: [ gr nr (j � f1 == w1; :::; fr == wr � er nr j) � wr �

w1 = f1 ^ ::: ^ wr = fr

END

15.2.4 Predicate

15.2.4.1 Unique existential predicate

The unique existential quanti�cation predicate 91 e � p is true if and only if there is exactly one value for e for

which p is true.

91 e � p =) 9 e � p ^ (8 [e j p]1 � � e = � e
1)

It is semantically equivalent to there existing at least one value for e for which p is true and all those values for

which it is true being the same.

72 FCD typeset August 24, 1999



Z Notation:1999(E) 15 Semantic transformation rules

15.2.5 Expression

15.2.5.1 Tuple selection expression

The value of the tuple selection expression e : b is the b'th component of the tuple that is the value of e.

(e o

o �1 � :::� �n) : b =) (� i : carrier (�1 � :::� �n) �
� i1 : carrier �1; :::; in : carrier �n j i = (i1; :::; in) � ib) e

It is semantically equivalent to the function construction, from tuples of the Cartesian product type to the selected

component of the tuple b, applied to the particular tuple e.

15.2.5.2 Binding construction expression

The value of the binding construction expression � e
� is the binding whose names are those in the signature of

schema e and whose values are those of the same names with the optional decoration appended.

� e
�

o

o hj i1 : �1; :::; in : �n ji =) hj i1 == i1
�
; :::; in == in

� ji

It is semantically equivalent to the binding extension expression whose value is that binding.

15.2.5.3 Binding selection expression

The value of the binding selection expression e : i is that value associated with i in the binding that is the value

of e.

(e o

o [�]) : i =) (� [carrier [�]] � i) e

It is semantically equivalent to the function construction expression, from bindings of the schema type of e, to

the value of the selected name i, applied to the particular binding e.

15.2.5.4 Application expression

The value of the application expression e1 e2 is the sole value associated with e2 in the relation e1.

e1 e2
o

o � =) (� i : carrier � j (e2; i) 2 e1)

It is semantically equivalent to that sole range value i such that the pair (e2; i) is in the set of pairs that is the

value of e1.

15.2.5.5 Schema hiding expression

The value of the schema hiding expression e n (i1; :::; in) is that schema whose signature is that of schema e

minus the hidden names, and whose bindings have the same values as those in schema e.

(e o

o P[�]) n (i1; :::; in) =) 9 i1 : carrier (� i1); :::; in : carrier (� in) � e

It is semantically equivalent to the schema existential quanti�cation of the hidden names i1; :::; in from the schema

e.

15.2.5.6 Schema unique existential quanti�cation expression

The value of the schema unique existential quanti�cation expression 91 e1 � e2 is the set of bindings of schema

e2 restricted to exclude names that are in the signature of e1, for at least one binding of the schema e1.

91 e1 � e2 =) 9 e1 � e2 ^ (8 [e1 j e2]1 � � e1 = � e1
1 )

It is semantically equivalent to a schema existential quanti�cation expression, analogous to the unique existential

predicate transformation.
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15.2.5.7 Schema precondition expression

The value of the schema precondition expression pre e is that schema which is like schema e but without its

primed and shrieked components.

pre(e o

o P[�1]) o

o P[�2] =) 9 carrier [�1 n �2] � e

It is semantically equivalent to the existential quanti�cation of the primed and shrieked components from the

schema e.

15.2.5.8 Schema composition expression

The value of the schema composition expression e1
o

9
e2 is that schema representing the operation of doing the

operations represented by schemas e1 and e2 in sequence.

(e1 o

o P[�1]) o9 (e2 o

o P[�2]) o

o P[�] =) let e3 == carrier [�1 n �];
e4 == carrier [�2 n �]
� let e1 == e4uniquely renamed

� 9 e
1 � (9 e3 � [e1; e1 j � e3 = � e

1])

^ (9 e4 � [e2; e1 j � e4 = � e
1])

It is semantically equivalent to the existential quanti�cation of the matched pairs of primed components of e1
and unprimed components of e2 (as given by the signatures determined by typechecking), with those matched

pairs being equated.

15.2.5.9 Schema piping expression

The value of the schema piping expression e1 >> e2 is that schema representing the operation formed from the

two operations represented by schemas e1 and e2 with the outputs of e1 identi�ed with the inputs of e2.

(e1 o

o P[�1])>> (e2 o

o P[�2]) o

o P[�] =) let e3 == carrier [�1 n �];
e4 == carrier [�2 n �]
� let e1 == e4uniquely renamed

� 9 e
1 � (9 e3 � [e1; e1 j � e3 = � e

1])

^ (9 e4 � [e2; e1 j � e4 = � e
1])

It is semantically equivalent to the existential quanti�cation of the matched pairs of shrieked components of e1
and queried components of e2 (as given by the signatures determined by typechecking), with those matched pairs

being equated.

15.2.5.10 Schema decoration expression

The value of the schema decoration expression e
+ is that schema whose bindings are like those of the schema e

except that their names have the addition stroke +.

(e o

o P[i1 : �1; :::; in : �n])
+ =) e [decor +

i1 = i1; :::; decor
+

in = in]

It is semantically equivalent to the schema renaming where decorated names rename the original names.
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16 Semantic relations

16.1 Introduction

The semantic relations de�ne the meaning of the remaining annotated notation (that not de�ned by semantic

transformation rules) by relation to sets of models in ZF set theory. The only sentences of concern here are ones

that are already known to be well-formed syntactically and well-typed.

This clause de�nes the meaning of a Z speci�cation in terms of the semantic values that its global variables may

take consistent with the constraints imposed on them by the speci�cation.

This de�nition is loose: it leaves the values of ill-formed de�nite description expressions unde�ned. It is otherwise

tight: it speci�es the values of all expressions that do not depend on values of ill-formed de�nite descriptions,

every predicate is either true or false, and every expression denotes a value. The looseness leaves the values

of unde�ned expressions unspeci�ed. Any particular semantics conforms to this International Standard if it is

consistent with this loose de�nition.

EXAMPLE 1 The predicate (� x : f g) 2 T could be either true or false depending on the treatment of unde�ned-

ness.

NOTE 1 Typical speci�cations contain expressions that in some circumstances have unde�ned values. In those

circumstances, those expressions ought not to a�ect the meaning of the speci�cation. This de�nition is then su�ciently

tight.

NOTE 2 Alternative treatments of unde�ned expressions include one or more bottoms outside of the carrier sets,

or undetermined values from within the carrier sets.

16.2 Formal de�nition of semantic relations

16.2.1 Speci�cation

16.2.1.1 Sectioned speci�cation

[[ s1 ::: sn ]]
Z

= ([[ section prelude::: ]]
S

o

9
[[ s1 ]]

S
o

9
::: o

9
[[ sn ]]

S

) ?

The meaning of the Z speci�cation s1 ::: sn is the set of named theories to which the empty set of named theories

is related by the composition of the relations between sets of named theories that denote the meaning of each

section, starting with the prelude.

To determine [[ section prelude::: ]]
Z

another prelude shall not be pre�xed onto it.

NOTE 1 The meaning of a speci�cation is not the meaning of its last section, so as to permit several meaningful

units within a single document.

16.2.2 Section

16.2.2.1 Inheriting section

NOTE 1 The prelude section, as de�ned in clause 11, is treated specially, as it is the only one that does not have

prelude as an implicit parent.

[[ section prelude parents END d1 ::: dn ]]
S

=

� T : Theory � fprelude 7! ([[ d1 ]]
D

o

9
::: o

9
[[ dn ]]

D

) (j f?g j)g
The meaning of the prelude section is given by that constant function which, whatever set of named theories it is

given, returns the singleton set containing the theory named prelude, whose models are those to which the empty

set of models is related by the composition of the relations between models that denote the meanings of each of

its paragraphs { see clause 11 for details of those paragraphs.
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[[ section i parents i1; :::; im END d1 ::: dn ]]
S

=

� T : Theory � T [ fi 7!
([[ d1 ]]

D
o

9
::: o

9
[[ dn ]]

D

) (j fM0 : T prelude; M1 : T i1; :::; Mm : T im �M0 [M1 [ ::: [Mmg j)g
The meaning of a section other than the prelude is the function that augments a given set of named theories

with the named theory of the given section. The models in that named theory are those to which the union of

the models of the section's parents is related by the composition of the relations between models that denote the

meanings of each of the section's paragraphs.

16.2.3 Paragraph

16.2.3.1 Given types paragraph

The given types paragraph [i1; :::; in] END introduces unconstrained global names.

[[ [i1; :::; in] END ]]
D

= fM : Model ; w1; :::; wn : W

� M 7! M [ fi1 7! w1; :::; in 7! wng
[ fdecor ~ i1 7! w1; :::; decor ~ in 7! wngg

It relates a model M to that model extended with associations between the names of the given types and semantic

values chosen to represent their carrier sets. Associations for names decorated with the reserved stroke ~ are also

introduced, so that references to them from given types (16.2.6.1) can avoid being captured.

16.2.3.2 Axiomatic description paragraph

The axiomatic description paragraph AX e END introduces global names and constraints on their values.

[[ AX e END ]]
D

= fM : Model ; t : W j t 2 [[ e ]]
E

M � M 7! M [ tg
It relates a model M to that model extended with a binding t of the schema that is the value of e in model M.

16.2.3.3 Generic axiomatic description paragraph

The generic axiomatic description paragraph GENAX [i1; :::; in] e END introduces global names and constraints on

their values, with generic parameters that have to be instantiated (by sets) whenever those names are referenced.

[[ GENAX [i1; :::; in] (e o

o P[j1 : �1; :::; jm : �m]) END ]]
D

=

fM : Model ; u : W ! W

j 8 w1; :::; wn : W � 9 w : W �
u (w1; :::; wn ) 2 w

^ (M � fi1 7! w1; :::; in 7! wng [ fdecor � i1 7! w1; :::; decor � in 7! wng) 7! w 2 [[ e ]]
E

�M 7! M [ � y : fj1; :::; jmg � � x : dom u � u x yg
Given a model M and generic argument sets w1; :::; wn , the semantic value of the schema e in that model

overridden by the association of the generic parameter names with those sets is w . All combinations of generic
argument sets are considered. The function u maps the generic argument sets to a binding in the schema w .
The paragraph relates the model M to that model extended with the binding that associates the names of the

schema e (namely j1; :::; jm) with the corresponding value in the binding resulting from application of u to

arbitrary instantiating sets x . Associations for names decorated with the reserved stroke � are also introduced

whilst determining the semantic value of e, so that references to them from generic types (16.2.6.2) can avoid

being captured.

16.2.3.4 Conjecture paragraph

The conjecture paragraph j=? p END expresses a property that may logically follow from the speci�cation. It

may be a starting point for a proof.

[[ j=? p END ]]
D

= id Model
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It relates a model to itself: the truth of p in a model does not a�ect the meaning of the speci�cation.

16.2.3.5 Generic conjecture paragraph

The generic conjecture paragraph [i1; :::; in] j=? p END expresses a generic property that may logically follow from

the speci�cation. It may be a starting point for a proof.

[[ [i1; :::; in] j=? p END ]]
D

= id Model

It relates a model to itself: the truth of p in a model does not a�ect the meaning of the speci�cation.

16.2.4 Predicate

The set of models de�ning the meaning of a predicate is determined from the values of its constituent expressions.

The set therefore depends on the particular treatment of unde�nedness.

16.2.4.1 Membership predicate

The membership predicate e1 2 e2 is true if and only if the value of e1 is in the set that is the value of e2.

[[ e1 2 e2 ]]
P

= fM : Model j [[ e1 ]]
E

M 2 [[ e2 ]]
E

M �Mg
In terms of the semantic universe, it is true in those models in which the semantic value of e1 is in the semantic

value of e2, and is false otherwise.

16.2.4.2 Truth predicate

A truth predicate is always true.

[[ true ]]
P

= Model

In terms of the semantic universe, it is true in all models.

16.2.4.3 Negation predicate

The negation predicate : p is true if and only if p is false.

[[ : p ]]
P

= Model n [[ p ]]
P

In terms of the semantic universe, it is true in all models except those in which p is true.

16.2.4.4 Conjunction predicate

The conjunction predicate p1 ^ p2 is true if and only if p1 and p2 are true.

[[ p1 ^ p2 ]]
P

= [[ p1 ]]
P \ [[ p2 ]]

P

In terms of the semantic universe, it is true in those models in which both p1 and p2 are true, and is false
otherwise.

16.2.4.5 Universal quanti�cation predicate

The universal quanti�cation predicate 8 e � p is true if and only if predicate p is true for all bindings of the

schema e.

[[ 8 e � p ]]
P

= fM : Model j 8 t : [[ e ]]
E

M �M � t 2 [[ p ]]
P � Mg

In terms of the semantic universe, it is true in those models for which p is true in that model overridden by all

bindings in the semantic value of e, and is false otherwise.

16.2.5 Expression

Every expression has a semantic value, speci�ed by the following semantic relations. The value of an unde�ned

de�nite description expression is left loose, and hence the values of larger expressions containing unde�ned values

are also loosely speci�ed.
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16.2.5.1 Reference expression

The value of the reference expression that refers to a non-generic de�nition i is the value of the declaration to

which it refers.

[[ i ]]
E

= � M : Model � M i

In terms of the semantic universe, its semantic value, given a model M, is that associated with the name i in M.

16.2.5.2 Generic instantiation expression

The value of the generic instantiation expression i [e1; :::; en] is a particular instance of the generic referred to by

name i.

[[ i [e1; :::; en] ]]
E

= � M : Model � M i ([[ e1 ]]
E

M; :::; [[ en ]]
E

M)

In terms of the semantic universe, its semantic value, given a model M, is the generic value associated with the

name i in M instantiated with the semantic values of the instantiation expressions in M.

16.2.5.3 Set extension expression

The value of the set extension expression f e1; :::; eng is the set containing the values of its expressions.
[[ f e1; :::; eng ]]E = � M : Model � f[[ e1 ]]EM; :::; [[ en ]]

E

Mg
In terms of the semantic universe, its semantic value, given a model M, is the set whose members are the semantic

values of the member expressions in M.

16.2.5.4 Set comprehension expression

The value of the set comprehension expression f e1 � e2g is the set of values of e2 for all bindings of the schema
e1.

[[ f e1 � e2g ]]E = � M : Model � ft1 : [[ e1 ]]EM � [[ e2 ]]E (M � t1)g
In terms of the semantic universe, its semantic value, given a model M, is the set of values of e2 in M overridden

with a binding value of e1 in M.

16.2.5.5 Powerset expression

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[ P e ]]
E

= � M : Model � P ([[ e ]]
E

M)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

16.2.5.6 Tuple extension expression

The value of the tuple extension expression (e1; :::; en) is the tuple containing the values of its expressions in

order.

[[ (e1; :::; en) ]]
E

= � M : Model � ([[ e1 ]]EM; :::; [[ en ]]
E

M)

In terms of the semantic universe, its semantic value, given a model M, is the tuple whose components are the

semantic values of the component expressions in M.

16.2.5.7 Binding extension expression

The value of the binding extension expression hj i1 == e1; :::; in == en ji is the binding whose names are as

enumerated and whose values are those of the associated expressions.

[[ hj i1 == e1; :::; in == en ji ]]E = � M : Model � fi1 7! [[ e1 ]]
E

M; :::; in 7! [[ en ]]
E

Mg
In terms of the semantic universe, its semantic value, given a model M, is the set of pairs enumerated by its

names each associated with the semantic value of the associated expression in M.
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16.2.5.8 De�nite description expression

The value of the de�nite description expression � e1 � e2 is the unique value of e2 that arises whichever binding
is chosen from the set that is the value of schema e1.

fM : Model ; t1 : W
j t1 2 [[ e1 ]]

E

M
^ (8 t3 : [[ e1 ]]

E

M � [[ e2 ]]E (M � t3) = [[ e2 ]]
E

(M � t1))
� M 7! [[ e2 ]]

E

(M � t1)g � [[ � e1 � e2 ]]E

In terms of the semantic universe, its semantic value, given a model M in which the value of e2 in that model

overridden by a binding of the schema e1 is the same regardless of which binding is chosen, is that value of e2.

In other models, it has a semantic value, but this loose de�nition of the semantics does not say what it is.

16.2.5.9 Variable construction expression

The value of the variable construction expression [i : e] is the set of all bindings whose sole name is i and whose

associated value is in the set that is the value of e.

[[ [i : e] ]]
E

= � M : Model � fw : [[ e ]]
E

M � fi 7! wgg
In terms of the semantic universe, its semantic value, given a model M, is the set of all singleton bindings (sets

of pairs) of the name i associated with a value from the set that is the semantic value of e in M.

16.2.5.10 Schema construction expression

The value of the schema construction expression [e j p] is the set of all bindings of schema e that satisfy the

constraints of predicate p.

[[ [e j p] ]]E = � M : Model � ft : [[ e ]]
E

M j M � t 2 [[ p ]]
P � tg

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

that are members of the semantic value of schema e in M such that p is true in the model M overridden with

that binding.

16.2.5.11 Schema negation expression

The value of the schema negation expression : e is that set of bindings that are of the same type as those in

schema e but which are not in schema e.

[[ : e o

o P � ]]
E

= � M : Model � ft : [[ � ]]TM j : t 2 [[ e ]]
E

M � tg
In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

that are members of the semantic value of the carrier set of schema e in M such that those bindings are not

members of the semantic value of schema e in M.

16.2.5.12 Schema conjunction expression

The value of the schema conjunction expression e1 ^ e2 is the schema resulting from merging the signatures of

schemas e1 and e2 and conjoining their constraints.

[[ e1 ^ e2
o

o P � ]]
E

= � M : Model � ft : [[ � ]]TM; t1 : [[ e1 ]]
E

M; t2 : [[ e2 ]]
E

M j t1 [ t2 = t � tg
In terms of the semantic universe, its semantic value, given a model M, is the set of the unions of the bindings

(sets of pairs) in the semantic values of e1 and e2 in M.

16.2.5.13 Schema universal quanti�cation expression

The value of the schema universal quanti�cation expression 8 e1 � e2 is the set of bindings of schema e2 restricted

to exclude names that are in the signature of e1, for all bindings of the schema e1.

[[ 8 e1 � e2 o

o P � ]]
E

= � M : Model � ft2 : [[ � ]]TM j 8 t1 : [[ e1 ]]
E

M � t1 [ t2 2 [[ e2 ]]
E

(M � t1) � t2g
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In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

in the semantic values of the carrier set of the type of the entire schema universal quanti�cation expression in

M, for which the union of the bindings (sets of pairs) in e1 and in the whole expression is in the set that is the

semantic value of e2 in the model M overridden with the binding in e1.

16.2.5.14 Schema renaming expression

The value of the schema renaming expression e [j1 = i1; :::; jn = in] is that schema whose bindings are like those

of schema e except that some of its names have been replaced by new names, possibly merging components.

[[ e [j1 = i1; :::; jn = in] ]]
E

= � M : Model �
ft1 : [[ e ]]

E

M; t2 : W j

t2 = (id (dom t1)� fi1 7! j1; :::; in 7! jng)� o

9
t1

^ t2 2 ( 7! )

� t1g

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

in the semantic value of e in M with the new names replacing corresponding old names. Where components are

merged by the renaming, those components shall have the same value.

16.2.6 Type

The value of a type is its carrier set.

NOTE 1 For an expression e with a de�ned value, [[ e o

o � ]]
E 2 [[ � ]]

T
.

16.2.6.1 Given type

[[ GIVEN i ]]
T

= � M : Model �M (decor ~ i)

The semantic value of the given type GIVEN i, given a model M, is the semantic value associated with the given

type name i in M.

16.2.6.2 Generic parameter type

[[ GENTYPE i ]]
T

= � M : Model � M (decor � i)

The semantic value of the generic type GENTYPE i, given a model M, is the semantic value associated with generic

parameter name i in M.

16.2.6.3 Set type

[[ P � ]]
T

= � M : Model � P ([[ � ]]TM)

The semantic value of the set type P �, given a model M, is the powerset of the semantic value of type � in M.

16.2.6.4 Cartesian product type

[[ �1 � :::� �n ]]
T

= � M : Model � ([[ �1 ]]TM)� :::� ([[ �n ]]
T

M)

The semantic value of the Cartesian product type �1 � :::� �n, given a model M, is the Cartesian product of the

semantic values of types �1::: �n in M.
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16.2.6.5 Schema type

[[ [i1 : �1; :::; in : �n] ]]
T

= � M : Model

� ft : fi1; :::; ing ! W j t i1 2 [[ �1 ]]
T

M ^ ::: ^ t in 2 [[ �n ]]
T

M � tg

The semantic value of the schema type [i1 : �1; :::; in : �n], given a model M, is the set of bindings, represented

by sets of pairs of names and values, for which the names are those of the schema type and the associated values

are the semantic values of the corresponding types in M.

16.2.6.6 Generic type

[[ [i1; :::; in]� ]]
T

= � M : Model

� fg : W ! W

j 8 w1; :::;wn : W � g(w1; :::; wn ) 2 [[ � ]]
T

(M � fi1 7! w1; :::; in 7! wng)
� gg

The semantic value of the generic type [i1; :::; in]�, given a model M, is the set of functions from the tuple of

semantic values of instantiating types to the semantic value of a type.

NOTE 1 Variable types do not appear in the type annotations of well-typed speci�cations, so do not need to be

given semantics here.

NOTE 2 Generic types appear at only the outermost level of a type, so the variables wk in the last relation need

range over only W not U.

NOTE 3 [[ � ]]
T
M di�ers from carrier � in that the former application returns a semantic value whereas the latter

application returns an annotated parse tree.
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Annex A
(normative)

Mark-ups

A.1 Introduction

Not all systems support 16-bit Unicode [7], the de�nitive representation of Z characters (clause 6). A mark-up is

a mapping to (or from) the Unicode representation. This annex de�nes two mark-ups based on 7-bit ASCII [5]:

� a LATEX [11] mark-up, suitable for processing by that tool to render Z characters in their mathematical form;

� an email, or lightweight ASCII, mark-up, suitable for rendering Z characters on a low resolution device, such

as an ASCII-character-based terminal, or in email conversation.

The mark-ups described in this annex show how to translate between a `mark-up token' (string of ASCII mark-up

characters) into the corresponding string of Z characters. Remaining individual mark-up characters that do not

form a special mark-up token (such as digits, Latin letters, and much punctuation) are converted directly to the

corresponding Z character, from ASCII-xy to Unicode U+00xy .

A chosen mark-up language may also be used to specify a particular rendering for the characters, for example,

bold or italic.

A.2 LATEX mark-up

A LATEX command is a backslash `\' followed by a string of alphabetic characters (up to the �rst non-alphabetic

character), or by a single non-alphabetic character.

A.2.1 Letter characters

A.2.1.1 Greek alphabet characters

Only the minimal subset of Greek alphabet de�ned in 6.2 need be supported by an implementation. LATEX does

not support upper case Greek letters that look like Roman counterparts. Those Greek characters that shall be

supported shall use the mark-up given here.

LATEX command Z character string

\Delta �

\Xi �

\theta �

\lambda �

\mu �

A.2.1.2 Other Z core language letter characters

LATEX command Z character string

\arithmos A

\nat N

\power P
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A.2.2 Special characters

A.2.2.1 Special characters except Box characters

LATEX command Z character string

\_

\{ f
\} g
\ldata hh
\rdata ii
\lblot hj
\rblot ji

Subscripts and superscripts shall be marked up as follows:

LATEX command Z character string

^ hsingle LATEX tokeni %h Z string i .
^{ hLATEX tokensi } %h Z string i .
_ hsingle LATEX tokeni &h Z string i -
_{ hLATEX tokensi } &h Z string i -

EXAMPLE 1 LATEX mark-up x^1 corresponds to Z character string `x % 1.', which may be rendered `x1'

LATEX mark-up x^{1} corresponds to Z character string `x % 1.', which may be rendered `x1'

LATEX mark-up x^{\Delta S} corresponds to Z character string `x % �S .', which may be rendered `x�S '

LATEX mark-up \exists_1 corresponds to Z character string `9 & 1-', which may be rendered `9
1
'

LATEX mark-up \exists_{1} corresponds to Z character string `9 & 1-', which may be rendered `9
1
'

LATEX mark-up \exists_{\Delta S} corresponds to Z character string `9 & �S -', which may be rendered `9
�S

'

LATEX mark-up x_a^b corresponds to Z character string `x & a -% b .', which may be rendered `xa
b '

LATEX mark-up x_{a^b} corresponds to Z character string `x & a % b .-', which may be rendered `xab '

A.2.2.2 Box characters

The ENDCHAR character is used to mark the end of a Paragraph. The NLCHAR character is used to mark a hard

newline (see 7.5). Di�erent implementations may represent these characters in di�erent ways.

The box characters are described in A.2.6, on paragraph mark-up.

A.2.3 Symbol characters (except mathematical toolkit characters)

LATEX command Z character string

\models j=

\land ^
\lor _
\implies )
\iff ,
\lnot :
\forall 8
\exists 9

\cross �
\in 2
@ �
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\hide n
\project �
\semi o

9

\pipe >>

A.2.4 Core tokens

The Roman typeface used for core tokens in this International Standard is obtained using the mark-up de�ned

in A.2.9, with the following exceptions where there would otherwise be clashes with LATEX keywords.

LATEX command Z character string

\IF if

\THEN then

\ELSE else

\LET let

\zsection section

A.2.5 Mathematical toolkit characters and tokens

The mathematical toolkit need not be supported by an implementation. If it is supported, it shall use the

representations given here.

LATEX command Z character string

\rel $
\fun !
\neq 6=
\notin 62
\emptyset ?

\subseteq �
\subset �
\cup [
\cap \
\setminus n
\symdiff 	
\bigcup

S
\bigcap

T

\finset F

\mapsto 7!
\comp o

9

\circ �
\dres C

\rres B

\ndres �C
\nrres �B
\inv �

\limg (j
\rimg j)
\oplus �

84 FCD typeset August 24, 1999



Z Notation:1999(E) A Mark-ups

\plus % +.
\star % � .
\pfun 7!
\pinj 7�
\inj �

\psurj 7!!
\surj !!
\bij �!
\ffun 7 7!
\finj 7 7�

\num Z

\negate -

- �
\leq �
< <

\geq �
> >

\upto : :

\# #

\langle h
\rangle i
\cat a

\extract �

\filter �

\dcat a=

A.2.6 Paragraph mark-up

Each formal Z paragraph appears between a pair of \begin{xxx} and \end{xxx} LATEX commands. Text not

appearing between such commands is informal accompanying text.

For boxed paragraphs, the \begin{xxx} command indicates some box character, while for other paragraphs the

\begin{xxx} command is Z whitespace. Any middle line in a boxed paragraph is marked-up using the \where

LATEX command, which corresponds to the Z j character. The \end{xxx} command represents the Z ENDCHAR

character.

A.2.6.1 Axiomatic description paragraph mark-up

\begin{axdef}

DeclPart

\where

Predicate

\end{axdef}

A.2.6.2 Schema de�nition paragraph mark-up

\begin{schema}{NAME}

DeclPart

\where

Predicate

\end{schema}

A.2.6.3 Generic axiomatic description paragraph mark-up

\begin{gendef}[Formals]
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DeclPart

\where

Preidcate

\end{gendef}

A.2.6.4 Generic schema de�nition paragraph mark-up

\begin{schema}{NAME}[Formals]

DeclPart

\where

Predicate

\end{schema}

A.2.6.5 Free type paragraph mark-up

\begin{syntax}

Freetype, { & , Freetype }

\end{syntax}

A.2.6.6 Other paragraph mark-up

All other paragraphs are enclosed in a pair of \begin{zed} and \end{zed} commands, which are converted to Z

white space.

A.2.7 LATEX whitespace mark-up

LATEX has `hard' white space (explicit LATEX mark-up) and `soft' white space (ASCII white space characters such

as space, tab, and new line).

The hard white space is converted as follows:

LATEX command Z character string

{ (empty)

} (empty)

(tab) SPACE

~ SPACE

\, SPACE

\! SPACE

\(space) SPACE

\; SPACE

\: SPACE

\t1 SPACE

\t2 SPACE

\t3 SPACE

\t4 SPACE

\t5 SPACE

\t6 SPACE

\t7 SPACE

\t8 SPACE

\t9 SPACE

\\ NLCHAR

\also NLCHAR
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The conversion of LATEX Greek characters shall consume any immediately following soft white space. The con-

version of LATEX symbol characters shall preserve any following soft white space. Any remaining soft white space

shall be converted to the SPACE character.

EXAMPLE 1 The LATEX command `\Delta S' converts to the Z string `�S '.

EXAMPLE 2 The LATEX command `\Delta~S' converts to the Z string `� S '.

EXAMPLE 3 The LATEX command `\power S' converts to the Z string `P S '.

A.2.8 Introducing new Z characters

New Z characters are introduced by

%%Zchar \LaTeXcommand U+nnnn

%%Zstring \LaTeXcommand {Zstring} [in LaTeX mark-up]

EXAMPLE 1 %%Zchar \sqsubseteq U+2291

%%Zstring \nattwo {\nat_2}

A.2.9 Remaining LATEX mark-up

Any remaining LATEX command names enclosed in braces, `{\aToken}', shall be converted to the equivalent Z

character string with the braces and leading backslash removed, as `aToken'.

Any remaining LATEX command names shall be converted to the equivalent Z character string with the leading

backslash removed, and with a SPACE character added at the beginning and end, as ` aToken '.

EXAMPLE 1 LATEX mark-up: `{\dom}s', Z character string: `doms'.

LATEX mark-up: `\dom s', Z character string: ` dom s'.

EXAMPLE 2 LATEX mark-up: \IF \disjoint a \THEN x = y \mod z \ELSE x = y \div z

Z character string: if disjoint a then x = y mod z else x = y div z

a possible rendering: if disjoint a then x = y mod z else x = y div z

A.3 Email mark-up

This email mark-up is designed primarily as a human-readable lightweight mark-up, rather than for processing

by tools. The character `%' is used to 
ag a special string, for example `�' as `%x', and disambiguate it from, for

example, the name `x'. This 
ag character may be omitted to reduce clutter, if there is no danger of ambiguity

(for the human reader).

A.3.1 Letter characters

A.3.1.1 Greek alphabet characters

Only the minimal subset of Greek alphabet de�ned in 6.2 need be supported by an implementation. Those Greek

characters that shall be supported shall use the mark-up given here.

Email string Z character string

%Delta% �

%Xi% �

%theta% �

%lambda% �

%mu% �
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A.3.1.2 Other Z core language letter characters

Email string Z character string

%arithmos A

%N N

%P P

A.3.2 Special characters

A.3.2.1 Special characters except Box characters

Email string Z character string

' 0

! !

? ?

/^ %
v/ .
\v &
^\ -
_

( (

) )

[ [

] ]

{ f
} g
<< hh
>> ii
<| hj
|> ji

A.3.2.2 Box characters

The ENDCHAR character is used to mark the end of a Paragraph. The NLCHAR character is used to mark a hard

newline (see 7.5). Di�erent implementations may represent these characters in di�erent ways.

The email form of the box characters mimicks the mathematical form, as various boxes drawn around the text.

EXAMPLE 1 An example of the mathematical rendering of an axiomatic paragraph, illustrating the AX token,

comprising AXCHAR:

+..

succ : %N --> %N

|--

%A n : %N @ succ n = n + 1

-..

EXAMPLE 2 An example of the mathematical rendering of an schema paragraph, illustrating the SCH token, com-

prising SCHCHAR:

+-- AddName ---

%Delta System

n? : NAME
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|--

name ' = name %u n?

---

EXAMPLE 3 An example of the mathematical rendering of a generic axiomatic paragraph, illustrating the GENAX

token, comprising AXCHAR, GENCHAR:

+== [X] ===

_ %u _ : %P X %x %P X --> %P X

|--

%A a,b: %P X @ a %u b = { x:X | x %e a \/ x %e b }

-==

EXAMPLE 4 An example of the mathematical rendering of a generic schema paragraph, illustrating the GENSCH

token, comprising SCHCHAR, GENCHAR:

+-- BoundedStack[X] ---

stack : seq X

maxSize : %N

|--

# stack <= maxSize

---

A.3.3 Symbol characters (except mathematical toolkit characters)

Email string Z character string

| j
|= j=

/\ ^
\/ _
==> )
<=> ,
%not :
%A 8
%E 9

%x �
/ =

= =

%e 2
: :

; ;

, ;

. :

@ �

%\ n
%|\ �
%%; o

9

%%>> >>

A.3.4 Mathematical toolkit characters and tokens

The mathematical toolkit need not be supported by an implementation. If it is supported, it shall use the

representations given here.

FCD typeset August 24, 1999 89



A Mark-ups Z Notation:1999(E)

Mathematical toolkit names that use only Z core language characters are not listed here.

Email string Z character string

<--> $
--> !

/= 6=
%/e 62
(/) ?

%c_ �
%c �
%u [
%n \
\ n
(-) 	
%uu

S
%nn

T

%F F

|--> 7!
%; o

9

%o �
<: C

:> B

<-: �C
:-> �B
~ �

(| (j
|) j)
(+) �
%+ +

%* �

-|-> 7!
>-|-> 7�
>--> �

-|->> 7!!
-->> !!
>-->> �!
-||-> 7 7!
>-||-> 7 7�

%Z Z

%- -

- �
<= �
< <

>= �
> >

# #
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%< h
%> i
^ a

/| �

|\ �
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Annex B
(normative)

Mathematical toolkit

B.1 Introduction

The mathematical toolkit is an optional extension to the compulsory core language. It comprises a hierarchy of

related sections, each de�ning operators that are widely used in common application domains.

Figure B.1 { Parent relation between sections of the mathematical toolkit

set toolkit

6

relation toolkit

6

function toolkit number toolkit

@
@I

�
��

sequence toolkit

6

standard toolkit

The division of the mathematical toolkit into separate sections allows speci�c ones to be reused or replaced.

For example, sequence toolkit could be bypassed if not needed, and function toolkit could be replaced without

a�ecting number toolkit .

A speci�cation without a section header has section standard toolkit as parent by default.

B.2 Preliminary de�nitions

section set toolkit

B.2.1 Relations

generic 5 rightassoc ( $ )

X $ Y == P(X �Y )

X $ Y is the set of relations between X and Y , that is, the set of all sets of ordered pairs whose �rst members

are members of X and whose second members are members of Y .

B.2.2 Total functions

generic 5 rightassoc ( ! )

X ! Y == f f : X $ Y j 8 x : X � 91 y : Y � (x ; y) 2 f g

X ! Y is the set of all total functions from X to Y , that is, the set of all relations between X and Y such that

each x in X is related to exactly one y in Y .
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B.3 Sets

B.3.1 Inequality relation

relation ( 6= )

[X ]

6= : X $ X

8 x ; y : X � x 6= y , : x = y

Inequality is the relation between those values of the same type that are not equal to each other.

B.3.2 Non-membership

relation ( 62 )

[X ]

62 : X $ PX

8 x : X ; a : PX � x 62 a , : x 2 a

Non-membership is the relation between those values of a type, x , and sets of values of that type, a, for which x
is not a member of a.

B.3.3 Empty set

?[X ] == f x : X j false g

The empty set of any type is the set of that type that has no members.

B.3.4 Subset relation

relation ( � )

[X ]

� : PX $ PX

8 a; b : PX � a � b , (8 x : a � x 2 b)

Subset is the relation between two sets of the same type, a and b, such that every member of a is a member of b.

B.3.5 Proper subset relation

relation ( � )

[X ]

� : PX $ PX

8 a; b : PX � a � b , a � b ^ a 6= b

Proper subset is the relation between two sets of the same type, a and b, such that a is a subset of b, and a and

b are not equal.
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B.3.6 Non-empty subsets

P1X == f a : PX j a 6= ? g

If X is a set, then P1X is the set of all non-empty subsets of X .

NOTE 1 The P symbol is established as a generic operator by the prelude.

B.3.7 Set union

function 30 leftassoc ( [ )

[X ]

[ : PX � PX ! PX

8 a; b : PX � a [ b = f x : X j x 2 a _ x 2 b g

The union of two sets of the same type is the set of values that are members of either set.

B.3.8 Set intersection

function 40 leftassoc ( \ )

[X ]

\ : PX � PX ! PX

8 a; b : PX � a \ b = f x : X j x 2 a ^ x 2 b g

The intersection of two sets of the same type is the set of values that are members of both sets.

B.3.9 Set di�erence

function 30 leftassoc ( n )

[X ]

n : PX � PX ! PX

8 a; b : PX � a n b = f x : X j x 2 a ^ x 62 b g

The di�erence of two sets of the same type is the set of values that are members of the �rst set but not members

of the second set.

B.3.10 Set symmetric di�erence

function 25 leftassoc ( 	 )

[X ]

	 : PX � PX ! PX

8 a; b : PX � a 	 b = f x : X j : (x 2 a , x 2 b) g

The symmetric set di�erence of two sets of the same type is the set of values that are members of one set, or the

other, but not members of both.
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B.3.11 Generalized union

[X ]S
: PPX ! PX

8A : PPX � SA = f x : X j 9 a : A � x 2 a g

The generalized union of a set of sets of the same type is the set of values of that type that are members of at

least one of the sets.

B.3.12 Generalized intersection

[X ]T
: PPX ! PX

8A : PPX � TA = f x : X j 8 a : A � x 2 a g

The generalized intersection of a set of sets of values of the same type is the set of values of that type that are

members of every one of the sets.

B.4 Finite sets

B.4.1 Finite subsets

generic 80 ( F )

F X ==
Tf A : PPX j ? 2 A ^ (8 a : A; x : X � a [ fxg 2 A) g

If X is a set, then F X is the set of all �nite subsets of X . The set of �nite subsets of X is the smallest set that

contains the empty set and is closed under the action of adding single elements of X .

B.4.2 Non-empty �nite subsets

F1X == F X n f?g

If X is a set, then F1X is the set of all non-empty �nite subsets of X . The set of non-empty �nite subsets of X
is the smallest set that contains the singleton sets of X and is closed under the action of adding single elements

of X .

B.5 More notations for relations

section relation toolkit parents set toolkit

B.5.1 First component projection

[X ;Y ]

�rst : X �Y ! X

8 x : X ; y : Y � �rst (x ; y) = x

For any ordered pair (x ; y), �rst (x ; y) is the x component of the pair.

B.5.2 Second component projection

[X ;Y ]

second : X �Y ! Y

8 x : X ; y : Y � second (x ; y) = y

For any ordered pair (x ; y), second (x ; y) is the y component of the pair.
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B.5.3 Maplet

function 10 leftassoc ( 7! )

[X ;Y ]

7! : X �Y ! X �Y

8 x : X ; y : Y � x 7! y = (x ; y)

The maplet forms an ordered pair from two values; x 7! y is just another notation for (x ; y).

B.5.4 Domain

[X ;Y ]

dom : (X $ Y )! PX

8 r : X $ Y � dom r = f p : r � p:1 g

The domain of a relation r is the set of �rst components of the ordered pairs in r .

B.5.5 Range

[X ;Y ]

ran : (X $ Y )! PY

8 r : X $ Y � ran r = f p : r � p:2 g

The range of a relation r is the set of second components of the ordered pairs in r .

B.5.6 Identity relation

generic 80 ( id )

id X == f x : X � x 7! x g

The identity relation on a set X is the relation that relates every member of X to itself.

B.5.7 Relational composition

function 40 leftassoc ( o

9
)

[X ;Y ;Z ]
o

9
: (X $ Y )� (Y $ Z )! (X $ Z )

8 r : X $ Y ; s : Y $ Z � r o

9
s = f p : r ; q : s j p:2 = q :1 � p:1 7! q :2 g

The relational composition of a relation r : X $ Y and s : Y $ Z is a relation of type X $ Z formed by taking

all the pairs p of r and q of s , where the second component of p is equal to the �rst component of q , and relating

the �rst component of p with the second component of q .

B.5.8 Functional composition

function 40 leftassoc ( � )

[X ;Y ;Z ]
� : (Y $ Z )� (X $ Y )! (X $ Z )

8 r : X $ Y ; s : Y $ Z � s � r = r o

9
s

The functional composition of s and r is the same as the relational composition of r and s .
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B.5.9 Domain restriction

function 61 rightassoc ( C )

[X ;Y ]

C : PX � (X $ Y )! (X $ Y )

8 a : PX ; r : X $ Y � a C r = f p : r j p:1 2 a g

The domain restriction of a relation r : X $ Y by a set a : PX is the set of pairs in r whose �rst components

are in a.

B.5.10 Range restriction

function 60 leftassoc ( B )

[X ;Y ]

B : (X $ Y )� PY ! (X $ Y )

8 r : X $ Y ; b : PY � r B b = f p : r j p:2 2 b g

The range restriction of a relation r : X $ Y by a set b : PY is the set of pairs in r whose second components

are in b.

B.5.11 Domain subtraction

function 61 rightassoc ( �C )

[X ;Y ]

�C : PX � (X $ Y )! (X $ Y )

8 a : PX ; r : X $ Y � a �C r = f p : r j p:1 62 a g

The domain subtraction of a relation r : X $ Y by a set a : PX is the set of pairs in r whose �rst components

are not in a.

B.5.12 Range subtraction

function 60 leftassoc ( �B )

[X ;Y ]

�B : (X $ Y )� PY ! (X $ Y )

8 r : X $ Y ; b : PY � r �B b = f p : r j p:2 62 b g

The range subtraction of a relation r : X $ Y by a set b : PY is the set of pairs in r whose second components

are not in b.

B.5.13 Relational inversion

function 90 ( � )

[X ;Y ]
� : (X $ Y )! (Y $ X )

8 r : X $ Y � r� = f p : r � p:2 7! p:1 g

The inverse of a relation is the relation obtained by reversing every ordered pair in the relation.
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B.5.14 Relational image

function 90 ( (j j) )

[X ;Y ]

(j j) : (X $ Y )� PX ! PY

8 r : X $ Y ; a : PX � r(j a j) = f p : r j p:1 2 a � p:2 g

The relational image of a set a : PX through a relation r : X $ Y is the set of values of type Y that are related

under r to a value in a.

B.5.15 Overriding

function 50 leftassoc ( � )

[X ;Y ]

� : (X $ Y )� (X $ Y )! (X $ Y )

8 r ; s : X $ Y � r � s = ((dom s)�C r) [ s

If r and s are both relations between X and Y , the overriding of r by s is the whole of s together with those

members of r that have no �rst components that are in the domain of s .

B.5.16 Transitive closure

function 90 ( + )

[X ]
+ : (X $ X )! (X $ X )

8 r : X $ X � r + =
Tf s : X $ X j r � s ^ r o

9
s � s g

The transitive closure of a relation r : X $ X is the smallest set that contains r and is closed under the action

of composing r with its members.

B.5.17 Re
exive transitive closure

function 90 ( � )

[X ]
� : (X $ X )! (X $ X )

8 r : X $ X � r � = r + [ id X

The re
exive transitive closure of a relation r : X $ X is the relation formed by extending the transitive closure

of r by the identity relation on X .

B.6 Functions

section function toolkit parents relation toolkit
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B.6.1 Partial functions

generic 5 rightassoc ( 7! )

X 7! Y == f f : X $ Y j 8 p; q : f j p:1 = q :1 � p:2 = q :2 g

X 7! Y is the set of all partial functions from X to Y , that is, the set of all relations between X and Y such

that each x in X is related to at most one y in Y . The terms \function" and \partial function" are synonymous.

B.6.2 Partial injections

generic 5 rightassoc ( 7� )

X 7� Y == f f : X $ Y j 8 p; q : f � p:1 = q :1, p:2 = q :2 g

X 7� Y is the set of partial injections from X to Y , that is, the set of all relations between X and Y such that

each x in X is related to no more than one y in Y , and each y in Y is related to no more than one x in X . The

terms \injection" and \partial injection" are synonymous.

B.6.3 Total injections

generic 5 rightassoc ( � )

X � Y == (X 7� Y ) \ (X ! Y )

X � Y is the set of total injections from X to Y , that is, the set of injections from X to Y that are also total

functions from X to Y .

B.6.4 Partial surjections

generic 5 rightassoc ( 7!! )

X 7!! Y == f f : X 7! Y j ran f = Y g

X 7!! Y is the set of partial surjections from X to Y , that is, the set of functions from X to Y whose range is

equal to Y . The terms \surjection" and \partial surjection" are synonymous.

B.6.5 Total surjections

generic 5 rightassoc ( !! )

X !! Y == (X 7!! Y ) \ (X ! Y )

X !! Y is the set of total surjections from X to Y , that is, the set of surjections from X to Y that are also total

functions from X to Y .

B.6.6 Bijections

generic 5 rightassoc ( �! )

X �! Y == (X !! Y ) \ (X � Y )

X �! Y is the set of bijections from X to Y , that is, the set of total surjections from X to Y that are also total

injections from X to Y .
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B.6.7 Finite functions

generic 5 rightassoc ( 7 7! )

X 7 7! Y == (X 7! Y ) \ F(X �Y )

The �nite functions from X to Y are the functions from X to Y that are also �nite sets.

B.6.8 Finite injections

generic 5 rightassoc ( 7 7� )

X 7 7� Y == (X 7 7! Y ) \ (X 7� Y )

The �nite injections from X to Y are the injections from X to Y that are also �nite functions from X to Y .

B.6.9 Disjointness

relation ( disjoint )

[L;X ]

disjoint : P(L$ PX )

8 f : L$ PX � disjoint f , (8 p; q : f j p 6= q � p:2 \ q :2 = ?)

A labelled family of sets is disjoint precisely when any distinct pair yields sets with no members in common.

B.6.10 Partitions

relation ( partition )

[L;X ]

partition : (L$ PX )$ PX

8 f : L$ PX ; a : PX � f partition a , disjoint f ^ S(ran f ) = a

A labelled family of sets f partitions a set a precisely when f is disjoint and the union of all the sets in f is a.

B.7 Numbers

sectionnumber toolkit

B.7.1 Successor

succ : N ! N

8n : N � succ n = n + 1

The successor of a natural number n is equal to n + 1.

B.7.2 Integers

Z : PA

Z is the set of integers, that is, positive and negative whole numbers and zero. The set Z is characterised by

axioms for its additive structure given in the prelude (clause 11) together with the next formal paragraph below.

Number systems that extend the integers may be speci�ed as supersets of Z.
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B.7.3 Addition of integers, arithmetic negation

function 50 ( - )

- : P(A � A )

8 x ; y : Z � 91 z : Z � ((x ; y); z ) 2 ( + )

8 x : Z � 91 y : Z � (x ; y) 2 (- )

8 i ; j ; k : Z �
(i + j ) + k = i + (j + k)
^ i + j = j + i
^ i + -i = 0

^ i + 0 = i

Z= fz : A j 9 x : N � z = x _ z = -xg

The binary addition operator ( + ) is de�ned in the prelude (clause 11). The de�nition here introduces additional

properties for integers. The addition and negation operations on integers are total functions that take integer

values. The integers form a commutative group under ( + ) with (- ) as the inverse operation and 0 as the

identity element.

NOTE 1 If function toolkit notation were exploited, the negation operator could be de�ned as follows.

- : A 7! A

(Z�Z)C ( + ) 2 Z�Z! Z

ZC (- ) 2 Z! Z

8 i ; j ; k : Z �

(i + j ) + k = i + (j + k)

^ i + j = j + i

^ i + -i = 0

^ i + 0 = i

8 h : PZ �

1 2 h ^ (8 i ; j : h � i + j 2 h ^ -i 2 h)

) h = Z

B.7.4 Subtraction

function 30 leftassoc ( � )

� : P((A � A ) � A )

8 x ; y : Z � 91 z : Z � ((x ; y); z ) 2 ( � )

8 i ; j : Z � i � j = i + -j

Subtraction is a function whose domain includes all pairs of integers. For all integers i and j , i � j is equal to
i + -j .

NOTE 1 If function toolkit notation were exploited, the subtraction operator could be de�ned as follows.

� : A � A 7! A

(Z�Z)C ( � ) 2 Z�Z! Z

8 i ; j : Z � i � j = i + -j
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B.7.5 Less-than-or-equal

relation ( � )

� : P(A � A )

8 i ; j : Z � i � j , j � i 2 N

For all integers i and j , i � j if and only if their di�erence j � i is a natural number.

B.7.6 Less-than

relation ( < )

< : P(A � A )

8 i ; j : Z � i < j , i + 1 � j

For all integers i and j , i < j if and only if i + 1 � j .

B.7.7 Greater-than-or-equal

relation ( � )

� : P(A � A )

8 i ; j : Z � i � j , j � i

For all integers i and j , i � j if and only if j � i .

B.7.8 Greater-than

relation ( > )

> : P(A � A )

8 i ; j : Z � i > j , j < i

For all integers i and j , i > j if and only if j < i .

B.7.9 Strictly positive natural numbers

N1 == fx : N j : x = 0g

The strictly positive natural numbers N1 are the natural numbers except zero.

B.7.10 Non-zero integers

Z1 == fx : Z j : x = 0g

The non-zero integers Z1 are the integers except zero.
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B.7.11 Multiplication of integers

function 40 leftassoc ( � )

� : P((A � A ) � A )

8 x ; y : Z � 91 z : Z � ((x ; y); z ) 2 ( � )

8 i ; j ; k : Z �
(i � j ) � k = i � (j � k)
^ i � j = j � i
^ i � (j + k) = i � j + i � k
^ 0 � i = 0

^ 1 � i = i

The binary multiplication operator ( � ) is de�ned for integers. The multiplication operation on integers, is a

total function and has integer values. Multiplication on integers is characterised by the unique operation under

which the integers become a commutative ring with identity element 1.

NOTE 1 If function toolkit notation were exploited, the multiplication operator could be de�ned as follows.

� : (A � A ) 7! A

(Z�Z)C ( � ) 2 Z�Z! Z

8 i ; j ; k : Z �

(i � j ) � k = i � (j � k)

^ i � j = j � i

^ i � (j + k) = i � j + i � k

^ 0 � i = 0

^ 1 � i = i

B.7.12 Division, modulus

function 40 leftassoc ( div )

function 40 leftassoc ( mod )

div ; mod : P((A � A ) � A )

8 x : Z; y : Z1 � 91 z : Z � ((x ; y); z ) 2 ( div )

8 x : Z; y : Z1 � 91 z : Z � ((x ; y); z ) 2 ( mod )

8 i : Z; j : Z1 �
i = (i div j ) � j + i mod j
^ (0 � i mod j < j _ j < i mod j � 0)

For all integers i and non-zero integers j , the pair (i ; j ) is in the domain of div and of mod , and i div j and
i mod j have integer values.

When not zero, i mod j has the same sign as j . This means that i div j is the largest integer no greater than the

rational number i=j .

NOTE 1 If function toolkit notation were exploited, the division and modulus operators could be de�ned as follows.
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div ; mod : A � A 7! A

(Z�Z1)C ( div ) 2 Z�Z1! Z

(Z�Z1)C ( mod ) 2 Z�Z1! Z

8 i : Z; j : Z1 �

i = (i div j ) � j + i mod j

^ (0 � i mod j < j _ j < i mod j � 0)

B.8 Sequences

section sequence toolkit parents function toolkit ;number toolkit

B.8.1 Number range

function 20 leftassoc ( : : )

: : : A � A 7! PA

(Z�Z)C ( : : ) 2 Z�Z! PZ

8 i ; j : Z � i : : j = f k : Z j i � k � j g

The number range from i to j is the set of all integers greater than or equal to i , which are also less than or equal
to j .

B.8.2 Iteration

[X ]

iter : N ! (X $ X )! (X $ X )

8 r : X $ X � iter 0 r = id X

8 r : X $ X ; n : N � iter(n + 1)r = r o

9
(iter n r)

iter is the iteration function for a relation. The iteration of a relation r : X $ X zero times is the identity

relation on X . The iteration of a relation r : X $ X n + 1 times is the composition of the relation with its

iteration n times.

function 90 ( % . )

[X ]

: (X $ X )! Z! (X $ X )

8 r : X $ X ; n : N � rn = iter n r

iter n r may be written as rn .

B.8.3 Number of members of a set

[X ]

# : F X ! N

8 a : F X � #a = (�n : N j (9 f : 1 : : n � a � ran f = a))

The number of members of a �nite set is the upper limit of the number range starting at 1 that can be put into

bijection with the set.
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B.8.4 Minimum

min : PA 7! A

PZCmin = f a : PZ; m : Z j m 2 a ^ (8n : a � m � n) � a 7! m g

If a set of integers has a member that is less than or equal to all members of that set, that member is its minimum.

B.8.5 Maximum

max : PA 7! A

PZCmax = f a : PZ; m : Z j m 2 a ^ (8n : a � n � m) � a 7! m g

If a set of integers has a member that is greater than or equal to all members of that set, that member is its

maximum.

B.8.6 Items

[L;X ]

items : (L 7 7! X )! X 7! N1

8 f : L 7 7! X � items f = f x : ran f � x 7! #(f B fxg) g

The items of a �nite indexed set, f , is a function from the values in the range of f to the number of the occurrences
of that value in the range of f .

B.8.7 Finite sequences

generic 80 ( seq )

seq X == f f : N 7 7! X j dom f = 1 : :#f g

A �nite sequence is a �nite indexed set of values of the same type, whose domain is a contiguous set of positive

integers starting at 1.

seq X is the set of all �nite sequences of values of X , that is, of �nite functions from the set 1 : : n, for some n,
to elements of X .

B.8.8 Non-empty �nite sequences

seq1X == seq X n f?g

seq1X is the set of all non-empty �nite sequences of values of X .

B.8.9 Injective sequences

generic 80 ( iseq )

iseq X == seq X \ (N 7� X )

iseq X is the set of all injective �nite sequences of values of X , that is, of �nite sequences over X that are also

injections.
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B.8.10 Sequence brackets

function ( h ; ; i )

h i[X ] == � s : seq X � s

The brackets h and i can be used for enumerated sequences.

B.8.11 Concatenation

function 30 leftassoc ( a )

[X ]
a : seq X � seq X ! seq X

8 s ; t : seq X � s a t = s [ f n : dom t � n +#s 7! t n g

Concatenation is a function of a pair of �nite sequences of values of the same type whose result is a sequence that

begins with all elements of the �rst sequence and continues with all elements of the second sequence.

B.8.12 Reverse

[X ]

rev : seq X ! seq X

8 s : seq X � rev s = (�n : dom s � s(#s � n + 1))

The reverse of a sequence is the sequence obtained by taking its elements in the opposite order.

B.8.13 Head of a sequence

[X ]

head : seq1X ! X

8 s : seq1X � head s = s 1

If s is a non-empty sequence of values, then head s is the value that is �rst in the sequence.

B.8.14 Last of a sequence

[X ]

last : seq1X ! X

8 s : seq1X � last s = s(#s)

If s is a non-empty sequence of values, then last s is the value that is last in the sequence.

B.8.15 Tail of a sequence

[X ]

tail : seq1X ! seq X

8 s : seq1X � tail s = (� n : 1 : : (#s � 1) � s(n + 1))

If s is a non-empty sequence of values, then tail s is the sequence of values that is obtained from s by discarding
the �rst element and renumbering the remainder.
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B.8.16 Front of a sequence

[X ]

front : seq1X ! seq X

8 s : seq1X � front s = f#sg �C s

If s is a non-empty sequence of values, then front s is the sequence of values that is obtained from s by discarding
the last element.

B.8.17 Squashing

[X ]

squash : (Z 7 7! X )! seq X

8 f : Z 7 7! X � squash f = f p : f � #f i : dom f j i � p:1 g 7! p:2 g

squash takes a �nite function f : Z 7 7! X and renumbers its domain to produce a �nite sequence.

B.8.18 Extraction

function 41 rightassoc ( � )

[X ]

� : PZ� seq X ! seq X

8 a : PZ; s : seq X � a � s = squash(a C s)

The extraction of a set a of indices from a sequence is the sequence obtained from the original by discarding any

indices that are not in the set a, then renumbering the remainder.

B.8.19 Filtering

function 40 leftassoc ( � )

[X ]

� : seq X � PX ! seq X

8 s : seq X ; a : PX � s � a = squash(s B a)

The �lter of a sequence by a set a is the sequence obtained from the original by discarding any members that are

not in the set a, then renumbering the remainder.

B.8.20 Pre�x relation

relation ( pre�x )

[X ]

pre�x : seq X $ seq X

8 s ; t : seq X � s pre�x t , s � t

A sequence s is a pre�x of another sequence t if it forms the front portion of t .
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B.8.21 Su�x relation

relation ( su�x )

[X ]

su�x : seq X $ seq X

8 s ; t : seq X � s su�x t , (9 u : seq X � u a s = t)

A sequence s is a su�x of another sequence t if it forms the end portion of t .

B.8.22 In�x relation

relation ( in�x )

[X ]

in�x : seq X $ seq X

8 s ; t : seq X � s in�x t , (9 u; v : seq X � u a s a v = t)

A sequence s is an in�x of another sequence t if it forms a mid portion of t .

B.8.23 Distributed concatenation

[X ]
a= : seq seq X ! seq X

a= h i = h i
8 s : seq X � a= hsi = s

8 q ; r : seq seq X � a=(q a r) = (a= q)a (a= r)

The distributed concatenation of a sequence t of sequences of values of type X is the sequence of values of type

X that is obtained by concatenating the members of t in order.

B.9 Standard toolkit

section standard toolkit parents sequence toolkit

The standard toolkit contains the de�nitions of section sequence toolkit (and implicitly those of its ancestral

sections).
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Annex C
(informative)

Organisation by concrete syntax production

C.1 Introduction

This annex duplicates some of the de�nitions presented in the normative clauses, but re-organised by concrete

syntax production. This re-organisation provides no suitable place to accommodate the following material, which

is consequently omitted here.

a) From Concrete syntax, the rules de�ning:

1) Formals, used in Generic axiomatic description paragraph, Generic schema paragraph, Generic horizon-

tal de�nition paragraph, and Generic conjecture paragraph;

2) DeclName, used in Branch, Schema hiding expression, Schema renaming expression, Colon declaration

and Equal declaration;

3) RefName, used in Reference expression, Generic instantiation expression, and Binding selection expres-

sion;

4) OpName and its auxiliaries, used in RefName and DeclName;

5) ExpSep and ExpressionList, used in auxiliaries of Relation operator application predicates and Func-

tion or generic operator application expressions;

6) and also the operator precedences and associativities and additional syntactic restrictions.

b) From Characterisation rules:

1) Characteristic tuple.

c) From Prelude:

1) its text is relevant not just to number literal expressions but also to the sequence arguments in Relation

operator application predicates and Function or generic operator application expressions.

d) From Syntactic transformation rules:

1) Name and ExpressionList.

e) From Type inference rules:

1) Properties of the type inference system.

f) From Instantiation:

1) Carrier set and Generic type instantiation.

g) From Semantic relations:
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1) all of the relations for Type are omitted.

Also, the description of the overall e�ect of a phase, or how the phase operates, is generally omitted from this

annex.

Moreover, some of the phases and representations are entirely omitted here, namely Mark-ups, Z characters, Lexis

and Annotated syntax.

C.2 Speci�cation

C.2.1 Introduction

Specification is the start symbol of the syntax. A Specification can be either a sectioned speci�cation or

an anonymous speci�cation. A sectioned speci�cation comprises a sequence of named sections. An anonymous

speci�cation comprises a single anonymous section.

C.2.2 Sectioned speci�cation

C.2.2.1 Syntax

Specification = f Section g
j ...
;

C.2.2.2 Type

fg `S sprelude
o

o �0
fprelude 7! �0g `S s�(1)

o

o ��(1)
:::

fprelude 7! �0; i�(1) 7! ��(1); :::; i�(n�1) 7! ��(n�1)g `S s�(n)
o

o ��(n)

`Z s1::: sn

(� 2 1 : : n �! 1 : : n)

The sections of a speci�cation can be presented in any order. For a speci�cation to be well-typed, there shall exist a

bijection � specifying a permutation of the sections so that each section is well-typed in the corresponding section-

type environment. The parents relation constrains the permutations that produce a well-typed speci�cation.

The prelude is speci�ed as being included in the environment �rst. However, when typechecking `Z sprelude, the

prelude shall be omitted from the environment.

C.2.2.3 Semantics

[[ s1 ::: sn ]]
Z

= ([[ section prelude::: ]]
S

o

9
[[ s1 ]]

S
o

9
::: o

9
[[ sn ]]

S

) ?

The meaning of the Z speci�cation s1 ::: sn is the set of named theories to which the empty set of named theories

is related by the composition of the relations between sets of named theories that denote the meaning of each

section, starting with the prelude.

To determine [[ section prelude::: ]]
Z

another prelude shall not be pre�xed onto it.

NOTE 1 The meaning of a speci�cation is not the meaning of its last section, so as to permit several meaningful

units within a single document.
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C.2.3 Anonymous speci�cation

C.2.3.1 Syntax

Specification = ...

j f Paragraph g
;

C.2.3.2 Transformation

The anonymous speci�cation d1 ::: dn is semantically equivalent to the sectioned speci�cation comprising a

single section that has a name | shown here as Speci�cation | and whose parents are (implicitly prelude and)

standard toolkit .

d1 ::: dn =) section Speci�cation parents standard toolkit END d1 ::: dn

The name given to the section is not important: it need not be Speci�cation, though it may not be prelude or

that of any section of the mathematical toolkit.

NOTE 1 If the section is contained in a �le, then the name of that �le might be a good choice.

C.3 Section

C.3.1 Introduction

A Section can be either an inheriting section or a base section. An inheriting section gathers together the

paragraphs of parent sections with new paragraphs. A base section is like an inheriting section but has no

parents.

C.3.2 Inheriting section

C.3.2.1 Syntax

Section = section , NAME , parents , [ NAME , f ;-tok , NAME g ] , END , f Paragraph g
j ...

;

C.3.2.2 Type

�0 `D d1
o

o [�1] ::: �n�1 `D dn
o

o [�n] � `S s

� `S section i parents i1; :::; im END

d1
o

o [�1] ::: dn o

o [�n] o

o �

0
BBBBBBB@

i 62 dom �

fi1; :::; img � dom �

dom �1 \ dom �2 = ? ^ ::: ^ dom �1 \ dom �n = ?

^ ...

^ dom �n�1 \ dom �n = ?

� 2 ( 7! )

1
CCCCCCCA

where ��1 = if i = prelude then fg else � prelude
and �0 = ��1 [ � i1 [ ::: [ � im

and � = �0 [ fj : NAME; � : Type j j 7! � 2 �1 [ ::: [ �n � j 7! (i; �)g
and �0 = �0 o

9
second

and �1 = �0 [ �1 and ::: and �n�1 = �n�2 [ �n�1

and s = section i parents i1; :::; im END d1 ::: dn�1
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Each paragraph of an inheriting section is typechecked in an environment formed from those of the parent sections

extended with the signatures of the preceding paragraphs of this section. A further type subsequent checks that

the section that remains when the last paragraph is omitted is also well-typed. If the section has no paragraphs,

no such type subsequent shall be generated.

NOTE 1 In other words, separate well-typedness conditions are checked for each paragraph-sized pre�x of each

section. This ensures that the instantiations of references to generics are fully determined before the de�nition

containing those references is used in subsequent paragraphs, and so excludes examples such as the following.

EXAMPLE 1

empty == ?

inst == empty [ f1; 2g

This apparent ine�ciency can be avoided in a tool implementation | see 13.3.5.

Taking the side-conditions in order, this type inference rule ensures that:

a) the name of the section is di�erent from that of any previous section;

b) the names in the parents list are names of known sections;

c) there is no global rede�nition between any pair of paragraphs of the section (speci�ed by an enumeration of

pairwise disjointness constraints);

d) a name which is common to the environments of multiple parents shall have originated in a common ancestral

section, and a name introduced by a paragraph of this section shall not also be introduced by another

paragraph or parent section (all ensured by the partial function).

NOTE 2 Ancestors need not be immediate parents, and a section cannot be amongst its own ancestors (no cycles

in the parent relation).

NOTE 3 The name of a section can be the same as the name of a declaration | the two are not confused.

C.3.2.3 Semantics

NOTE 1 The prelude section, as de�ned in clause 11, is treated specially, as it is the only one that does not have

prelude as an implicit parent.

[[ section prelude parents END d1 ::: dn ]]
S

=

� T : Theory � fprelude 7! ([[ d1 ]]
D

o

9
::: o

9
[[ dn ]]

D

) (j f?g j)g
The meaning of the prelude section is given by that constant function which, whatever set of named theories it is

given, returns the singleton set containing the theory named prelude, whose models are those to which the empty

set of models is related by the composition of the relations between models that denote the meanings of each of

its paragraphs { see clause 11 for details of those paragraphs.

[[ section i parents i1; :::; im END d1 ::: dn ]]
S

=

� T : Theory � T [ fi 7!
([[ d1 ]]

D
o

9
::: o

9
[[ dn ]]

D

) (j fM0 : T prelude; M1 : T i1; :::; Mm : T im �M0 [M1 [ ::: [Mmg j)g
The meaning of a section other than the prelude is the function that augments a given set of named theories

with the named theory of the given section. The models in that named theory are those to which the union of

the models of the section's parents is related by the composition of the relations between models that denote the

meanings of each of the section's paragraphs.
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C.3.3 Base section

C.3.3.1 Syntax

Section = ...
j section , NAME , END , f Paragraph g
;

C.3.3.2 Transformation

The base section section i END d1 ::: dn is semantically equivalent to the inheriting section that inherits from no

parents (bar prelude).

section i END d1 ::: dn =) section i parents END d1 ::: dn

C.4 Paragraph

C.4.1 Introduction

A Paragraph can introduce new names into the models, and can constrain the values associated with names. A

Paragraph can be any of given types, axiomatic description, schema de�nition, generic axiomatic description,

generic schema de�nition, horizontal de�nition, generic horizontal de�nition, generic operator de�nition, free

type, conjecture, generic conjecture, or operator template.

C.4.2 Given types

C.4.2.1 Syntax

Paragraph = [-tok , NAME , f ;-tok , NAME g , ]-tok , END

j ...

;

C.4.2.2 Type

� `D [i1; :::; in] END o

o [i1 : P(GIVEN i1); :::; in : P(GIVEN in)]
(# fi1; :::; ing = n)

In a given types paragraph, the annotation of the paragraph is a signature associating the given type names with

set types. There shall be no duplication of names within a given types paragraph.

C.4.2.3 Semantics

The given types paragraph [i1; :::; in] END introduces unconstrained global names.

[[ [i1; :::; in] END ]]
D

= fM : Model ; w1; :::; wn : W

� M 7! M [ fi1 7! w1; :::; in 7! wng
[ fdecor ~ i1 7! w1; :::; decor ~ in 7! wngg

It relates a model M to that model extended with associations between the names of the given types and semantic

values chosen to represent their carrier sets. Associations for names decorated with the reserved stroke ~ are also

introduced, so that references to them from given types (16.2.6.1) can avoid being captured.
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C.4.3 Axiomatic description

C.4.3.1 Syntax

Paragraph = ...

j AX , SchemaText , END

j ...

;

C.4.3.2 Type

� `E e o

o P[�]

� `D AX e END o

o [�]

In an axiomatic description paragraph AX e END, the expression e shall be a schema. The annotation of the

paragraph is the signature of that schema.

C.4.3.3 Semantics

The axiomatic description paragraph AX e END introduces global names and constraints on their values.

[[ AX e END ]]
D

= fM : Model ; t : W j t 2 [[ e ]]
E

M � M 7! M [ tg

It relates a model M to that model extended with a binding t of the schema that is the value of e in model M.

C.4.4 Schema de�nition

C.4.4.1 Syntax

Paragraph = ...
j SCH , NAME , SchemaText , END

j ...
;

C.4.4.2 Transformation

The schema de�nition paragraph SCH i t END introduces the global name i, associating it with the schema that

is the value of t.

SCH i t END =) AX [i == t] END

The paragraph is semantically equivalent to the axiomatic description paragraph whose sole declaration associates

the schema's name with the expression resulting from syntactic transformation of the schema text.

C.4.5 Generic axiomatic description

C.4.5.1 Syntax

Paragraph = ...

j GENAX , [-tok , Formals , ]-tok , SchemaText , END

j ...

;
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C.4.5.2 Type

� � fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in)g `E e o

o P[�]

� `D GENAX [i1; :::; in] e END o

o [� j : dom � � [i1; :::; in](� j)]
(# fi1; :::; ing = n)

In a generic axiomatic description paragraph GENAX [i1; :::; in] e END, the expression e is typechecked, in an

environment overridden by the generic parameters, and shall be a schema. The annotation of the paragraph is

formed from the signature of that schema, having the same names, but associated with types that are generic.

There shall be no duplication of names within the generic parameters of a generic axiomatic description paragraph.

C.4.5.3 Semantics

The generic axiomatic description paragraph GENAX [i1; :::; in] e END introduces global names and constraints on

their values, with generic parameters that have to be instantiated (by sets) whenever those names are referenced.

[[ GENAX [i1; :::; in] (e o

o P[j1 : �1; :::; jm : �m]) END ]]
D

=

fM : Model ; u : W ! W

j 8 w1; :::; wn : W � 9 w : W �
u (w1; :::; wn ) 2 w

^ (M � fi1 7! w1; :::; in 7! wng [ fdecor � i1 7! w1; :::; decor � in 7! wng) 7! w 2 [[ e ]]
E

�M 7! M [ � y : fj1; :::; jmg � � x : dom u � u x yg
Given a model M and generic argument sets w1; :::; wn , the semantic value of the schema e in that model

overridden by the association of the generic parameter names with those sets is w . All combinations of generic
argument sets are considered. The function u maps the generic argument sets to a binding in the schema w .
The paragraph relates the model M to that model extended with the binding that associates the names of the

schema e (namely j1; :::; jm) with the corresponding value in the binding resulting from application of u to

arbitrary instantiating sets x . Associations for names decorated with the reserved stroke � are also introduced

whilst determining the semantic value of e, so that references to them from generic types (16.2.6.2) can avoid

being captured.

C.4.6 Generic schema de�nition

C.4.6.1 Syntax

Paragraph = ...

j GENSCH , NAME , [-tok , Formals , ]-tok , SchemaText , END

j ...

;

C.4.6.2 Transformation

The generic schema de�nition paragraph GENSCH i [i1; :::; in] t END can be instantiated to produce a schema

de�nition paragraph.

GENSCH i [i1; :::; in] t END =) GENAX [i1; :::; in] [i == t] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters and

whose sole declaration associates the schema's name with the expression resulting from syntactic transformation

of the schema text.
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C.4.7 Horizontal de�nition

C.4.7.1 Syntax

Paragraph = ...
j DeclName , == , Expression , END

j ...
;

C.4.7.2 Transformation

The horizontal de�nition paragraph i == e END introduces the global name i, associating with it the value of e.

i == e END =) AX [i == e] END

It is semantically equivalent to the axiomatic description paragraph that introduces the same single declaration.

C.4.8 Generic horizontal de�nition

C.4.8.1 Syntax

Paragraph = ...

j NAME , [-tok , Formals , ]-tok , == , Expression , END

j ...

;

C.4.8.2 Transformation

The generic horizontal de�nition paragraph i [i1; :::; in] == e END can be instantiated to produce a horizontal

de�nition paragraph.

i [i1; :::; in] == e END =) GENAX [i1; :::; in] [i == e] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters

and that introduces the same single declaration.

C.4.9 Generic operator de�nition

C.4.9.1 Syntax

Paragraph = ...

j GenName , == , Expression , END

j ...
;

GenName = PrefixGenName

j PostfixGenName

j InfixGenName

j NofixGenName

;

PrefixGenName = PRE , NAME

j L , f NAME , ( ES j SS ) g , NAME , ( ERE j SRE ) , NAME

;
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PostfixGenName = NAME , POST

j NAME , EL , f NAME , ( ES j SS ) g , NAME , ( ER j SR )

;

InfixGenName = NAME , I , NAME

j NAME , EL , f NAME , ( ES j SS ) g , NAME , ( ERE j SRE ) , NAME

;

NofixGenName = L , f NAME , ( ES j SS ) g , NAME , ( ER j SR ) ;

C.4.9.2 Transformation

All generic names are transformed to juxtapositions of NAMEs and generic parameter lists. This causes the generic

operator de�nition paragraphs in which they appear to become generic horizontal de�nition paragraphs, and thus

be amenable to further syntactic transformation.

C.4.9.3 PrefixGenName

pre i =) pre1 [i]

ln i1 ess ::: in�2 ess in�1 ere in =) ln1ess:::1ess1ere1 [i1; :::; in�2; in�1; in]

ln i1 ess ::: in�2 ess in�1 sre in =) ln1ess:::1ess1sre1 [i1; :::; in�2; in�1; in]

C.4.9.4 PostfixGenName

i post =) 1post [i]

i1el i2 ess ::: in�1 ess in er =) 1el1ess:::1ess1er [i1; i2; :::; in�1; in]

i1el i2 ess ::: in�1 ess in sr =) 1el1ess:::1ess1sr [i1; i2; :::; in�1; in]

C.4.9.5 InfixGenName

i1in i2 =) 1in1 [i1; i2]

i1el i2 ess ::: in�2 ess in�1 ere in =) 1el1ess:::1ess1ere1 [i1; i2; :::; in�2; in�1; in]

i1el i2 ess ::: in�2 ess in�1 sre in =) 1el1ess:::1ess1sre1 [i1; i2; :::; in�2; in�1; in]

C.4.9.6 NofixGenName

ln i1 ess ::: in�1 ess in er =) ln1ess:::1ess1er [i1; :::; in�1; in]

ln i1 ess ::: in�1 ess in sr =) ln1ess:::1ess1sr [i1; :::; in�1; in]
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C.4.10 Free type

C.4.10.1 Syntax

Paragraph = ...

j Freetype , f & , Freetype g , END
j ...

;

Freetype = NAME , ::= , Branch , f j-tok , Branch g ;
Branch = DeclName , [ hh , Expression , ii ] ;
C.4.10.2 Transformation

The transformation of free type paragraphs is done in two stages. First, the branches are permuted to bring

elements to the front and injections to the rear.

::: j ghheii j h j ::: =) ::: j h j ghheii j :::

Exhaustive application of this syntactic transformation rule e�ects a sort.

The second stage requires implicit generic instantiation expressions to have been �lled in, which is done during

typechecking. Hence that second stage is delayed until after typechecking, where it appears in the form of a

semantic transformation rule (section 15.2.3).

C.4.10.3 Type

�0 `E e1 1
o

o P �1 1 ::: �0 `E e1n1
o

o P �1 n1
...

�0 `E er 1
o

o P �r 1 ::: �0 `E er nr
o

o P �r nr

� `D d o

o [�]

0
BBB@

# ff1; h1 1; :::; h1m1
; g1 1; :::; g1n1 ;

...;

fr; hr 1; :::; hrmr
; gr 1; :::; gr nrg

= r +m1 + :::+mr + n1 + :::+ nr

1
CCCA

where �0 = � � ff1 7! P f1; :::; fr 7! P frg
and d = f1 ::= h1 1 j ::: j h1m1

j g1 1hhe1 1ii j ::: j g1n1hhe1 n1ii
& ::: &

fr ::= hr 1 j ::: j hrmr
j gr 1hher 1ii j ::: j gr nrhher nrii END

and � = f1 : Pf1; h1 1 : f1; :::; h1m1
: f1; g1 1 : P(�1 1 � f1); :::; g1n1 : P(�1 n1 � f1)

; :::;

fr : P fr; hr 1 : fr; :::; hrmr
: fr; gr 1 : P(�r 1 � fr); :::; gr nr : P(�r nr � fr)

In a free type paragraph d, as expanded in the second local de�nition, the expressions representing the domains

of the injections are typechecked in an environment overridden by the names of the free types, and shall all be

sets. The annotation of the paragraph is the signature whose names are those of all the free types, the elements,

and the injections, each associated with the relevant type. There shall be no duplication of names amongst the

free types, elements and injections of a free type paragraph.

C.4.10.4 Semantics

A free type paragraph is semantically equivalent to the sequence of given type paragraph and axiomatic de�nition

paragraph de�ned here.

f1 ::= h1 1 j ::: j h1m1
j g1 1hhe1 1ii j ::: j g1n1hhe1 n1ii

& ::: &

fr ::= hr 1 j ::: j hrmr
j gr 1hher 1ii j ::: j gr nrhher nrii

118 FCD typeset August 24, 1999



Z Notation:1999(E) C Organisation by concrete syntax production

=)
[f1; :::; fr]

END

AX

h1 1; :::; h1m1
: f1

...

hr 1; :::; hrmr
: fr

g11 : P(e1 1 � f1); :::; g1n1 : P(e1 n1 � f1)
...

gr 1 : P(er 1 � fr); :::; gr nr : P(er nr � fr)

j
8 u : e1 1 � 91 x : g1 1 � x : 1 = u ^ ::: ^ 8 u : e1n1 � 91 x : g1n1 � x : 1 = u
... ^
8 u : er 1 � 91 x : gr 1 � x : 1 = u ^ ::: ^ 8 u : er nr � 91 x : gr nr � x : 1 = u

8 u; v : e1 1 j g1 1u = g1 1v � u = v ^ ::: ^ 8 u; v : e1n1 j g1n1u = g1n1v � u = v
... ^
8 u; v : er 1 j gr 1u = gr 1v � u = v ^ ::: ^ 8 u; v : er nr j gr nru = gr nrv � u = v

8 b1; b2 : N �
(8 w : f1 j

(b1 = 1 ^ w = h1 1 _ ::: _ b1 = m1 ^ w = h1m1
_

b1 = m1 + 1 ^ w 2 fx : g11 � x : 2g _ ::: _ b1 = m1 + n1 ^ w 2 fx : g1n1 � x : 2g)
^ (b2 = 1 ^ w = h1 1 _ ::: _ b2 = m1 ^ w = h1m1

_
b2 = m1 + 1 ^ w 2 fx : g11 � x : 2g _ ::: _ b2 = m1 + n1 ^ w 2 fx : g1n1 � x : 2g) �

b1 = b2) ^
... ^
(8 w : fr j

(b1 = 1 ^ w = hr 1 _ ::: _ b1 = mr ^ w = hrmr
_

b1 = mr + 1 ^ w 2 fx : gr 1 � x : 2g _ ::: _ b1 = mr + nr ^ w 2 fx : gr nr � x : 2g)
^ (b2 = 1 ^ w = hr 1 _ ::: _ b2 = mr ^ w = hrmr

_
b2 = mr + 1 ^ w 2 fx : gr 1 � x : 2g _ ::: _ b2 = mr + nr ^ w 2 fx : gr nr � x : 2g) �

b1 = b2)

8 w1 : Pf1; :::; wr : Pfr j
h1 1 2 w1 ^ ::: ^ h1m1

2 w1 ^
... ^
hr 1 2 wr ^ ::: ^ hrmr

2 wr ^
(8 y : (� f1 == w1; :::; fr == wr � e1 1) � g1 1y 2 w1) ^
::: ^ (8 y : (� f1 == w1; :::; fr == wr � e1n1) � g1n1y 2 w1) ^
... ^
(8 y : (� f1 == w1; :::; fr == wr � er 1) � gr 1y 2 wr) ^
::: ^ (8 y : (� f1 == w1; :::; fr == wr � er nr ) � gr nry 2 wr) �

w1 = f1 ^ ::: ^ wr = fr

END

The type names are introduced by the given types paragraph. The elements are declared as members of their cor-

responding free types. The injections are declared as functions from values in their domains to their corresponding
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free type.

The �rst of the four blank-line separated predicates is the total functionality property. It ensures that for every

injection, the injection is functional at every value in its domain.

The second of the four blank-line separated predicates is the injectivity property. It ensures that for every

injection, any pair of values in its domain for which the injection returns the same value shall be a pair of equal

values (hence the name injection).

The third of the four blank-line separated predicates is the disjointness property. It ensures that for every free

type, every pair of values of the free type are equal only if they are the same element or are returned by application

of the same injection to equal values.

The fourth of the four blank-line separated predicates is the induction property. It ensures that for every free

type, its members are its elements, the values returned by its injections, and nothing else.

The generated � expressions in the induction property are intended to e�ect substitutions of all references to the

free type names, including any such references within generic instantiation lists in the e expressions.

NOTE 1 That is why this is a semantic transformation not a syntactic one: all implicit generic instantiations shall

have been made explicit before it is applied.

NOTE 2 The right-hand side of this transformation could have been expressed using the following notation from

the mathematical toolkit, but for the desire to de�ne the core language separately from the mathematical toolkit.

[f1; :::; fr]

END

AX

h1 1; :::; h1m1
: f1

...

hr 1; :::; hr mr
: fr

g1 1 : e1 1� f1; :::; g1n1 : e1n1 � f1
...

gr 1 : er 1� fr; :::; gr nr : er nr � fr

j

disjointhfh1 1g; :::; fh1m1
g; ran g1 1; :::; ran g1n1i

...

disjointhfhr 1g; :::; fhr mr
g; ran gr 1; :::; ran gr nr i

8 w1 : Pf1; :::; wr : Pfr j

fh1 1; :::; h1m1
g [ g1 1(j � f1 == w1; :::; fr == wr � e1 1 j)

[::: [ g1n1(j � f1 == w1; :::; fr == wr � e1n1 j) � w1 ^
... ^

fhr 1; :::; hrmr
g [ gr 1(j � f1 == w1; :::; fr == wr � er 1 j)

[::: [ gr nr (j � f1 == w1; :::; fr == wr � er nr j) � wr �

w1 = f1 ^ ::: ^ wr = fr

END
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C.4.11 Conjecture

C.4.11.1 Syntax

Paragraph = ...

j j=? , Predicate , END
j ...

;

C.4.11.2 Type

� `P p

� `D j=? p END o

o [ ]

In a conjecture paragraph j=? p END, the predicate p shall be well-typed. The annotation of the paragraph is the

empty signature.

C.4.11.3 Semantics

The conjecture paragraph j=? p END expresses a property that may logically follow from the speci�cation. It

may be a starting point for a proof.

[[ j=? p END ]]
D

= id Model

It relates a model to itself: the truth of p in a model does not a�ect the meaning of the speci�cation.

C.4.12 Generic conjecture

C.4.12.1 Syntax

Paragraph = ...
j [-tok , Formals , ]-tok , j=? , Predicate , END
j ...
;

C.4.12.2 Type

� � fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in)g `P p

� `D [i1; :::; in] j=? p END o

o [ ]
(# fi1; :::; ing = n)

In a generic conjecture paragraph [i1; :::; in] j=? p END, the predicate p shall be well-typed in an environment

overridden by the generic parameters. The annotation of the paragraph is the empty signature. There shall be

no duplication of names within the generic parameters of a generic conjecture paragraph.

C.4.12.3 Semantics

The generic conjecture paragraph [i1; :::; in] j=? p END expresses a generic property that may logically follow from

the speci�cation. It may be a starting point for a proof.

[[ [i1; :::; in] j=? p END ]]
D

= id Model

It relates a model to itself: the truth of p in a model does not a�ect the meaning of the speci�cation.
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C.4.13 Operator template

An operator template has only syntactic signi�cance: it noti�es the reader to treat all subsequent occurrences in

this section of the words in the template, with whatever strokes they are decorated, as particular pre�x, in�x,

post�x or no�x names.

C.4.13.1 Syntax

Paragraph = ...
j OperatorTemplate , END

;

OperatorTemplate = relation , Template

j function , CategoryTemplate

j generic , CategoryTemplate

;

CategoryTemplate = Prec , PrefixTemplate

j Prec , PostfixTemplate

j Prec , Assoc , InfixTemplate

j NofixTemplate

;

Prec = NUMBER ;

Assoc = leftassoc

j rightassoc

;

Template = PrefixTemplate

j PostfixTemplate

j InfixTemplate

j NofixTemplate

;

PrefixTemplate = (-tok , NAME , f ( j ; ; ) , NAME g , , )-tok ;

PostfixTemplate = (-tok , , NAME , f ( j ; ; ) , NAME g , )-tok ;

InfixTemplate = (-tok , , NAME , f ( j ; ; ) , NAME g , , )-tok ;

NofixTemplate = (-tok , NAME , f ( j ; ; ) , NAME g , )-tok ;

C.5 Predicate

C.5.1 Introduction

A Predicate expresses constraints between the values associated with names. A Predicate can be any of uni-

versal quanti�cation, existential quanti�cation, unique existential quanti�cation, newline conjunction, semicolon

conjunction, equivalence, implication, disjunction, conjunction, negation, relation operator application, member-

ship, schema predicate, truth, falsity, or parenthesized predicate.
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C.5.2 Universal quanti�cation

C.5.2.1 Syntax

Predicate = 8 , SchemaText , � , Predicate
j ...
;

C.5.2.2 Type

� `E e o

o P[�] � � � `P p

� `P 8 e � p
In a universal quanti�cation predicate 8 e � p, expression e shall be a schema, and predicate p shall be well-typed

in the environment overridden by the signature of schema e.

C.5.2.3 Semantics

The universal quanti�cation predicate 8 e � p is true if and only if predicate p is true for all bindings of the

schema e.

[[ 8 e � p ]]
P

= fM : Model j 8 t : [[ e ]]
E

M �M � t 2 [[ p ]]
P � Mg

In terms of the semantic universe, it is true in those models for which p is true in that model overridden by all

bindings in the semantic value of e, and is false otherwise.

C.5.3 Existential quanti�cation

C.5.3.1 Syntax

Predicate = ...

j 9 , SchemaText , � , Predicate
j ...
;

C.5.3.2 Transformation

The existential quanti�cation predicate 9 t � p is true if and only if p is true for at least one value of t.

9 t � p =) : 8 t � : p

It is semantically equivalent to p being false for not all values of t.

C.5.4 Unique existential quanti�cation

C.5.4.1 Syntax

Predicate = ...
j 91 , SchemaText , � , Predicate
j ...
;

C.5.4.2 Type

� `E e o

o P[�] � � � `P p

� `P 91 e � p
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In a unique existential quanti�cation predicate 91 e � p, expression e shall be a schema, and predicate p shall be

well-typed in the environment overridden by the signature of schema e.

C.5.4.3 Semantics

The unique existential quanti�cation predicate 91 e � p is true if and only if there is exactly one value for e for

which p is true.

91 e � p =) 9 e � p ^ (8 [e j p]1 � � e = � e
1)

It is semantically equivalent to there existing at least one value for e for which p is true and all those values for

which it is true being the same.

C.5.5 Newline conjunction

C.5.5.1 Syntax

Predicate = ...

j Predicate , NL , Predicate

j ...
;

C.5.5.2 Transformation

The newline conjunction predicate p1 NL p2 is true if and only if both its predicates are true.

p1 NL p2 =) p1 ^ p2

It is semantically equivalent to the conjunction predicate p1 ^ p2.

C.5.6 Semicolon conjunction

C.5.6.1 Syntax

Predicate = ...
j Predicate , ; -tok , Predicate

j ...
;

C.5.6.2 Transformation

The semicolon conjunction predicate p1; p2 is true if and only if both its predicates are true.

p1; p2 =) p1 ^ p2

It is semantically equivalent to the conjunction predicate p1 ^ p2.

C.5.7 Equivalence

C.5.7.1 Syntax

Predicate = ...
j Predicate , , , Predicate

j ...

;
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C.5.7.2 Transformation

The equivalence predicate p1 , p2 is true if and only if both p1 and p2 are true or neither is true.

p1 , p2 =) (p1 ) p2) ^ (p2 ) p1)

It is semantically equivalent to each of p1 and p2 being true if the other is true.

C.5.8 Implication

C.5.8.1 Syntax

Predicate = ...

j Predicate , ) , Predicate

j ...

;

C.5.8.2 Transformation

The implication predicate p1 ) p2 is true if and only if p2 is true if p1 is true.

p1 ) p2 =) : p1 _ p2

It is semantically equivalent to p1 being false disjoined with p2 being true.

C.5.9 Disjunction

C.5.9.1 Syntax

Predicate = ...
j Predicate , _ , Predicate

j ...

;

C.5.9.2 Transformation

The disjunction predicate p1 _ p2 is true if and only if at least one of p1 and p2 is true.

p1 _ p2 =) : (: p1 ^ : p2)

It is semantically equivalent to not both of them being false.

C.5.10 Conjunction

C.5.10.1 Syntax

Predicate = ...
j Predicate , ^ , Predicate

j ...
;
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C.5.10.2 Type

� `P p1 � `P p2

� `P p1 ^ p2

A conjunction predicate p1 ^ p2 is well-typed if and only if predicates p1 and p2 are well-typed.

C.5.10.3 Semantics

The conjunction predicate p1 ^ p2 is true if and only if p1 and p2 are true.

[[ p1 ^ p2 ]]
P

= [[ p1 ]]
P \ [[ p2 ]]

P

In terms of the semantic universe, it is true in those models in which both p1 and p2 are true, and is false
otherwise.

C.5.11 Negation

C.5.11.1 Syntax

Predicate = ...
j : , Predicate

j ...
;

C.5.11.2 Type

� `P p

� `P : p

A negation predicate : p is well-typed if and only if predicate p is well-typed.

C.5.11.3 Semantics

The negation predicate : p is true if and only if p is false.

[[ : p ]]
P

= Model n [[ p ]]
P

In terms of the semantic universe, it is true in all models except those in which p is true.

C.5.12 Relation operator application

C.5.12.1 Syntax

Predicate = ...

j Relation

j ...

;

Relation = PrefixRel

j PostfixRel

j InfixRel

j NofixRel

;
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PrefixRel = PREP , Expression

j LP , ExpSep , ( Expression , EREP j ExpressionList , SREP ) , Expression

;

PostfixRel = Expression , POSTP

j Expression , ELP , ExpSep , ( Expression , ERP j ExpressionList , SRP )

;

InfixRel = Expression , ( 2 j =-tok j IP ) , Expression , f ( 2 j =-tok j IP ) , Expression g
j Expression , ELP , ExpSep ,

( Expression , EREP j ExpressionList , SREP ) , Expression

;

NofixRel = LP , ExpSep , ( Expression , ERP j ExpressionList , SRP ) ;

C.5.12.2 Transformation

All relation operator applications are transformed to annotated membership predicates.

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.

None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is speci�ed, not

the ExpressionList SS case. Where the latter case occurs in a speci�cation, the ExpressionList shall be

transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that speci�ed for the

former case can be performed, di�ering only in that a ss appears in the relation name in place of an es.

C.5.12.3 PrefixRel

prep e =) e 2 prep1

lp e1 es ::: en�2 es en�1 erep en =) (e1; :::; en�2; en�1; en) 2 lp1es:::1es1erep1

lp e1 es ::: en�2 es sen�1 srep en =) (e1; :::; en�2; sen�1; en) 2 lp1es:::1es1srep1

C.5.12.4 PostfixRel

e postp =) e 21postp
e1 elp e2 es ::: en�1 es en erp =) (e1; e2; :::; en�1; en) 21elp1es:::1es1erp
e1 elp e2 es ::: en�1 es sen srp =) (e1; e2; :::; en�1; sen) 21elp1es:::1es1srp

C.5.12.5 InfixRel

e1 ip
1
e2 ip

2
e3 ::: =) e1 ip

1
e2

o

o �1 ^ e2
o

o �1 ip
2
e3

o

o �2 :::

The chained relation e1 ip
1
e2 ip

2
e3 ::: is semantically equivalent to a conjunction of relational predicates, with

the constraint that duplicated expressions be of the same type.

e1 = e2 =) e1 2 fe2g
e1 ip e2 =) (e1; e2) 2 ( ip )
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ip in the above transformation is excluded from being 2 or =, whereas ip
1
; ip

2
; ::: can be 2 or =.

e1 elp e2 es ::: en�2 es en�1 erep en =) (e1; e2; :::; en�2; en�1; en) 21elp1es:::1es1erep1
e1 elp e2 es ::: en�2 es sen�1 srep en =) (e1; e2; :::; en�2; sen�1; en) 21elp1es:::1es1srep1

C.5.12.6 NofixRel

lp e1 es ::: en�1 es en erp =) (e1; :::; en�1; en) 2 lp1es:::1es1erp

lp e1 es ::: en�1 es sen srp =) (e1; :::; en�1; sen) 2 lp1es:::1es1srp

C.5.12.7 Type

� `E e1
o

o � � `E e2
o

o P �

� `P e1 2 e2

In a membership predicate e1 2 e2, expression e2 shall be a set, and expression e1 shall be of the same type as

the members of set e2.

C.5.12.8 Semantics

The membership predicate e1 2 e2 is true if and only if the value of e1 is in the set that is the value of e2.

[[ e1 2 e2 ]]
P

= fM : Model j [[ e1 ]]
E

M 2 [[ e2 ]]
E

M �Mg

In terms of the semantic universe, it is true in those models in which the semantic value of e1 is in the semantic

value of e2, and is false otherwise.

C.5.13 Schema

C.5.13.1 Syntax

Predicate = ...
j Expression

j ...
;

C.5.13.2 Transformation

The schema predicate e is true if and only if the binding of the names in the signature of schema e satis�es the

constraints of that schema.

e =) � e 2 e

It is semantically equivalent to the binding constructed by � e being a member of the set denoted by schema e.
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C.5.14 Truth

C.5.14.1 Syntax

Predicate = ...
j true

j ...
;

C.5.14.2 Type

� `P true

A truth predicate is always well-typed.

C.5.14.3 Semantics

A truth predicate is always true.

[[ true ]]
P

= Model

In terms of the semantic universe, it is true in all models.

C.5.15 Falsity

C.5.15.1 Syntax

Predicate = ...

j false

j ...

;

C.5.15.2 Transformation

The falsity predicate false is never true.

false =) : true

It is semantically equivalent to the negation of true.

C.5.16 Parenthesized predicate

C.5.16.1 Syntax

Predicate = ...
j (-tok , Predicate , )-tok

;

C.5.16.2 Transformation

The parenthesized predicate (p) is true if and only if p is true.

(p) =) p

It is semantically equivalent to p.
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C.6 Expression

C.6.1 Introduction

An Expression denotes a value in terms of the names with which values are associated by a model. An

Expression can be any of schema universal quanti�cation, schema existential quanti�cation, schema unique ex-

istential quanti�cation, function construction, de�nite description, substitution expression, schema equivalence,

schema implication, schema disjunction, schema conjunction, schema negation, conditional, schema composition,

schema piping, schema hiding, schema projection, schema precondition, Cartesian product, powerset, function

or generic operator application, application, schema decoration, schema renaming, binding selection, tuple se-

lection, binding construction, reference, generic instantiation, number literal, set extension, set comprehension,

characteristic set comprehension, schema construction, binding extension, tuple extension, characteristic de�nite

description, or parenthesized expression.

C.6.2 Schema universal quanti�cation

C.6.2.1 Syntax

Expression = 8 , SchemaText , � , Expression
j ...
;

C.6.2.2 Type

� `E e1
o

o P[�1] � � �1 `E e2
o

o P[�2]

� `E 8 e1 � e2 o

o P[dom �1 �C �2]
(�1 � �2)

In a schema universal quanti�cation expression 8 e1 � e2, expression e1 shall be a schema, and expression e2, in

an environment overridden by the signature of schema e1, shall also be a schema, and the signatures of these two

schemas shall be compatible. The type of the whole expression is that of a schema whose signature is computed

by subtracting from the signature of e2 those pairs whose names are in the signature of e1.

C.6.2.3 Semantics

The value of the schema universal quanti�cation expression 8 e1 � e2 is the set of bindings of schema e2 restricted

to exclude names that are in the signature of e1, for all bindings of the schema e1.

[[ 8 e1 � e2 o

o P � ]]
E

= � M : Model � ft2 : [[ � ]]TM j 8 t1 : [[ e1 ]]
E

M � t1 [ t2 2 [[ e2 ]]
E

(M � t1) � t2g

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

in the semantic values of the carrier set of the type of the entire schema universal quanti�cation expression in

M, for which the union of the bindings (sets of pairs) in e1 and in the whole expression is in the set that is the

semantic value of e2 in the model M overridden with the binding in e1.

C.6.3 Schema existential quanti�cation

C.6.3.1 Syntax

Expression = ...
j 9 , SchemaText , � , Expression
j ...
;
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C.6.3.2 Transformation

The value of the schema existential quanti�cation expression 9 t � e is the set of bindings of schema e restricted

to exclude names that are in the signature of t, for at least one binding of the schema t.

9 t � e =) : 8 t � : e

It is semantically equivalent to the result of applying de Morgan's law.

C.6.4 Schema unique existential quanti�cation

C.6.4.1 Syntax

Expression = ...
j 91 , SchemaText , � , Expression
j ...
;

C.6.4.2 Type

� `E e1
o

o P[�1] � � �1 `E e2
o

o P[�2]

� `E 91 e1 � e2 o

o P[dom �1 �C �2]
(�1 � �2)

In a schema unique existential quanti�cation expression 91 e1 � e2, expression e1 shall be a schema, and expression

e2, in an environment overridden by the signature of schema e1, shall also be a schema, and the signatures of

these two schemas shall be compatible. The type of the whole expression is that of a schema whose signature is

computed by subtracting from the signature of e2 those pairs whose names are in the signature of e1.

C.6.4.3 Semantics

The value of the schema unique existential quanti�cation expression 91 e1 � e2 is the set of bindings of schema

e2 restricted to exclude names that are in the signature of e1, for at least one binding of the schema e1.

91 e1 � e2 =) 9 e1 � e2 ^ (8 [e1 j e2]1 � � e1 = � e1
1 )

It is semantically equivalent to a schema existential quanti�cation expression, analogous to the unique existential

predicate transformation.

C.6.5 Function construction

C.6.5.1 Syntax

Expression = ...
j � , SchemaText , � , Expression
j ...
;

C.6.5.2 Transformation

The value of the function construction expression � t � e is the function associating values of the characteristic

tuple of t with corresponding values of e.

� t � e =) ft � (chartuple t; e)g
It is semantically equivalent to the set of pairs representation of that function.
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C.6.6 De�nite description

C.6.6.1 Syntax

Expression = ...

j � , SchemaText , � , Expression
j ...

;

C.6.6.2 Type

� `E e1
o

o P[�] � � � `E e2
o

o �

� `E � e1 � e2 o

o �

In a de�nite description expression � e1 � e2, expression e1 shall be a schema. The type of the whole expression

is the type of expression e2, as determined in an environment overridden by the signature of schema e1.

C.6.6.3 Semantics

The value of the de�nite description expression � e1 � e2 is the unique value of e2 that arises whichever binding
is chosen from the set that is the value of schema e1.

fM : Model ; t1 : W
j t1 2 [[ e1 ]]

E

M
^ (8 t3 : [[ e1 ]]

E

M � [[ e2 ]]E (M � t3) = [[ e2 ]]
E

(M � t1))
� M 7! [[ e2 ]]

E

(M � t1)g � [[ � e1 � e2 ]]E

In terms of the semantic universe, its semantic value, given a model M in which the value of e2 in that model

overridden by a binding of the schema e1 is the same regardless of which binding is chosen, is that value of e2.

In other models, it has a semantic value, but this loose de�nition of the semantics does not say what it is.

C.6.7 Substitution expression

C.6.7.1 Syntax

Expression = ...

j let , DeclName , == , Expression , f ; -tok , DeclName , == , Expression g ,
� , Expression

j ...

;

C.6.7.2 Transformation

The value of the substitution expression let i1 == e1; :::; in == en � e is the value of e when all of its references

to the names have been substituted by the values of the corresponding expressions.

let i1 == e1; :::; in == en � e =) � i1 == e1; :::; in == in � e

It is semantically equivalent to the similar de�nite description expression.
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C.6.8 Schema equivalence

C.6.8.1 Syntax

Expression = ...

j Expression , , , Expression

j ...

;

C.6.8.2 Transformation

The value of the schema equivalence expression e1 , e2 is that schema whose signature is the union of those of

schemas e1 and e2, and whose bindings are those whose relevant restrictions are either both or neither in e1 and

e2.

e1 , e2 =) (e1 ) e2) ^ (e2 ) e1)

It is semantically equivalent to a schema conjunction.

C.6.9 Schema implication

C.6.9.1 Syntax

Expression = ...

j Expression , ) , Expression

j ...

;

C.6.9.2 Transformation

The value of the schema implication expression e1 ) e2 is that schema whose signature is the union of those of

schemas e1 and e2, and whose bindings are those whose restriction to the signature of e2 is in the value of e2 if

its restriction to the signature of e1 is in the value of e1.

e1 ) e2 =) : e1 _ e2

It is semantically equivalent to a schema disjunction.

C.6.10 Schema disjunction

C.6.10.1 Syntax

Expression = ...
j Expression , _ , Expression

j ...
;

C.6.10.2 Transformation

The value of the schema disjunction expression e1 _ e2 is that schema whose signature is the union of those of

schemas e1 and e2, and whose bindings are those whose restriction to the signature of e1 is in the value of e1 or

its restriction to the signature of e2 is in the value of e2.

e1 _ e2 =) : (: e1 ^ : e2)
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It is semantically equivalent to a schema negation.

C.6.11 Schema conjunction

C.6.11.1 Syntax

Expression = ...
j Expression , ^ , Expression

j ...
;

C.6.11.2 Type

� `E e1
o

o P[�1] � `E e2
o

o P[�2]

� `E e1 ^ e2
o

o P[�1 [ �2]
(�1 � �2)

In a schema conjunction expression e1 ^ e2, expressions e1 and e2 shall be schemas, and their signatures shall

be compatible. The type of the whole expression is that of the schema whose signature is the union of those of

expressions e1 and e2.

C.6.11.3 Semantics

The value of the schema conjunction expression e1 ^ e2 is the schema resulting from merging the signatures of

schemas e1 and e2 and conjoining their constraints.

[[ e1 ^ e2
o

o P � ]]
E

= � M : Model � ft : [[ � ]]TM; t1 : [[ e1 ]]
E

M; t2 : [[ e2 ]]
E

M j t1 [ t2 = t � tg

In terms of the semantic universe, its semantic value, given a model M, is the set of the unions of the bindings

(sets of pairs) in the semantic values of e1 and e2 in M.

C.6.12 Schema negation

C.6.12.1 Syntax

Expression = ...
j : , Expression

j ...
;

C.6.12.2 Type

� `E e o

o P[�]

� `E : e o

o P[�]

In a schema negation expression : e, expression e shall be a schema. The type of the whole expression is the

same as the type of expression e.

C.6.12.3 Semantics

The value of the schema negation expression : e is that set of bindings that are of the same type as those in

schema e but which are not in schema e.

[[ : e o

o P � ]]
E

= � M : Model � ft : [[ � ]]TM j : t 2 [[ e ]]
E

M � tg
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In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

that are members of the semantic value of the carrier set of schema e in M such that those bindings are not

members of the semantic value of schema e in M.

C.6.13 Conditional

C.6.13.1 Syntax

Expression = ...
j if , Predicate , then , Expression , else , Expression

j ...
;

C.6.13.2 Transformation

The value of the conditional expression if p then e1 else e2 is the value of e1 if p is true, and is the value of e2 if

p is false.

if p then e1 else e2 =) � i : fe1; e2g j p ^ i = e1 _ : p ^ i = e2 � i

It is semantically equivalent to the de�nite description expression whose value is either that of e1 or that of e2
such that if p is true then it is e1 or if p is false then it is e2.

C.6.14 Schema composition

C.6.14.1 Syntax

Expression = ...

j Expression , o
9
, Expression

j ...

;

C.6.14.2 Type

� `E e1
o

o P[�1] � `E e2
o

o P[�2]

� `E e1
o

9
e2

o

o P[�3 [ �4]

�
�3 � �4

fi : match � i 7! �1(decor
0
i)g � fi : match � i 7! �2ig

�

where match = f i : dom �2 j decor 0
i 2 dom �1 ^ (8 j : NAME � : i = decor 0

j) � ig
and �3 = fi : match � decor 0

ig �C �1

and �4 = match �C �2

In a schema composition expression e1
o

9
e2, expressions e1 and e2 shall be schemas. Let match be the set

of unprimed names in schema e2 for which there are matching primed names in schema e1. Let �3 be the

signature formed from the components of e1 excluding the matched primed components. Let �4 be the signature

formed from the components of e2 excluding the matched unprimed components. Signatures �3 and �4 shall be

compatible. The types of the excluded matched pairs of components shall be the same. The type of the whole

expression is that of a schema whose signature is the union of �3 and �4.

NOTE 1 This notation would not be associative without the restriction concerning names being unprimed.

FCD typeset August 24, 1999 135



C Organisation by concrete syntax production Z Notation:1999(E)

C.6.14.3 Semantics

The value of the schema composition expression e1
o

9
e2 is that schema representing the operation of doing the

operations represented by schemas e1 and e2 in sequence.

(e1 o

o P[�1]) o9 (e2 o

o P[�2]) o

o P[�] =) let e3 == carrier [�1 n �];
e4 == carrier [�2 n �]
� let e1 == e4uniquely renamed

� 9 e
1 � (9 e3 � [e1; e1 j � e3 = � e

1])

^ (9 e4 � [e2; e1 j � e4 = � e
1])

It is semantically equivalent to the existential quanti�cation of the matched pairs of primed components of e1
and unprimed components of e2 (as given by the signatures determined by typechecking), with those matched

pairs being equated.

C.6.15 Schema piping

C.6.15.1 Syntax

Expression = ...

j Expression , >> , Expression

j ...

;

C.6.15.2 Type

� `E e1
o

o P[�1] � `E e2
o

o P[�2]

� `E e1 >> e2
o

o P[�3 [ �4]

�
�3 � �4

fi : match � i 7! �1(decor ! i)g � fi : match � i 7! �2(decor ? i)g
�

where match = f i : NAME j decor ! i 2 dom �1 ^ decor ? i 2 dom �2 ^ (8 j : NAME � : i = decor ! j) � ig
and �3 = fi : match � decor ! ig �C �1

and �4 = fi : match � decor ? ig �C �2

In a schema piping expression e1>>e2, expressions e1 and e2 shall be schemas. Let match be the set of unshrieked

names for which there are shrieked names in schema e1 matching queried names in schema e2. Let �3 be the

signature formed from the components of e1 excluding the matched shrieked components. Let �4 be the signature

formed from the components of e2 excluding the matched queried components. Signatures �3 and �4 shall be

compatible. The types of the excluded matched pairs of components shall be the same. The type of the whole

expression is that of a schema whose signature is the union of �3 and �4.

NOTE 1 This notation would not be associative without the restriction concerning names being unshrieked.

C.6.15.3 Semantics

The value of the schema piping expression e1 >> e2 is that schema representing the operation formed from the

two operations represented by schemas e1 and e2 with the outputs of e1 identi�ed with the inputs of e2.

(e1 o

o P[�1])>> (e2 o

o P[�2]) o

o P[�] =) let e3 == carrier [�1 n �];
e4 == carrier [�2 n �]
� let e1 == e4uniquely renamed

� 9 e
1 � (9 e3 � [e1; e1 j � e3 = � e

1])

^ (9 e4 � [e2; e1 j � e4 = � e
1])
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It is semantically equivalent to the existential quanti�cation of the matched pairs of shrieked components of e1
and queried components of e2 (as given by the signatures determined by typechecking), with those matched pairs

being equated.

C.6.16 Schema hiding

C.6.16.1 Syntax

Expression = ...

j Expression , n , (-tok , DeclName , f ;-tok , DeclName g , )-tok
j ...

;

C.6.16.2 Type

� `E e o

o P[�]

� `E e n (i1; :::; in) o

o P[fi1; :::; ing �C �]
(fi1; :::; img � dom �)

In a schema hiding expression e n (i1; :::; in), expression e shall be a schema, and the names shall all be in the

signature of that schema. The type of the whole expression is that of a schema whose signature is computed by

subtracting from the signature of expression e those pairs whose names are to be hidden.

C.6.16.3 Semantics

The value of the schema hiding expression e n (i1; :::; in) is that schema whose signature is that of schema e

minus the hidden names, and whose bindings have the same values as those in schema e.

(e o

o P[�]) n (i1; :::; in) =) 9 i1 : carrier (� i1); :::; in : carrier (� in) � e

It is semantically equivalent to the schema existential quanti�cation of the hidden names i1; :::; in from the schema

e.

C.6.17 Schema projection

C.6.17.1 Syntax

Expression = ...

j Expression , � , Expression
j ...

;

C.6.17.2 Transformation

The value of the schema projection expression e1 � e2 is the schema that is like the conjunction e1 ^ e2 but whose

signature is restricted to just that of schema e2.

e1 � e2 =) fe1; e2 � � e2g

It is semantically equivalent to that set of bindings of names in the signature of e2 to values that satisfy the

constraints of both e1 and e2.
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C.6.18 Schema precondition

C.6.18.1 Syntax

Expression = ...

j pre , Expression

j ...

;

C.6.18.2 Type

� `E e o

o P[�]

� `E pre e o

o P[fi; j : NAME j j 2 dom � ^ (j = decor 0
i _ j = decor ! i) � jg �C �]

In a schema precondition expression pre e, expression e shall be a schema. The type of the whole expression is

that of a schema whose signature is computed by subtracting from the signature of e those pairs whose names

have primed or shrieked decorations.

C.6.18.3 Semantics

The value of the schema precondition expression pre e is that schema which is like schema e but without its

primed and shrieked components.

pre(e o

o P[�1]) o

o P[�2] =) 9 carrier [�1 n �2] � e
It is semantically equivalent to the existential quanti�cation of the primed and shrieked components from the

schema e.

C.6.19 Cartesian product

C.6.19.1 Syntax

Expression = ...
j Expression , � , Expression , f � , Expression g
j ...
;

C.6.19.2 Transformation

The value of the Cartesian product expression e1� :::� en is the set of all tuples whose components are members

of the corresponding sets that are the values of its expressions.

e1 � :::� en =) fi1 : e1; :::; in : en � (i1; :::; in)g
It is semantically equivalent to the set comprehension expression that declares members of the sets and assembles

those members into tuples.

C.6.20 Function or generic operator application

C.6.20.1 Syntax

Expression = ...
j Application

j ...

;
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Application = PrefixApp

j PostfixApp

j InfixApp

j NofixApp

;

PrefixApp = PRE , Expression

j L , ExpSep , ( Expression , ERE j ExpressionList , SRE ) , Expression

;

PostfixApp = Expression , POST

j Expression , EL , ExpSep , ( Expression , ER j ExpressionList , SR )

;

InfixApp = Expression , I , Expression

j Expression , EL , ExpSep ,

( Expression , ERE j ExpressionList , SRE ) , Expression

;

NofixApp = L , ExpSep , ( Expression , ER j ExpressionList , SR ) ;

C.6.20.2 Transformation

All function operator applications are transformed to annotated application expressions.

All generic operator applications are transformed to annotated generic instantiation expressions.

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.

None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is speci�ed, not

the ExpressionList SS case. Where the latter case occurs in a speci�cation, the ExpressionList shall be

transformed by rule 12.2.12 to an expression, and thence a transformation analogous to that speci�ed for the

former case can be performed, di�ering only in that a ss appears in the function or generic name in place of an

es.

C.6.20.3 PrefixApp

pre e =) pre1e

ln e1 es ::: en�2 es en�1 ere en =) ln1es:::1es1ere1 (e1; :::; en�2; en�1; en)

ln e1 es ::: en�2 es sen�1 sre en =) ln1es:::1es1sre1 (e1; :::; en�2; sen�1; en)

P e =) P e

An application of the pre�x generic operator P (that speci�c PRE token) is transformed to a powerset phrase of

the annotated notation. Other applications of pre�x generic operators are transformed to generic instantiation

expressions.

pre e =) pre1 [e]

ln e1 es ::: en�2 es en�1 ere en =) ln1es:::1es1ere1 [e1; :::; en�2; en�1; en]

ln e1 es ::: en�2 es sen�1 sre en =) ln1es:::1es1sre1 [e1; :::; en�2; sen�1; en]
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C.6.20.4 PostfixApp

e post =) 1post e

e1 el e2 es ::: en�1 es en er =) 1el1es:::1es1er (e1; e2; :::; en�1; en)

e1 el e2 es ::: en�1 es sen sr =) 1el1es:::1es1sr (e1; e2; :::; en�1; sen)

e post =) 1post [e]

e1 el e2 es ::: en�1 es en er =) 1el1es:::1es1er [e1; e2; :::; en�1; en]

e1 el e2 es ::: en�1 es sen sr =) 1el1es:::1es1sr [e1; e2; :::; en�1; sen]

C.6.20.5 InfixApp

e1 in e2 =) 1in1 (e1; e2)

e1 el e2 es ::: en�2 es en�1 ere en =) 1el1es:::1es1ere1 (e1; e2; :::; en�2; en�1; en)

e1 el e2 es ::: en�2 es sen�1 sre en =) 1el1es:::1es1sre1 (e1; e2; :::; en�2; sen�1; en)

e1 in e2 =) 1in1 [e1; e2]

e1 el e2 es ::: en�2 es en�1 ere en =) 1el1es:::1es1ere1 [e1; e2; :::; en�2; en�1; en]

e1 el e2 es ::: en�2 es sen�1 sre en =) 1el1es:::1es1sre1 [e1; e2; :::; en�2; sen�1; en]

C.6.20.6 NofixApp

ln e1 es ::: en�1 es en er =) ln1es:::1es1er (e1; :::; en�1; en)

ln e1 es ::: en�1 es sen sr =) ln1es:::1es1sr (e1; :::; en�1; sen)

ln e1 es ::: en�1 es en er =) ln1es:::1es1er [e1; :::; en�1; en]

ln e1 es ::: en�1 es sen sr =) ln1es:::1es1sr [e1; :::; en�1; sen]

C.6.20.7 Type

� `E e o

o P �

� `E P e o

o PP �

In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a set of the

type of expression e.
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C.6.20.8 Semantics

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[ P e ]]
E

= � M : Model � P ([[ e ]]
E

M)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

C.6.21 Application

C.6.21.1 Syntax

Expression = ...

j Expression , Expression

j ...
;

C.6.21.2 Type

� `E e1
o

o P(�1 � �2) � `E e2
o

o �1

� `E e1 e2
o

o �2

In an application expression e1 e2, the expression e1 shall be a set of pairs, and expression e2 shall be of the

same type as the �rst components of those pairs. The type of the whole expression is the type of the second

components of those pairs.

C.6.21.3 Semantics

The value of the application expression e1 e2 is the sole value associated with e2 in the relation e1.

e1 e2
o

o � =) (� i : carrier � j (e2; i) 2 e1)

It is semantically equivalent to that sole range value i such that the pair (e2; i) is in the set of pairs that is the

value of e1.

C.6.22 Schema decoration

C.6.22.1 Syntax

Expression = ...

j Expression , STROKE

j ...

;

C.6.22.2 Type

� `E e o

o P[�]

� `E e
+ o

o P[fi : dom � � decor +
i 7! � ig]

In a schema decoration expression e
+, expression e shall be a schema. The type of the whole expression is that

of a schema whose signature is like that of e but with the decoration appended to each of its names.

C.6.22.3 Semantics

The value of the schema decoration expression e
+ is that schema whose bindings are like those of the schema e

except that their names have the addition stroke +.

(e o

o P[i1 : �1; :::; in : �n])
+ =) e [decor +

i1 = i1; :::; decor
+

in = in]
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It is semantically equivalent to the schema renaming where decorated names rename the original names.

C.6.23 Schema renaming

C.6.23.1 Syntax

Expression = ...
j Expression ,

[-tok , DeclName , = , DeclName , f ;-tok , DeclName , = , DeclName g , ]-tok
j ...
;

C.6.23.2 Type

� `E e o

o P[�1]

� `E e [j1 = i1; :::; jn = in] o

o P[�2]

�
# fi1; :::; ing = n
�2 2 ( 7! )

�

where �2 = (id (dom �1)� fi1 7! j1; :::; in 7! jng)� o

9
�1

In a schema renaming expression e [j1 = i1; :::; jn = in], expression e shall be a schema. There shall be no

duplicates amongst the old names i1; :::; in. Declarations that are merged by the renaming shall have the same

type. The type of the whole expression is that of a schema whose signature is like that of expression e but with

the new names in place of corresponding old names.

NOTE 1 Old names need not be in the signature of the schema. This is so as to permit renaming to distribute over

other notations such as disjunction.

C.6.23.3 Semantics

The value of the schema renaming expression e [j1 = i1; :::; jn = in] is that schema whose bindings are like those

of schema e except that some of its names have been replaced by new names, possibly merging components.

[[ e [j1 = i1; :::; jn = in] ]]
E

= � M : Model �
ft1 : [[ e ]]

E

M; t2 : W j

t2 = (id (dom t1)� fi1 7! j1; :::; in 7! jng)� o

9
t1

^ t2 2 ( 7! )

� t1g

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

in the semantic value of e in M with the new names replacing corresponding old names. Where components are

merged by the renaming, those components shall have the same value.

C.6.24 Binding selection

C.6.24.1 Syntax

Expression = ...
j Expression , : , RefName

j ...
;
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C.6.24.2 Type

� `E e o

o [�]

� `E e : i o

o � i
(i 2 dom �)

In a binding selection expression e : i, expression e shall be a binding, and name i shall select one of its

components. The type of the whole expression is the type of the selected component.

C.6.24.3 Semantics

The value of the binding selection expression e : i is that value associated with i in the binding that is the value

of e.

(e o

o [�]) : i =) (� [carrier [�]] � i) e

It is semantically equivalent to the function construction expression, from bindings of the schema type of e, to

the value of the selected name i, applied to the particular binding e.

C.6.25 Tuple selection

C.6.25.1 Syntax

Expression = ...

j Expression , : , NUMBER

j ...

;

C.6.25.2 Type

� `E e o

o �1 � :::� �n

� `E e : b o

o �b

(b 2 1 : : n)

In a tuple selection expression e : b, the type of expression e shall be a Cartesian product, and number b shall

select one of its components. The type of the whole expression is the type of the selected component.

C.6.25.3 Semantics

The value of the tuple selection expression e : b is the b'th component of the tuple that is the value of e.

(e o

o �1 � :::� �n) : b =) (� i : carrier (�1 � :::� �n) �
� i1 : carrier �1; :::; in : carrier �n j i = (i1; :::; in) � ib) e

It is semantically equivalent to the function construction, from tuples of the Cartesian product type to the selected

component of the tuple b, applied to the particular tuple e.

C.6.26 Binding construction

C.6.26.1 Syntax

Expression = ...

j � , Expression , f STROKE g
j ...

;
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C.6.26.2 Type

� `E e o

o P[i1 : �1; :::; in : �n] � `E i1
� o

o �1 ::: � `E in
� o

o �n

� `E � e
� o

o [i1 : �1; :::; in : �n]

In a binding construction expression � e
�, the expression e shall be a schema, and in the environment shall

appear names, like those in the signature of the schema but with the (optional) strokes appended, associated with

the same types as those names have in the signature of schema e. The type of the whole expression is that of a

binding whose signature is that of the schema.

NOTE 1 The reference expressions i1
�:::in

� cannot refer to generic declarations, because �1:::�n are the types of

schema components, which cannot be generic types.

C.6.26.3 Semantics

The value of the binding construction expression � e
� is the binding whose names are those in the signature of

schema e and whose values are those of the same names with the optional decoration appended.

� e
�

o

o hj i1 : �1; :::; in : �n ji =) hj i1 == i1
�
; :::; in == in

� ji

It is semantically equivalent to the binding extension expression whose value is that binding.

C.6.27 Reference

C.6.27.1 Syntax

Expression = ...

j RefName

j ...

;

C.6.27.2 Type

In a reference expression, if the name is of the form �i and no declaration of this name yet appears in the

environment, then the following syntactic transformation is applied.

�i
�i 62dom �

=) [i; i 0]

This syntactic transformation makes the otherwise unde�ned name be equivalent to the corresponding schema

construction expression, which is then typechecked.

Similarly, if the name is of the form �i and no declaration of this name yet appears in the environment, then the

following syntactic transformation is applied.

�i
�i 62dom �

=) [i; i 0 j � i = � i
0]

NOTE 1 Type inference could be done without these syntactic transformations, but they are necessary steps in

de�ning the formal semantics.

NOTE 2 Only occurrences of � and � that are in such reference expressions are so transformed, not others such as

those in the names of declarations.

� `E i o

o �
(i 2 dom �)

where � = if � i = [i1; :::; in]�0 then � i; (� i) [�1; :::; �n] else � i
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In any other reference expression i, the name i shall be associated with a type in the environment. If that type

is generic, the annotation of the whole expression is a pair of both the uninstantiated type (for the Instantiation

clause to determine that this is a reference to a generic de�nition) and the type instantiated with new distinct

variable types (which the context should constrain to non-generic types). Otherwise (if the type in the environment

is non-generic), that is the type of the whole expression.

NOTE 3 The operation of generic type instantiation is de�ned in 14.3.

NOTE 4 If the type is generic, the next phase of processing makes the implicit instantiation explicit, transforming

the reference expression to a generic instantiation expression. That cannot be done here, as the new variable types

�1; :::; �n have yet to be constrained.

C.6.27.3 Semantics

The value of a reference expression that refers to a generic de�nition is an inferred instantiation of that generic

de�nition.

i o

o [i1; :::; in]�; �
0 =) i [carrier �1; :::; carrier �n] o

o �
0

where 91 �1; :::; �n : Type � � 0 = ([i1; :::; in]�) [�1; :::; �n]

It is semantically equivalent to the generic instantiation expression whose generic actuals are the carrier sets of

the types inferred for the generic parameters.

The value of the reference expression that refers to a non-generic de�nition i is the value of the declaration to

which it refers.

[[ i ]]
E

= � M : Model � M i

In terms of the semantic universe, its semantic value, given a model M, is that associated with the name i in M.

C.6.28 Generic instantiation

C.6.28.1 Syntax

Expression = ...

j RefName , [-tok , Expression , f ;-tok , Expression g , ]-tok
j ...

;

C.6.28.2 Type

� `E e1
o

o P �1 ::: � `E en
o

o P �n

� `E i [e1; :::; en] o

o (� i) [�1; :::; �n]
(i 2 dom �)

In a generic instantiation expression i [e1; :::; en], the expressions shall be sets, and the name i shall be associated

with a generic type in the environment. The type of the whole expression is the instantiation of that generic type

by the types of those sets.

NOTE 1 The operation of generic type instantiation is de�ned in 14.3.

C.6.28.3 Semantics

The value of the generic instantiation expression i [e1; :::; en] is a particular instance of the generic referred to by

name i.

[[ i [e1; :::; en] ]]
E

= � M : Model � M i ([[ e1 ]]
E

M; :::; [[ en ]]
E

M)
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In terms of the semantic universe, its semantic value, given a model M, is the generic value associated with the

name i in M instantiated with the semantic values of the instantiation expressions in M.

C.6.29 Number literal

C.6.29.1 Introduction

Z accepts the ordinary notation for writing number literals that represent natural numbers, and imposes the usual

meaning on those literals. The method of doing this is as follows.

The lexis de�nes the notion of a numeric string. The prelude de�nes the notions of natural number, zero, one

and addition (of natural numbers). The syntactic transformation rules prescribe how numeric strings are to be

understood as natural numbers, using the ideas de�ned in the prelude.

The extension to integers, and the introduction of other numeric operations on integers, is de�ned in the mathe-

matical toolkit (annex B).

The extension to other number systems is left to user de�nition.

C.6.29.2 Syntax

Expression = ...

j NUMBER

j ...

;

Numeric literals are concrete expressions.

C.6.29.3 Transformation

The value of the multiple-digit number literal expression bc is the number that it denotes.

bc =) b + b + b + b + b +

b + b + b + b + b + c

It is semantically equivalent to the sum of ten repetitions of the number literal expression b formed from all but

the last digit, added to that last digit.

0 =) number literal 0

1 =) number literal 1

2 =) 1 + 1

3 =) 2 + 1

4 =) 3 + 1

5 =) 4 + 1

6 =) 5 + 1

7 =) 6 + 1

8 =) 7 + 1

9 =) 8 + 1

The number literal expressions 0 and 1 are semantically equivalent to number literal 0 and number literal 1 re-
spectively as de�ned in section prelude. The remaining digits are de�ned as being successors of their predecessors,
using the function + as de�ned in section prelude.

NOTE 1 These syntactic transformations are applied only to NUMBER tokens that form number literal expressions,

not to other NUMBER tokens (those in tuple selection expressions and operator template paragraphs), as those other

occurrences of NUMBER do not have semantic values associated with them.
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C.6.30 Set extension

C.6.30.1 Syntax

Expression = ...

j f-tok , [ Expression , f ;-tok , Expression g ] , g-tok
j ...

;

C.6.30.2 Type

� `E e1
o

o � ::: � `E en
o

o �

� `E fe1; :::; eng o

o P �

In a set extension expression, every component expression shall be of the same type. The type of the whole

expression is a set of the components' type.

C.6.30.3 Semantics

The value of the set extension expression f e1; :::; eng is the set containing the values of its expressions.

[[ f e1; :::; eng ]]E = � M : Model � f[[ e1 ]]EM; :::; [[ en ]]
E

Mg

In terms of the semantic universe, its semantic value, given a model M, is the set whose members are the semantic

values of the member expressions in M.

C.6.31 Set comprehension

C.6.31.1 Syntax

Expression = ...

j f-tok , SchemaText , � , Expression , g-tok
j ...

;

C.6.31.2 Type

� `E e1
o

o P[�] � � � `E e2
o

o �

� `E fe1 � e2g o

o P �

In a set comprehension expression fe1 � e2g, expression e1 shall be a schema. The type of the whole expression

is a set of the type of expression e2, as determined in an environment overridden by the signature of schema e1.

C.6.31.3 Semantics

The value of the set comprehension expression f e1 � e2g is the set of values of e2 for all bindings of the schema
e1.

[[ f e1 � e2g ]]E = � M : Model � ft1 : [[ e1 ]]EM � [[ e2 ]]E (M � t1)g

In terms of the semantic universe, its semantic value, given a model M, is the set of values of e2 in M overridden

with a binding value of e1 in M.
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C.6.32 Characteristic set comprehension

C.6.32.1 Syntax

Expression = ...

j ( ( f-tok , SchemaText , g-tok ) | ( f-tok , g-tok ) )
| ( f-tok , Expression , g-tok )

j ...
;

C.6.32.2 Transformation

The value of the characteristic set comprehension expression ftg is the set of the values of the characteristic tuple
of t.

ftg =) ft � chartuple tg
It is semantically equivalent to the corresponding set comprehension expression in which the characteristic tuple

is made explicit.

C.6.33 Schema construction

C.6.33.1 Syntax

Expression = ...
j ( [-tok , SchemaText , ]-tok ) | ( [-tok , Expression , ]-tok )

j ...

;

C.6.33.2 Transformation

The value of the schema construction expression [t] is that schema whose signature is the names declared by the

schema text t, and whose bindings are those that satisfy the constraints in t.

[t] =) t

It is semantically equivalent to the schema resulting from syntactic transformation of the schema text t.

C.6.33.3 Type

� `E e o

o P �

� `E [i : e] o

o P[i : �]

In a variable construction expression [i : e], expression e shall be a set. The type of the whole expression is that

of a schema whose signature associates the name i with the type of a member of set e.

� `E e o

o P[�] � � � `P p

� `E [e j p] o

o P[�]

In a schema construction expression [e j p], expression e shall be a schema, and predicate p shall be well-typed

in an environment overridden by the signature of schema e. The type of the whole expression is the same as the

type of expression e.

C.6.33.4 Semantics

The value of the variable construction expression [i : e] is the set of all bindings whose sole name is i and whose

associated value is in the set that is the value of e.

[[ [i : e] ]]
E

= � M : Model � fw : [[ e ]]
E

M � fi 7! wgg
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In terms of the semantic universe, its semantic value, given a model M, is the set of all singleton bindings (sets

of pairs) of the name i associated with a value from the set that is the semantic value of e in M.

The value of the schema construction expression [e j p] is the set of all bindings of schema e that satisfy the

constraints of predicate p.

[[ [e j p] ]]E = � M : Model � ft : [[ e ]]
E

M j M � t 2 [[ p ]]
P � tg

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)

that are members of the semantic value of schema e in M such that p is true in the model M overridden with

that binding.

C.6.34 Binding extension

C.6.34.1 Syntax

Expression = ...

j hj , [ DeclName , == , Expression , f ;-tok , DeclName , == , Expression g ] , ji
j ...

;

C.6.34.2 Type

� `E e1
o

o �1 ::: � `E en
o

o �n

� `E hj i1 == e1; :::; in == en ji o

o [i1 : �1; :::; in : �n]
(# fi1; :::; ing = n)

In a binding extension expression hj i1 == e1; :::; in == en ji, the type of the whole expression is that of a

binding whose signature associates the names with the types of the corresponding expressions. There shall be no

duplication of names within a binding extension expression.

C.6.34.3 Semantics

The value of the binding extension expression hj i1 == e1; :::; in == en ji is the binding whose names are as

enumerated and whose values are those of the associated expressions.

[[ hj i1 == e1; :::; in == en ji ]]E = � M : Model � fi1 7! [[ e1 ]]
E

M; :::; in 7! [[ en ]]
E

Mg
In terms of the semantic universe, its semantic value, given a model M, is the set of pairs enumerated by its

names each associated with the semantic value of the associated expression in M.

C.6.35 Tuple extension

C.6.35.1 Syntax

Expression = ...
j (-tok , Expression , ;-tok , Expression , f ;-tok , Expression g , )-tok
j ...
;

C.6.35.2 Type

� `E e1
o

o �1 ::: � `E en
o

o �n

� `E (e1; :::; en) o

o �1 � :::� �n

In a tuple extension expression (e1; :::; en), the type of the whole expression is the Cartesian product of the types

of the individual component expressions.
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C.6.35.3 Semantics

The value of the tuple extension expression (e1; :::; en) is the tuple containing the values of its expressions in

order.

[[ (e1; :::; en) ]]
E

= � M : Model � ([[ e1 ]]EM; :::; [[ en ]]
E

M)

In terms of the semantic universe, its semantic value, given a model M, is the tuple whose components are the

semantic values of the component expressions in M.

C.6.36 Characteristic de�nite description

C.6.36.1 Syntax

Expression = ...

j (-tok , � , SchemaText , )-tok

j ...

;

C.6.36.2 Transformation

The value of the characteristic de�nite description expression (� t) is the sole value of the characteristic tuple of

schema text t.

(� t) =) � t � chartuple t

It is semantically equivalent to the corresponding de�nite description expression in which the characteristic tuple

is made explicit.

C.6.37 Parenthesized expression

C.6.37.1 Syntax

Expression = ...
j (-tok , Expression , )-tok

j ...
;

C.6.37.2 Transformation

The value of the parenthesized expression (e) is the value of expression e.

(e) =) e

It is semantically equivalent to e.

C.7 Schema text

C.7.1 Introduction

A SchemaText introduces local variables, with constraints on their values.
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C.7.2 Syntax

SchemaText = [ DeclPart ] , [ j-tok , Predicate ] ;

DeclPart = Declaration , f ( ; -tok j NL ) , Declaration g ;
Declaration = DeclName , f ;-tok , DeclName g , : , Expression

j DeclName , == , Expression

j Expression

;

C.7.3 Transformation

There is no separate schema text class in the annotated syntax: all concrete schema texts are transformed to

expressions.

C.7.3.1 Declaration

Each declaration is transformed to an expression.

A constant declaration is equivalent to a variable construction expression in which the variable ranges over a

singleton set.

i == e =) [i : feg]

A comma-separated multiple declaration is equivalent to the conjunction of variable construction expressions in

which all variables are constrained to be of the same type.

i1; :::; in : e =) [i1 : e o

o �1] ^ ::: ^ [in : e o

o �1]

C.7.3.2 DeclPart

Each declaration part is transformed to an expression.

de1; :::; den =) de1 ^ ::: ^ den

If NL tokens have been used in place of any ; s, the same transformation to ^ applies.

C.7.3.3 SchemaText

Given the above transformations of Declaration and DeclPart, any DeclPart in a SchemaText can be assumed

to be a single expression.

A SchemaText with non-empty DeclPart and Predicate is equivalent to a schema construction expression.

e j p =) [e j p]

If both DeclPart and Predicate are omitted, the schema text is equivalent to the set containing the empty

binding.

=) fhj jig

If just the DeclPart is omitted, the schema text is equivalent to the schema construction expression in which

there is a set containing the empty binding.

j p =) [fhj jig j p]
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Annex D
(informative)

Tutorial

D.1 Introduction

The aim of this tutorial is to show, by examples, how this International Standard can be used to determine

whether a speci�cation is a well-formed Z sentence, and if it is, to determine its semantics. The examples cover

some of the more di�cult parts of Z, and some of the recent innovations in the Z notation.

D.2 Semantics as models

The semantics of a speci�cation is determined by sets of models, each model being a function from names de�ned

by the speci�cation to values that those names are permitted to have by the constraints imposed on them in the

speci�cation. For example, consider the following de�nitions concerning a palette.

primary ::= red j yellow j blue

warmcol ; coolcol : Pprimary

warmcol 2 ffredg; fyellowg; fred ; yellowgg
coolcol 2 ffblueg; fblue; yellowg; fblue; redgg

For the six names introduced in this speci�cation, nine possible combinations of values are permitted by the

constraints. For four of the names, the associated value is the same in all nine models.

fprimary 7! fred ; yellow ; blueg; red 7! red ; yellow 7! yellow ; blue 7! blueg

The values associated with the remaining two names in the nine models are as follows.

fwarmcol 7! fredg; coolcol 7! fbluegg
fwarmcol 7! fredg; coolcol 7! fblue; yellowgg
fwarmcol 7! fredg; coolcol 7! fblue; redgg
fwarmcol 7! fyellowg; coolcol 7! fbluegg
fwarmcol 7! fyellowg; coolcol 7! fblue; yellowgg
fwarmcol 7! fyellowg; coolcol 7! fblue; redgg
fwarmcol 7! fred ; yellowg; coolcol 7! fbluegg
fwarmcol 7! fred ; yellowg; coolcol 7! fblue; yellowgg
fwarmcol 7! fred ; yellowg; coolcol 7! fblue; redgg

All nine models of this speci�cation also associate values with the names de�ned in the prelude (clause 11), since

the prelude is implicitly present in every speci�cation.

This International Standard speci�es the relation between Z speci�cations and their semantics in terms of sets of

models. That relation is speci�ed as a composition of relations, each implementing a phase within the standard.

Those phases are as identi�ed in Figure 1 in the conformance clause, namely mark-up, lexing, parsing, charac-

terising, syntactic transformation, type inference, instantiating, semantic transformation and semantic relation.

The rest of this tutorial illustrates the e�ects of those phases on example Z phrases.

D.3 Given types and schema de�nition paragraphs

The following two paragraphs are taken from the birthday book speci�cation [15].

[NAME ;DATE ]
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BirthdayBook
known : PNAME
birthday : NAME 7! DATE

known = dom birthday

The mark-up, lexing, parsing and syntactic transformation phases are illustrated using this example.

D.3.1 Mark-ups

The mathematical representation of Z is what one would write with pen, pencil, chalk, etc. Instructing a computer

to produce the same appearance currently requires the use of a mark-up language. There are many di�erent mark-

up languages, each tailored to di�erent circumstances, such as particular typesetting software. This International

Standard de�nes some mark-ups in annex A, by relating substrings of the mark-up language to strings of Z

characters. Source text for the birthday-book paragraphs written in the mark-ups de�ned in annex A follow. The

translation of these into sequences of Z characters is not explained here { annex A provides su�cient information.

D.3.1.1 LATEX mark-up

\begin{zed}

[NAME, DATE]

\end{zed}

\begin{schema}{BirthdayBook}

known : \power NAME\\

birthday : NAME \pfun DATE

\where

known = \dom~birthday

\end{schema}

D.3.1.2 Email mark-up

[NAME, DATE]

+-- BirthdayBook ---

known : %P NAME

birthday : NAME -+-> DATE

|--

known = dom birthday

---

D.3.2 Lexing

Lexing is the translation of a speci�cation's sequence of Z characters to a corresponding sequence of tokens. The

translation is de�ned by the lexis in clause 7. Associated with the tokens NAME and NUMBER are the original names

and numbers. Here on the left is the sequence of tokens corresponding to the extract from the birthday book

(with -tok su�ces omitted), and on the right is the same sequence but revealing the underlying spelling of the

name tokens.

[NAME; NAME] END [NAME ;DATE ] END
SCH NAME SCH BirthdayBook
NAME : PRE NAME NL known : PNAME NL

NAME : NAME I NAME birthday : NAME 7! DATE
j j
NAME = NAME NAME known = dom birthday
END END
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The layout here is of no signi�cance: there are NL and END tokens where ones are needed. The paragraph outline

has been replaced by a SCH box token, to satisfy the linear syntax requirement of the syntactic metalanguage.

NAME and I are name tokens: this abstraction allows the �xed size grammar of the concrete syntax to cope with

the extensible Z notation.

This speci�cation's sequence of Z characters does conform to the lexis. If it had not, then subsequent phases

would not be applicable, and this International Standard would not de�ne a meaning for the speci�cation.

D.3.3 Parsing

Parsing is the translation of the sequence of tokens produced by lexing to a tree structure, grouping the tokens

into grammatical phrases. The grammar is de�ned by the concrete syntax in clause 8. The parse tree for the

birthday-book speci�cation is shown in Figure D.1.

The sequence of tokens produced by lexing can be seen in this tree by reading just the leaf nodes in order from

left to right. To save space elsewhere in this International Standard, parse trees are presented as just their textual

fringes, with parentheses added where necessary to override precedences.

This speci�cation's sequence of tokens does conform to the concrete syntax. If it had not, then subsequent phases

would not be applicable, and this International Standard would not de�ne a meaning for the speci�cation.

D.3.4 Syntactic transformation

The meaning of a Z speci�cation is established by relating it to an interpretation in a semantic universe. That

relation is expressed using ZF set theory, which is not itself formally de�ned. It is therefore bene�cial to de�ne

as much Z notation as possible by transformations to other Z notation, so that only a relatively small kernel need

be related using ZF set theory. Conveniently, that Z kernel contains largely notation that has direct counterparts

Figure D.1 { Parse tree of birthday book example

Anonymous specification

Given types paragraph Schema definition paragraph

[ NAME , NAME ] END SCH NAME SchemaText END

NAME DATE BirthdayBook DeclPar t | Relation predicate

Declaration NL Declaration InfixRel

DeclName : Application DeclName : Application RefName = application

NAME PrefixApp NAME InfixApp NAME RefName RefName

known PRE RefName birthday RefName I RefName known NAME NAME

P NAME NAME I NAME dom birthday

NAME NAME DATE
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in traditional ZF set theory, the novel Z notation having been largely transformed away. A further bene�t is that

the transformations reveal relationships between di�erent Z notations. The syntactic transformation stage is one

of several phases of such transformation.

The syntactic transformation rules (clause 12) are applied to a parsed sentence of the concrete syntax (clause 8).

The notation that results is a sentence of the annotated syntax (clause 10).

Consider the e�ect of the syntactic transformation rules on the birthday book extract. There is no syntactic

transformation rule for given types; given types are in the annotated syntax. So the �rst paragraph is left

unchanged.

[NAME;NAME] END [NAME ;DATE ] END

The schema paragraph requires several syntactic transformations before it becomes a sentence of the annotated

syntax. The order in which these syntactic transformations are applied does not matter, as the same result is

obtained.

Transform NL by �rst rule in 12.2.6.

SCH NAME SCH BirthdayBook
NAME : PRE NAME; known : PNAME ;
NAME : NAME I NAME birthday : NAME 7! DATE
j j
NAME = NAME NAME known = dom birthday
END END

Transform application P NAME by sixth PrefixApp rule in 12.2.11.

SCH NAME SCH BirthdayBook
NAME : PRE NAME; known : PNAME ;
NAME : NAME I NAME birthday : NAME 7! DATE
j j
NAME = NAME NAME known = dom birthday
END END

Transform generic application NAME 7! DATE by sixth InfixApp rule in 12.2.11.

SCH NAME SCH BirthdayBook
NAME : PNAME; known : PNAME ;
NAME : NAME [NAME; NAME] birthday : 1 7!1 [NAME ;DATE ]
j j
NAME = NAME NAME known = dom birthday
END END

Transform equality by third InfixRel rule in 12.2.10.

SCH NAME SCH BirthdayBook
NAME : PNAME; known : PNAME ;
NAME : NAME [NAME; NAME] birthday : 1 7!1 [NAME ;DATE ]
j j
NAME 2 fNAME NAMEg known 2 fdom birthdayg
END END

Transform basicdecls by sixth rule in 12.2.6.
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SCH NAME SCH BirthdayBook
[NAME : PNAME]; [known : PNAME ];
[NAME : NAME [NAME; NAME]] [birthday : 1 7!1 [NAME ;DATE ]]
j j
NAME 2 fNAME NAMEg known 2 fdom birthdayg
END END

Transform schema text by second rule in 12.2.6.

SCH NAME SCH BirthdayBook
[[NAME : PNAME] ^ [[known : PNAME ] ^
[NAME : NAME [NAME; NAME]] [birthday : 1 7!1 [NAME ;DATE ]]
j j
NAME 2 fNAME NAMEg] known 2 fdom birthdayg]
END END

Transform paragraph by �rst rule in 12.2.3.

AX AX

[NAME == [BirthdayBook ==

[[NAME : PNAME] ^ [[known : PNAME ] ^
[NAME : NAME [NAME; NAME]] [birthday : 1 7!1 [NAME ;DATE ]]
j j
NAME 2 fNAME NAMEg]] known 2 fdom birthdayg]
END END

The two paragraphs now form a sentence of the annotated syntax. These syntactic transformations do not change

the meaning: the meaning of the annotated representation is the same as that of the original schema paragraph.

This is ensured, despite transformations to notations of di�erent precedences, by transforming trees not text {

the trees are presented as text above solely to save space.

Do not be surprised that the result of syntactic transformation looks \more complicated" than the original

formulation { if it did not, there would not have been much point in having the notation that has been transformed

away. The bene�ts are that fewer notations remain to be de�ned, and those that have been de�ned have been

de�ned entirely within Z.

D.4 Axiomatic description paragraphs

Here is a very simple axiomatic description paragraph, preceded by an auxiliary given types paragraph.

[X ]

i : X

D.4.1 Lexing and parsing

Lexing generates the following sequence of tokens, with corresponding spellings of name tokens.

[NAME] END [X ] END

AX NAME : NAME END AX i : X END

Parsing proceeds as for the birthday book, so is not explained in detail again.

D.4.2 Syntactic transformation

The schema text is transformed to an expression.

AX [NAME : NAME] END AX [i : X ] END

This is now a sentence of the annotated syntax.
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D.4.3 Type inference

The type inference phase adds annotations to each expression and each paragraph in the parse tree. Without

going into too much detail, the signature of the given types paragraph is determined by rule 13.2.3.1 to be

[X : P(GIVEN X )].

([X ] o

o [X : P(GIVEN X )]) END

Rule 13.2.2.1 adds the name of the given type X to the type environment, associated with type P(GIVEN X ). The

annotation for the reference expression referring to X is determined by rule 13.2.5.1 using that type environment

to be P(GIVEN X ). Hence the type of the variable construction expression is found by rule 13.2.5.13 to be

P[i : GIVEN X ]. Hence the signature of the axiomatic description paragraph is determined. The resulting

annotated tree is shown in Figure D.2, and as linear text as follows.

(AX ([i : (X o

o P(GIVEN X ))] o

o P[i : GIVEN X ]) o

o [i : GIVEN X ]) END

This speci�cation's parse tree is well-typed. If it were not, then subsequent phases would not be applicable, and

this International Standard would not de�ne a meaning for the speci�cation.

D.4.4 Semantic relation

The semantic relation phase takes a sentence of the annotated syntax and relates it to its meaning in terms of

sets of models. The meaning of a paragraph d is given by the semantic relation [[ d ]]
D

, which relates a model to

that same model extended with associations between its names and their semantic values in the given model. For

the example given types paragraph, the semantic relation in 16.2.3.1 relates any model to that model extended

with an association of the given type name X with an arbitrarily chosen set w . (A further association is made

between a distinctly decorated version of the given type name X~ and that same semantic value, for use in

avoiding variable capture.)

fX 7! w ;X~ 7! wg
This is one model of the pre�x of the speci�cation up to the given types paragraph (ignoring the prelude). The

set of models de�ning the meaning of this pre�x includes other models, each with a di�erent set w .

Figure D.2 { Annotated parse tree of part of axiomatic example

anonymous specification

given types
oo [X : P (GIVEN X)]

axiomatic description
oo [i : GIVEN X]

[ NAME ] END AX variable construction
oo P [i : GIVEN X] END

X [ NAME : reference
oo P (GIVEN X) ]

i NAME
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The meaning of an expression e is given by the semantic function [[ e ]]
E

, which maps the expression to its semantic

value in a given model. Within the axiomatic description paragraph, the reference to the given type X has a

semantic value determined by relation 16.2.5.1 as being the semantic value w already associated with the given

type name X in the model. The variable construction expression [i : X ] has a semantic value determined by

relation 16.2.5.9 that represents a set of bindings of the name i to members of the semantic value of the reference
to X , i.e. the set w . The meaning of the example axiomatic description paragraph, as given by semantic relation

16.2.3.2, is to relate any model to that model extended with a binding that is in the set that is the semantic value

of the variable construction expression. So, if the members of w are w1;w2; :::, then the set of models de�ning

the meaning of the speci�cation includes the following.

ffX 7! w ;X~ 7! w ; i 7! w1g; fX 7! w ;X~ 7! w ; i 7! w2g; :::g
D.5 Generic axiomatic description paragraphs

Here is a generic axiomatic description paragraph. Although it looks simple, it has the complication of being a

loose generic de�nition.

[X ]

i : X

D.5.1 Lexing and parsing

Lexing generates the following sequence of tokens, with corresponding spellings of name tokens.

GENAX [NAME] NAME : NAME END GENAX [X ] i : X END

Parsing proceeds as for the birthday book, so is not explained in detail again.

D.5.2 Syntactic transformation

The schema text is transformed to an expression.

GENAX [NAME] [NAME : NAME] END GENAX [X ] [i : X ] END

This is now a sentence of the annotated syntax.

D.5.3 Type inference

Without going into too much detail, rule 13.2.3.3 adds the name of the generic parameter X to the type en-

vironment, associated with type P(GENTYPE X ). The annotation for the reference expression referring to X is

determined by rule 13.2.5.1 using that type environment to be P(GENTYPE X ). Hence the type of the variable

construction expression is found by rule 13.2.5.13 to be P[i : GENTYPE X ]. Hence the signature of the generic

axiomatic description paragraph is determined.

(GENAX [X ] ([i : (X o

o P(GENTYPE X ))] o

o P[i : GENTYPE X ]) o

o [i : GENTYPE X ]) END

D.5.4 Semantic relation

Every use of a generic de�nition instantiates the generic parameters with particular sets. A suitable semantic

value for a generic de�nition is therefore a function from the semantic values of the sets instantiating the generic

parameters to the semantic value of the de�nition given those values for the parameters. In the case of a loose

generic de�nition, several models are needed to express its semantics, each giving a di�erent function. Each model

de�ning the meaning of the example generic axiomatic description paragraph has the following form.

fi 7! fs1 7! member of s1; s2 7! member of s2; :::gg
The model associates the name i with a function from sets s1; s2; ::: instantiating the generic parameter X to

the semantic value of i resulting from the corresponding instantiation. Di�erent models for this paragraph have

di�erent members of s1; s2; :::. The way this is de�ned by the semantic relations is roughly as follows.

The semantic relation in 16.2.3.3 speci�es that w is a binding in the semantic value of schema e in the given

model extended with an association of the generic parameter X with the set instantiating it w1. (The model is
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also extended with a further association between a distinctly decorated version of the generic parameter X� and

that same semantic value w1, for use in avoiding variable capture). This is speci�ed in a way that is cautious of

e being unde�ned in the extended model. The determination of the value of e is done in the same way as for

the preceding example, using semantic relations 16.2.5.1 and 16.2.5.9. The semantic relation for the paragraph is

then able to extend its given model with the association illustrated above.

D.6 Operator templates and generics

The de�nition of relations in the toolkit provides an example of an operator template and the de�nition of a

generic operator.

generic 5 rightassoc ( $ )

X $ Y == P(X �Y )

D.6.1 Lexing and parsing

An operator template paragraph a�ects the lexing and parsing of subsequent paragraphs. In this example, it causes

subsequent appearances of names using the word $ to be lexed as I tokens, and hence its in�x applications are

parsed as operator names (illustrated in the example) or as generic operator application expressions. An operator

template paragraph does not have any further e�ect on the meaning of a speci�cation, so a parsed representation

is needed of only the generic operator de�nition paragraph, for which lexing generates the following sequence of

tokens and corresponding spellings of name tokens.

NAME I NAME == PRE(NAME� NAME) END X $ Y == P(X �Y ) END

Parsing proceeds as for the birthday-book example, so is not explained in detail again.

D.6.2 Syntactic transformation

The generic operator name is transformed by the �rst InfixGenName rule in 12.2.9.

I [NAME; NAME] == P(NAME� NAME) END $ [X ;Y ] == P(X �Y ) END

This generic horizontal de�nition paragraph is then transformed by 12.2.3.4 to a generic axiomatic description

paragraph, which is the sole form of generic de�nition for which there is a semantic relation.

GENAX [NAME; NAME] GENAX [X ;Y ]

I == P(NAME� NAME) $ == P(X �Y )

END END

Transform Cartesian product expression by the rule in 12.2.5.8 to a set of pairs.

GENAX [NAME; NAME] GENAX [X ;Y ]

I == PfNAME : NAME; NAME : NAME � (NAME; NAME)g $ == Pfx : X ; y : Y � (x ; y)g
END END

Transform the operator name by the �rst InfixName rule in 12.2.8.3.

GENAX [NAME; NAME] GENAX [X ;Y ]

NAME == PfNAME : NAME; NAME : NAME � (NAME; NAME)g 1$1 == Pfx : X ; y : Y � (x ; y)g
END END

Transform the schema texts to expressions.

GENAX [NAME; NAME] GENAX [X ;Y ]

[NAME : fPf[NAME : NAME] ^ [NAME : NAME] � (NAME; NAME)gg] [1$1 : fPf[x : X ] ^ [y : Y ] � (x ; y)gg]
END END

This is now a sentence of the annotated syntax.
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D.6.3 Type inference

The type inference phase adds annotations to the parse tree. For this example, the resulting subtree for the set

extension expression (to the right of the colon) is shown in Figure D.3.

Informally, the way the annotations are determined is as follows. The type inference rule for generic axiomatic

description paragraph (13.2.3.3) overrides the type environment with types for the generic parameters X and

Y . The type inference rule for reference expression (13.2.5.1) retrieves these types for the references to X and

Y . The type inference rule for variable construction expression (13.2.5.13) is then able to build the schema

types. The type inference rule for schema conjunction expression (13.2.5.16) merges those schema types. The

type inference rule for set comprehension expression (13.2.5.4) overrides the type environment with types for the

local declarations x and y . The type inference rule for reference expression (13.2.5.1) retrieves these types for the
references to x and y . The type inference rule for tuple extension expression (13.2.5.6) is then able to build the

Cartesian product type. The type of the set comprehension is thus determined, and hence that of the powerset

by rule 13.2.5.5 and that of the set extension by rule 13.2.5.3.

D.6.4 Semantic relation

For the example generic axiomatic description paragraph, the semantic relation in 16.2.3.3 associates name $
with a function from the semantic values of the sets instantiating the generic parameters X and Y to the

semantic value of the powerset expression given those values for X and Y . The semantic value of the example's

powerset expression is given by semantic relations 16.2.5.4, 16.2.5.5 and 16.2.5.6 as sets of tuples in ZF set theory.

Hence the example generic axiomatic description paragraph adds the following association to the meaning of the

speci�cation.

( $ ) 7! f(set for X ; set for Y ) 7! value of powerset expression given that X and Y ;

and so on for all combinations of sets for X and Y g

Figure D.3 { Annotated parse tree of part of generic example

set extension
o
o P ( P ( P (GENTYPE X 0 GENTYPE Y)))

{ powerset
o
o P (P (GENTYPE X 0 GENTYPE Y)) }

P
set comprehension

o
o P (GENTYPE X 0 GENTYPE Y)

{ conjunction
o
o P [x : GENTYPE X; y : GENTYPE Y] +

tuple extension
o
o GENTYPE X 0 GENTYPE Y }

variable construction
o
o P [x : GENTYPE X] *

variable construction
o
o P [y : GENTYPE Y] ( RefName

o
o GENTYPE X , RefName

o
o GENTYPE Y )

[ NAME : RefName
o
o P (GENTYPE X) ] [ NAME : RefName

o
o P (GENTYPE Y) ] NAME NAME

x NAME y NAME x y

X Y
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Syntactic transformation 12.2.3.4 moved the name of the generic operator to after the generic parameters. In

constructing this association, the name had to be lifted back out again. This has sometimes been called the

generic lifting operation.

D.7 Mutually recursive free types

The standard notation for free types is an extension of the traditional notation, to allow the speci�cation of

mutually recursive free types, such as the following example.

exp ::= NodehhN1 ii
j Condhhpred � exp � expii

&

pred ::= Comparehhexp � expii

This speci�es a tiny language, in which an expression exp can be a conditional involving a predicate pred , and a

pred compares expressions. A more realistic example would have more kinds of expressions and predicates, and

maybe other auxiliary types perhaps in mutual recursion with these two, but this small example su�ces here.

Like the previous examples, the source text for this one has to be taken through the phases of mark-up, lexing,

parsing, syntactic transformation and type inference. (There are no applicable characterisations or instantiations.)

The focus here is on the semantic transformation of free types. (Strictly, the Cartesian products should be

syntactically transformed �rst, but keeping them makes the following more concise.)

D.7.1 Semantic transformation

Transforming the above free type by rule 12.2.3.5 generates the following Z notation. The semantic transfor-

mation rules are de�ned in terms of concrete notation for clarity, which should itself be subjected to further

transformations, though that is not done here.

D.7.1.1 Type declarations

[exp; pred ]

D.7.1.2 Membership constraints

Node : P(N1 � exp)
Cond : P((pred � exp � exp)� exp)
Compare : P((exp � exp) � exp)

D.7.1.3 Total functionality constraints

8u : N1 � 91 x : Node � x :1 = u
8u : pred � exp � exp � 91 x : Cond � x :1 = u
8u : exp � exp � 91 x : Compare � x :1 = u

D.7.1.4 Injectivity constraints

8u; v : nat1 j Node u = Node v � u = v
8u; v : pred � exp � exp j Cond u = Cond v � u = v
8u; v : exp � exp j Compare u = Compare v � u = v

FCD typeset August 24, 1999 161



D Tutorial Z Notation:1999(E)

D.7.1.5 Portmanteau disjointness constraint

There are no disjointness constraints from the pred type as it has only one injection and no element values.

8 b1; b2 : N �
8w : exp j

(b1 = 1 ^ w 2 fx : Node � x :2g _
b1 = 2 ^ w 2 fx : Cond � x :2g)

^ (B2 = 1 ^ w 2 fx : Node � x :2g _
b2 = 2 ^ w 2 fx : Cond � x :2g) �

b1 = b2

D.7.1.6 Induction constraint

8w1 : P exp; w2 : Ppred j
(8 y : (� exp == w1; pred == w2 � N1 ) �

Node y 2 w1) ^
(8 y : (� exp == w1; pred == w2 � pred � exp � exp) �

Cond y 2 w1) ^
(8 y : (� exp == w1; pred == w2 � exp � exp) �

Compare y 2 w2) �
w1 = exp ^ w2 = pred

D.8 Chained relations and implicit generic instantiation

The semantics of chained relations is de�ned to give a meaning to this example,

primary 6= ? � warmcol

in which ? refers to the generic de�nition of empty set and so is implicitly instantiated, whilst rejecting the

following example as being not well-typed,

primary 6= ? � A

because the single ? expression in the second example needs to be instantiated di�erently for the two relations.

To demonstrate how this is done, the former example is taken through syntactic transformation, type inference,

and instantiation.

D.8.1 Syntactic transformation

The chaining is transformed by the �rst InfixRel rule in 12.2.10 to a conjunction of relations in which the

duplicates of the common expression are constrained to be of the same type by giving them the same annotation.

primary 6= (? o

o �) ^ (? o

o �) � warmcol

The third InfixRel rule in 12.2.10 transforms these two relations to membership predicates.

(primary ; (? o

o �)) 2 ( 6= ) ^ ((? o

o �);warmcol) 2 ( � )

The two operator names are transformed by the second rule in 12.2.8.3.

(primary ; (? o

o �)) 2 16=1 ^ ((? o

o �);warmcol) 2 1�1

This is now a phrase of the annotated syntax.
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D.8.2 Type inference

The e�ect of the type inference rules on this example phrase is illustrated in Figure D.4. (The tool used to draw

that �gure has no 1 symbol, so 1 is used instead.)

In this tree, each expression node has two types: the one above the node is the type that the expression is expected

to have given the context in which it appears, i.e. imposed by the type inference rule for the phrase of which the

expression is a part, and the one below the node is the type inferred for this expression, i.e. by the type inference

rule for that expression. In detail, the �rst membership's type inference rule (13.2.4.1) contrains its expressions

to be of types �1 and P �1. The �rst tuple extension's type inference rule (13.2.5.6) constrains its expected type

�1 to be a Cartesian product type �3� �4, where �3 and �4 are the expected types of the two reference expressions

in the tuple. The �rst reference expression's type inference rule (13.2.5.1) constrains its expected type �3 to the

type associated with the referenced name (primary) in the type environment. The second reference expression's

type inference rule (13.2.5.1) behaves slightly di�erently, as the type associated with the referenced name (?) is

a generic type. That generic type [X ]PX is noted on the node for use by the following Instantiation phase, and

the type inferred for this reference expression is an instantiation of this generic type with new distinct variable

types, i.e. P �7. The reference to the generic inequality declaration is treated similarly. These type constraints are

su�cient to determine a unique assignment of type annotations to all of the expressions in the �rst membership.

The second membership is typechecked similarly. The constraint imposed by the chained relation between the

types of the two references to ? (not shown in the �gure) is satis�ed.

D.8.3 Instantiation

Those reference expressions that refer to generic de�nitions have to be transformed to generic instantiation

expressions for their meaning to be determined. This is done by the instantiation rule (14.4). It determines

the generic instantiations by comparison of the generic type with the inferred type. For example, the references

to ? have been given the type annotation P(GIVEN primary), which is the instance of [X ]PX in which X is

GIVEN primary . Hence the instantiation rule e�ects the following transformation.

Figure D.4 { Type constraints for chained relation example

conjunction

membership * membership

τ1

tuple extension

τ3 0 τ4

/

P τ1

reference

[X] P (P (GENTYPE X) 0 P (GENTYPE X)),

P (P τ8 0 P τ8)

τ2

tuple extension

τ5 0 τ6

/

P τ2

reference

[X] P (P (GENTYPE X) 0 P (GENTYPE X)),

P (P τ10 0 P τ10)

(

τ3

reference

P pr imary

,

τ4

reference

[X] P (GENTYPE X),

P τ7

) NAME (

τ5

reference

[X] P (GENTYPE X),

P τ9

,

τ6

reference

P pr imary

) NAME

NAME NAME ∞6∞ NAME NAME ∞9∞
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? o

o [X ]PX ;P(GIVEN primary) =) ?[primary o

o P(GIVEN primary)] o

o P(GIVEN primary)

D.9 Logical inference rules

This document does not attempt to standardise any particular deductive system for Z. However, the soundness

of potential logical inference rules can be shown relative to the sets of models de�ned by the semantics. Some

examples are given here.

The predicate true can be used as an axiom. The proof of this is trivial: an axiom p is sound if and only

if [[ p ]]
P

= Model (as given by the de�nition of soundness in 5.2.3), and from the semantic relation for truth

predicates (16.2.4.2), [[ true ]]
P

= Model .

The inference rule with premiss : : p and consequent p is sound if and only if

[[ : : p ]]
P � [[ p ]]

P

(again as given by the de�nition of soundness in 5.2.3). By two applications of the semantic relation for negation

predicate (16.2.4.3), this becomes

Model n (Model n [[ p ]]
P

) � [[ p ]]
P

which by properties of set di�erence becomes

[[ p ]]
P � [[ p ]]

P

which is a property of set inclusion.

The transformation rules of clauses 12 and 15 inspire corresponding logical inference rules: any logical infer-

ence rule whose sole premiss matches the left-hand side of a transformation rule and whose consequent is the

corresponding instantiation of that transformation rule's right-hand side is sound.
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Annex E
(informative)

Conventions for state-based descriptions

E.1 Introduction

This annex records some of the conventions of notation that are often used when state-based descriptions of

systems are written in Z. Conventions for identifying before and after states (x and x 0), operations on those

states (�S and �S ) and input and output variables (i? and o!) are given.

E.2 States

When giving a model-based description of a system, the state of the system and the operations on the state

are speci�ed. Each operation is described as a relation between states. It is therefore necessary to distinguish

between the values of state variables before the operation and their values afterwards. The convention in Z is to

use dashes (primes) to make this distinction: if the state variables are x and y , then a predicate describing an

operation is written using the variables x ; y ; x 0; y 0, where x and y denote the values before the operation, and x 0

and y 0 denote the values afterwards. (The predicate can also refer to any global constants.) For instance, if x and

y are both integer variables, then an operation which incremented both variables could be speci�ed as follows.

x 0 = x + 1 ^ y 0 = y + 1

In order to use predicates like this to describe operations, all of the variables have to be in scope. If the state has

been described in a schema S , then including S in the declaration part of the operation schema brings the state

variables | x and y in the example above | into scope. The after-state variables are similarly introduced by

including S 0: this is a schema obtained from S by adding a dash to all the variables in the signature of S , and
replacing every occurrence of such a variable in the predicate part of S by its dashed counterpart. Notice that

the variables from the signature of S are the only ones which are dashed | global constants, types etc remain

undashed. If S contains a variable which has already been decorated in some way, then an extra dash is added

to the existing decoration.

Thus operations can be described in Z by a schema of the form

Op
S
S 0

...

Since the inclusion of undashed and dashed copies of the state schema is so common, an abbreviation is used:

�S == [S ; S 0]

The operation schema above now becomes

Op
�S

...

It should be stressed that this use of � is only a convention | � is not an `operator on schemas', merely a

character in the schema name. One reason for this is that some authors like to include additional invariants in
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their �-schemas. For instance, if S contained an additional component z , but none of the operations ever changed
z , then �S could be de�ned by

�S == [S ; S 0 j z 0 = z ] ;

thus making it unnecessary to include z 0 = z in each operation description. If a name �S is referred to without

a declaration of it having appeared previously, the reference is treated as being equivalent to [S ; S 0].

It should be noted that strange results can occur if this conventional de�nition of �S is used on a schema S that

contains variables which are not intended to be state components, perhaps inputs or outputs (see below). The

sequence of decorations after a variable name might then become di�cult to interpret.

There is one further piece of notation for describing state transitions: when enquiry operations are being described,

it is often necessary to specify that the state should not change. For this the �-convention is used. Unless it

has been explicitly de�ned to mean something else, references to �S are treated as being equivalent to [S ; S 0 j
�S = �S 0]. Note that �S is not de�ned in terms of �S , in case �S has been given an explicit unconventional

de�nition.

E.3 Inputs and outputs

For many systems, it is convenient to be able to describe operations not just in terms of relations between states,

but with inputs and outputs as well. The input values of an operation are provided by `the environment', and

the outputs are returned to the environment.

In order to distinguish a variable intended as either an input or an output in an operation schema from a state-

before variable (which has no decoration), an additional su�x is used: ? for input variables and ! for output

variables. Thus name? denotes an input, and result ! denotes an output.
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Index

+ (addition)

in mathematical metalanguage, 9

in prelude, 47

- (arithmetic negation)

in mathematical toolkit, 101

�! (bijections)

in mathematical metalanguage, 11

in mathematical toolkit, 99

� (binding construction)

expression, see binding construction expression

hj; ; ji (binding extension)
expression, see binding extension expression

: (binding selection)

expression, see binding selection expression

# (cardinality)

in mathematical metalanguage, 9

in mathematical toolkit, 104

� (Cartesian product)

expression, see Cartesian product expression

in mathematical metalanguage, 10

type, see Cartesian product type

� (compatible relations)

in mathematical metalanguage, 11
a (concatenation)

in mathematical toolkit, 106

j=? (conjecture)

paragraph, see conjecture paragraph

^ (conjunction)

expression, see schema conjunction expression

in mathematical metalanguage, 7

predicate, see conjunction predicate

� j � (de�nite description)

expression, see de�nite description expression

_ (disjunction)

expression, see schema disjunction expression

in mathematical metalanguage, 7

predicate, see disjunction predicate
a= (distributed concatenation)

in mathematical toolkit, 108

C (domain restriction)

in mathematical metalanguage, 11

in mathematical toolkit, 97

�C (domain subtraction)

in mathematical metalanguage, 11

in mathematical toolkit, 97

? (empty set)

in mathematical metalanguage, 9

in mathematical toolkit, 93

= (equality)

in mathematical metalanguage, 9

predicate, see relation operator application predi-

cate

, (equivalence)

expression, see schema equivalence expression

predicate, see equivalence predicate

9 j � (existential quanti�cation)

expression, see schema existential quanti�cation ex-
pression

in mathematical metalanguage, 8

predicate, see existential quanti�cation predicate

� (extraction)

in mathematical toolkit, 107

� (�ltering)

in mathematical toolkit, 107

7 7! (�nite functions)

in mathematical metalanguage, 11

in mathematical toolkit, 100

7 7� (�nite injections)

in mathematical toolkit, 100

F (�nite subsets)

in mathematical metalanguage, 9

::= (free type)

paragraph, see free type paragraph

� j � (function construction)

expression, see function construction expression

in mathematical metalanguage, 11

� (functional composition)

in mathematical toolkit, 96T
(generalized intersection)

in mathematical toolkit, 95S
(generalized union)

in mathematical toolkit, 95

�(generic type name stroke), 15
~(given type name stroke), 15

> (greater than)

in mathematical toolkit, 102

� (greater than or equal)

in mathematical toolkit, 102

) (implication)

expression, see schema implication expression

predicate, see implication predicate

6= (inequality)

in mathematical toolkit, 93

iter (iteration)

in mathematical toolkit, 104

(juxtaposition)

expression, see application expression

in mathematical metalanguage, 12

< (less than)

in mathematical toolkit, 102

� (less than or equal)

in mathematical toolkit, 102

7! (maplet)

168 FCD typeset August 24, 1999



Z Notation:1999(E) Index

in mathematical metalanguage, 10

in mathematical toolkit, 96

2 (membership)

in mathematical metalanguage, 9

predicate, see membership predicate

� (multiplication)

in mathematical toolkit, 103

: (negation)

expression, see schema negation expression

in mathematical metalanguage, 7

predicate, see negation predicate

NL (newline conjunction)

in mathematical metalanguage, 7

predicate, see newline conjunction predicate

62 (non-membership)

in mathematical metalanguage, 9

in mathematical toolkit, 93

: : (numeric range)

in mathematical metalanguage, 9

in mathematical toolkit, 104

( ) (parentheses)

expression, see parenthesized expression

in mathematical metalanguage, 7

predicate, see parenthesized predicate

7! (partial functions)

in mathematical metalanguage, 11

in mathematical toolkit, 99

7� (partial injections)

in mathematical toolkit, 99

7!! (partial surjections)

in mathematical toolkit, 99

� (proper subset)

in mathematical toolkit, 93

B (range restriction)

in mathematical toolkit, 97
�B (range subtraction)

in mathematical toolkit, 97
� (re
exive transitive closure)

in mathematical toolkit, 98
o

9
(relational composition)

in mathematical metalanguage, 11

in mathematical toolkit, 96

(j j) (relational image)
in mathematical metalanguage, 11

in mathematical toolkit, 98
� (relational inversion)

in mathematical metalanguage, 11

in mathematical toolkit, 97

� (relational overriding)

in mathematical metalanguage, 11

in mathematical toolkit, 98

$ (relations)

in mathematical toolkit, 92

o

9
(schema composition)

expression, see schema composition expression

, (schema equivalence)

expression, see schema equivalence expression

n (schema hiding)

expression, see schema hiding expression

) (schema implication)

expression, see schema implication expression

>> (schema piping)

expression, see schema piping expression

� (schema projection)

expression, see schema projection expression

= (schema renaming)

expression, see schema renaming expression

h; ; i (sequence brackets)
in mathematical toolkit, 106

f j � g (set comprehension)
expression, see set comprehension expression

in mathematical metalanguage, 11

n (set di�erence)

in mathematical metalanguage, 9

in mathematical toolkit, 94

f; ; g (set extension)
expression, see set extension expression

in mathematical metalanguage, 9

\ (set intersection)

in mathematical metalanguage, 9

in mathematical toolkit, 94

	 (set symmetric di�erence)

in mathematical toolkit, 94

[ (set union)

in mathematical metalanguage, 9

in mathematical toolkit, 94

� (subset)

in mathematical metalanguage, 9

in mathematical toolkit, 93

let � (substitution)

expression, see substitution expression

in mathematical metalanguage, 8

� (subtraction)

in mathematical toolkit, 101

! (total functions)

in mathematical metalanguage, 11

in mathematical toolkit, 92

� (total injections)

in mathematical toolkit, 99

!! (total surjections)

in mathematical toolkit, 99
+ (transitive closure)

in mathematical toolkit, 98

( ,, ) (tuple extension)

expression, see tuple extension expression

in mathematical metalanguage, 10
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91 j � (unique existential quanti�cation)

expression, see schema unique existential quanti�-

cation expression

in mathematical metalanguage, 8

predicate, see unique existential quanti�cation pred-
icate

8 j � (universal quanti�cation)

expression, see schema universal quanti�cation ex-

pression

in mathematical metalanguage, 8

predicate, see universal quanti�cation predicate

(iteration)

in mathematical toolkit, 104

A (arithmos)

in prelude, 47

anonymous speci�cation

concrete syntax, 34, 111

syntactic transformation, 48, 111

application expression

annotated syntax, 45

concrete syntax, 35, 141

semantic transformation, 73, 141

type inference rule, 63, 141

associativity of operators, 38

axiomatic description paragraph

annotated syntax, 44

concrete syntax, 34, 114

semantic relation, 76, 114

type inference rule, 59, 114

base section

concrete syntax, 34, 113

syntactic transformation, 48, 113

binding construction expression

annotated syntax, 45

concrete syntax, 35, 143

semantic transformation, 73, 144

type inference rule, 63, 144

binding extension expression

annotated syntax, 45

concrete syntax, 36, 149

semantic relation, 78, 149

type inference rule, 63, 149

binding selection expression

annotated syntax, 45

concrete syntax, 35, 142

semantic transformation, 73, 143

type inference rule, 63, 143

carrier , 68

Cartesian product expression

concrete syntax, 35, 138

syntactic transformation, 51, 138

Cartesian product type

annotated syntax, 46

semantic relation, 80

charac , 42

characteristic de�nite description expression

characterisation, 43, 150

concrete syntax, 36, 150

characteristic set comprehension expression

characterisation, 42, 148

concrete syntax, 36, 148

characteristic tuple, 42

chartuple , 42

conditional expression

concrete syntax, 35, 135

syntactic transformation, 51, 135

conjecture paragraph

annotated syntax, 44

concrete syntax, 34, 121

semantic relation, 76, 121

type inference rule, 60, 121

conjunction predicate

annotated syntax, 44

concrete syntax, 35, 125

semantic relation, 16, 77, 126

type inference rule, 61, 126

decor
in mathematical metalanguage, 10

de�nite description expression

annotated syntax, 45

concrete syntax, 35, 132

semantic relation, 79, 132

type inference rule, 63, 132

disjoint
in mathematical toolkit, 100

disjunction predicate

concrete syntax, 35, 125

syntactic transformation, 50, 125

div
in mathematical toolkit, 103

dom
in mathematical metalanguage, 11

in mathematical toolkit, 96

equivalence predicate

concrete syntax, 35, 124

syntactic transformation, 50, 125

existential quanti�cation predicate

concrete syntax, 35, 123

syntactic transformation, 49, 123

expression list

concrete syntax, 38

syntactic transformation, 57
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F (�nite subsets)

in mathematical toolkit, 95

F1 (non-empty �nite subsets)

in mathematical toolkit, 95

falsity predicate

concrete syntax, 35, 129

syntactic transformation, 50, 129

�rst
in mathematical metalanguage, 10

in mathematical toolkit, 95

free type paragraph

annotated syntax, 44

concrete syntax, 34, 118

semantic transformation, 70, 118

syntactic transformation, 49, 118

type inference rule, 60, 118

front
in mathematical toolkit, 107

function construction expression

characterisation, 42, 131

concrete syntax, 35, 131

function or generic operator application expression

concrete syntax, 35, 138

syntactic transformation, 56, 139

function toolkit , 98

generic axiomatic description paragraph

annotated syntax, 44

concrete syntax, 34, 114

semantic relation, 76, 115

type inference rule, 60, 115

generic conjecture paragraph

annotated syntax, 44

concrete syntax, 34, 121

semantic relation, 77, 121

type inference rule, 60, 121

generic horizontal de�nition paragraph

concrete syntax, 34, 116

syntactic transformation, 49, 116

generic instantiation expression

annotated syntax, 45

concrete syntax, 35, 145

semantic relation, 78, 145

type inference rule, 62, 145

generic name

concrete syntax, 37, 116

syntactic transformation, 54, 117

generic operator de�nition paragraph

concrete syntax, 34, 116

syntactic transformation, 54, 117

generic parameter type

annotated syntax, 46

semantic relation, 80

generic schema de�nition paragraph

concrete syntax, 34, 115

syntactic transformation, 48, 115

generic type

annotated syntax, 46

semantic relation, 81

generic type instantiation, 68

given type

annotated syntax, 46

semantic relation, 80

given types paragraph

annotated syntax, 44

concrete syntax, 34, 113

semantic relation, 76, 113

type inference rule, 59, 113

head
in mathematical toolkit, 106

horizontal de�nition paragraph

concrete syntax, 34, 116

syntactic transformation, 49, 116

id
in mathematical metalanguage, 11

in mathematical toolkit, 96

if then else (conditional)

in mathematical metalanguage, 8

implication predicate

concrete syntax, 35, 125

syntactic transformation, 50, 125

in�x
in mathematical toolkit, 108

in�x function or generic operator application

concrete syntax, 38, 139

syntactic transformation, 57, 140

in�x generic name

concrete syntax, 37, 117

syntactic transformation, 55, 117

in�x operator name

concrete syntax, 37

syntactic transformation, 54

in�x relation operator application

concrete syntax, 37, 126

syntactic transformation, 55, 127

inheriting section

annotated syntax, 44

concrete syntax, 34, 111

semantic relation

non-prelude, 75, 112

prelude, 75, 112

type inference rule, 58, 111

iseq (injective sequences)

in mathematical toolkit, 105
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items
in mathematical toolkit, 105

last
in mathematical toolkit, 106

max
in mathematical toolkit, 105

membership predicate

annotated syntax, 44

semantic relation, 77, 128

type inference rule, 60, 128

min
in mathematical toolkit, 105

mktuple , 42

mod
in mathematical toolkit, 103

Model , 16

N (naturals)

in prelude, 47

N1 (strictly positive naturals)

in mathematical toolkit, 102

negation predicate

annotated syntax, 44

concrete syntax, 35, 126

semantic relation, 77, 126

type inference rule, 61, 126

newline conjunction predicate

concrete syntax, 35, 124

syntactic transformation, 49, 124

no�x function or generic operator application

concrete syntax, 38, 139

syntactic transformation, 57, 140

no�x generic name

concrete syntax, 37, 117

syntactic transformation, 55, 117

no�x operator name

concrete syntax, 37

syntactic transformation, 54

no�x relation operator application

concrete syntax, 37, 126

syntactic transformation, 56, 128

number literal expression

concrete syntax, 35, 146

syntactic transformation, 52, 146

number toolkit , 100
number literal 0

in prelude, 47

number literal 1
in prelude, 47

operator associativity, 38

operator name

concrete syntax, 37

syntactic transformation, 53

operator precedence, 38

operator template paragraph

concrete syntax, 34, 122

P (powerset)

in mathematical metalanguage, 9

in prelude, 47

P1 (non-empty subsets)

in mathematical toolkit, 94

parenthesized expression

concrete syntax, 36, 150

syntactic transformation, 52, 150

parenthesized predicate

concrete syntax, 35, 129

syntactic transformation, 50, 129

partition
in mathematical toolkit, 100

post�x function or generic operator application

concrete syntax, 38, 139

syntactic transformation, 57, 140

post�x generic name

concrete syntax, 37, 117

syntactic transformation, 54, 117

post�x operator name

concrete syntax, 37

syntactic transformation, 54

post�x relation operator application

concrete syntax, 37, 126

syntactic transformation, 55, 127

powerset expression

annotated syntax, 45

semantic relation, 78, 141

type inference rule, 62, 140

precedence of operators, 38

pre�x
in mathematical toolkit, 107

pre�x function or generic operator application

concrete syntax, 38, 139

syntactic transformation, 56, 139

pre�x generic name

concrete syntax, 37, 116

syntactic transformation, 54, 117

pre�x operator name

concrete syntax, 37

syntactic transformation, 53

pre�x relation operator application

concrete syntax, 37, 126

syntactic transformation, 55, 127

ran
in mathematical toolkit, 96
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reference expression

annotated syntax, 45

concrete syntax, 35, 144

semantic relation, 78, 145

type inference rule, 62, 144

relation operator application predicate

concrete syntax, 35, 126

syntactic transformation, 55, 127

relation toolkit , 95
rev (reverse)

in mathematical toolkit, 106

schema composition expression

annotated syntax, 45

concrete syntax, 35, 135

semantic transformation, 74, 136

type inference rule, 65, 135

schema conjunction expression

annotated syntax, 45

concrete syntax, 35, 134

semantic relation, 79, 134

type inference rule, 15, 64, 134

schema construction expression

annotated syntax, 45

concrete syntax, 36, 148

semantic relation, 79, 149

syntactic transformation, 52, 148

type inference rule, 64, 148

schema decoration expression

annotated syntax, 45

concrete syntax, 35, 141

semantic transformation, 74, 141

type inference rule, 65, 141

schema de�nition paragraph

concrete syntax, 34, 114

syntactic transformation, 13, 48, 114

schema disjunction expression

concrete syntax, 35, 133

syntactic transformation, 51, 133

schema equivalence expression

concrete syntax, 35, 133

syntactic transformation, 51, 133

schema existential quanti�cation expression

concrete syntax, 35, 130

syntactic transformation, 50, 131

schema hiding expression

annotated syntax, 45

concrete syntax, 35, 137

semantic transformation, 13, 73, 137

type inference rule, 64, 137

schema implication expression

concrete syntax, 35, 133

syntactic transformation, 51, 133

schema negation expression

annotated syntax, 45

concrete syntax, 35, 134

semantic relation, 79, 134

type inference rule, 64, 134

schema piping expression

annotated syntax, 45

concrete syntax, 35, 136

semantic transformation, 74, 136

type inference rule, 65, 136

schema precondition expression

annotated syntax, 45

concrete syntax, 35, 138

semantic transformation, 74, 138

type inference rule, 65, 138

schema predicate

concrete syntax, 35, 128

syntactic transformation, 50, 128

schema projection expression

concrete syntax, 35, 137

syntactic transformation, 51, 137

schema renaming expression

annotated syntax, 45

concrete syntax, 35, 142

semantic relation, 80, 142

type inference rule, 64, 142

schema text

concrete syntax, 36, 151

syntactic transformation, 52, 151

schema type

annotated syntax, 46

semantic relation, 81

schema unique existential quanti�cation expression

annotated syntax, 45

concrete syntax, 35, 131

semantic transformation, 73, 131

type inference rule, 64, 131

schema universal quanti�cation expression

annotated syntax, 45

concrete syntax, 35, 130

semantic relation, 79, 130

type inference rule, 64, 130

second
in mathematical metalanguage, 10

in mathematical toolkit, 95

section type environment

annotated syntax, 45

sectioned speci�cation

annotated syntax, 44

concrete syntax, 34, 110

semantic relation, 75, 110

type inference rule, 58, 110

semicolon conjunction predicate
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concrete syntax, 35, 124

syntactic transformation, 49, 124

seq (�nite sequences)

in mathematical toolkit, 105

seq1 (non-empty �nite sequences)

in mathematical toolkit, 105

sequence toolkit , 104
set comprehension expression

annotated syntax, 45

concrete syntax, 36, 147

semantic relation, 78, 147

type inference rule, 62, 147

set extension expression

annotated syntax, 45

concrete syntax, 36, 147

semantic relation, 78, 147

type inference rule, 62, 147

set toolkit , 92
set type

annotated syntax, 46

semantic relation, 80

signature

annotated syntax, 46

squash
in mathematical toolkit, 107

standard toolkit , 108
substitution expression

concrete syntax, 35, 132

syntactic transformation, 50, 132

succ
in mathematical toolkit, 100

su�x
in mathematical toolkit, 108

tail
in mathematical toolkit, 106

Theory , 16
truth predicate

annotated syntax, 44

concrete syntax, 35, 129

semantic relation, 77, 129

type inference rule, 61, 129

tuple extension expression

annotated syntax, 45

concrete syntax, 36, 149

semantic relation, 78, 150

type inference rule, 62, 149

tuple selection expression

annotated syntax, 45

concrete syntax, 35, 143

semantic transformation, 73, 143

type inference rule, 63, 143

U (semantic universe), 16

unique existential quanti�cation predicate

annotated syntax, 44

concrete syntax, 35, 123

semantic transformation, 72, 124

type inference rule, 61, 123

universal quanti�cation predicate

annotated syntax, 44

concrete syntax, 35, 123

semantic relation, 77, 123

type inference rule, 61, 123

variable construction expression

annotated syntax, 45

semantic relation, 79, 148

type inference rule, 63, 148

variable type

annotated syntax, 46

W (world of sets), 16

Z (integers)

in mathematical toolkit, 100

Z1 (non-zero integers)

in mathematical toolkit, 102
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