ISO/IEC 1539-2: 1999

| nfor mation technology — Programming
languages — Fortran —

Part 2:
Varying Length Character Strings

[This pageto bereplaced by 1SO CS|]

15th January 1999 VARYING LENGTH CHARACTER STRINGS

Foreword
[General part to be provided by ISO CS]

| ntroduction

This part of 1SO/IEC 1539 has been prepared by 1SO/IEC JTCL/SC22/WG5, the technical working group for
the Fortran language. This part of ISO/IEC 1539 is an auxiliary standard to ISO/IEC 1539-1 : 1997, which
defines the latest revision of the Fortran language, and is the first part of the multipart Fortran family of
standards; this part of ISO/IEC 1539 is the second part. The revised language defined by ISO/IEC 1539-1 :
1997 isinformally known as Fortran 95.

This part of ISO/IEC 1539 defines the interface and semantics for a module that provides facilities for the
manipulation of character strings of arbitrary and dynamically variable length. Annex A refers to a possible
implementation, in Fortran 95, of a module that conforms to this part of 1SO/IEC 1539. It should be noted,
however, that thisis purely for purposes of demonstrating the feasibility and portability of this standard. The
actual codeis not intended in any way to prescribe the method of implementation, nor is there any implication
that this is in any way an optima portable implementation. The module is merely a fairly straightforward
demonstration that a portable implementation is possible.

| SO/IEC 1539-2: 1999(E)

CONTENTS

R 7 07 1
11 00 1
12 Changes from the PrevioUS VEISION civie it et et e e e e e e 1
13 NOrmMative REFEIENCES ... it e e e e e e 2
P O V= V= PP 2
I (S o 1] = 07 01 P 4
31 The Name of the MOodUIE ... e e e 4
3.2 T Ty B e e e e e e 4
33 Extended Meanings for INtrinSiC OPEratorsoo.vevrieieveniie e e e 4
331 ASSIGNMEN oo e e 4
332 CONCAENGLIONeie et et et e et e et et e et e e e 5
3.3 3 COMIPAITSONS ..ttt e e e e et e et e e e et e e e e 5
34 Extended Meanings for Generic Intrinsic Procedures cooeviiiiiiiiiiiii e, 6
341 ADJUSTL (SIrNQ) ceeenneeeene et et et et e et e e e e ee eenees 6
342 ADJIUSTR (SINQ) cenitine ettt e et e et et e et e e e et n e 6
343 CHAR(string [, 1ength]) ...ccooiiiii e e 6
A4 TACHAR () toeienie ittt e e e e e e e 7
B45 ICHAR (C) ceeeeeeeeeie e e 7
3.4.6 INDEX (string, substring [, back])cooiiiiiiii e 7
AT LEN (SINQ) + ettt it e et e e e e e e e e 8
348 LEN_TRIM (SITING) ..oveevieiie e e e e e 8
349 LGE(string a, String_ b))cooiiiiii 8
3.4.10 LGT (String_a, StriNg_ D) ..oeuiieiiieie e et e e e e e e 8
34.11 LLE (String_a, String D) ..ooouuieiie e e e e e 9
3412 LLT (string_a, Sting_ D) oo 9
3.4.13 REPEAT (String, NCOPIES) ..uuvie ittt eenee e aee e et e e e e eenene 10
3.4.14 SCAN (string, Set [, back]) .uoveeeiiie e 10
3415 TRIM (SINQ) ceneie ittt et et e e e e et e e 10
3.4.16 VERIFY (string, set [, back])oooviii i 11
35 Additional Generic Procedure for Type CONVEIrSIONcc.vevirineeenineinaninnes 11
351 VAR _STR(Char) ..oooeiiiii i e 11
3.6 Additional Generic Procedures for INpUt/OULPUL cooieie i 12

3.6.1 GET (string [, maxlen] [, iostat]) or

| SO/IEC 1539-2: 1999(E)

GET (unit, string [, maxlen] [, iostat]) or
GET (string, set [, separator] [, maxlen] [, iostat]) or

GET (unit, string, set [, separator] [, maxlen] [, iostat])ocvvvvvvevnnannnns 12
3.6.2 PUT (string [, iostat]) or PUT (unit, string [, iostat]) cooevvvvvvivinnnnnn. 13
3.6.3 PUT_LINE (string [, iostat]) or PUT_LINE (unit, string [, iostat]) 13
3.7 Additional Generic Procedures for Substring Manipulationcccooveenene. 13
3.71 EXTRACT (string [, start] [, finish])ooveiiiiiii e, 14
3.7.2 INSERT (string, start, SUDSIIING) ovvvriiiiiiii e e e 14
3.7.3 REMOVE (string [, start] [, finish]) ...oooeriiiii e e, 14
3.74 REPLACE (string, start, substring) or

REPLACE (string, start, finish, substring) or
REPLACE (string, target, substring [,every] [,back])ccoiiiiiinnn. 15
3.75 SPLIT (string, word, set [, separator] [, back])coooviiiiiiii i, 16
Annex A. Module ISO_VARYING_STRINGoiiiii i e e e re e 17
ANNEX B. TWO BXAMPIES.ttt et e e e e e e et e et e e 17
= 700 Y o I oo | 17

B.2 VOCaDUIArY [ISt ... 18

INTERNATIONAL STANDARD O ISO/IEC | SO/IEC 1539-2: 1999(E)

| SO/IEC 1539-2: 1999(E) — Information technology —
Programming languages — Fortran —
Part 2: Varying Length Character Strings

1 General

1.1 Scope

This part of ISO/IEC 1539 definesfacilitiesin Fortran for the manipulation of character strings of dynamically
variable length. This part of ISO/IEC 1539 provides an auxiliary standard for the version of the Fortran
language specified by |SO/IEC 1539-1 and informally known as Fortran 95.

1.2 Changes from the previous version

This standard is a development from a previous version known as | SO/IEC 1539-2; 1994 that takes account of
the improvements introduced in Fortran 95. The most significant improvements in Fortran 95 for the present
standard were the introduction of pure and elemental procedures. Since pure and elemental functions can be
used in specification expressions, their introduction in this standard enhances the usability of the standard for
the end user. The ability to define many of the functions specified in this standard to be elemental improvesthe
compatibility of these functions with similar intrinsic functions defined by the main standard.

The improvements in type initialization provided in Fortran 95 have also enabled the sample implementation
referred to in Annex A to be written in such away that significant leakage of memory isless likely to occur.

The following summarises the changes made to the facilities provided by the standard :—

The assignment, concatenation, and comparison operations are extended to describe elementa
semantics.

CHAR is extended to describe pure semantics.

| SO/IEC 1539-2:1999 DRAFT

ADJUSTL, ADJUSTR, EXTRACT, | ACHAR, | CHAR, | NDEX, | NSERT, LEN, LEN TRI M LGE, LGT,
LLE, LLT, REMOVE, REPEAT, REPLACE, SCAN, SPLI T, TRI M VAR STR, and VERI FY are dl
extended to describe e emental semantics.

1.3 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this
part of ISO/IEC 1539. At thetime of publication, the editionsindicated were valid. All standards are subject to
revision, and parties to agreements based on this part of ISO/IEC 1539 are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below. Members of 1EC and 1SO
maintain registers of currently valid International Standards.

ISO/IEC 646 : 1991 Information technology — 1SO 7-bit Coded character set for information interchange.
ISO/IEC 1539-1 : 1997 Information technology — Programming Languages — Fortran.

2 Overview

This part of ISO/IEC 1539 is an auxiliary standard to that defining Fortran 95 in that it defines additional
facilitiesto those defined intrinsically in the primary language standard. A processor conforming to the Fortran
95 standard is not required to also conform to this part of 1SO/IEC 1539. However, conformance to this part of
ISO/IEC 1539 assumes conformance to the primary Fortran 95 standard.

This part of 1ISO/IEC 1539 prescribes the name of a Fortran module, the name of a derived data type to be used
to represent varying-length strings, the interfaces for the procedures and operators to be provided to
mani pul ate objects of this type, and the semantics that are required for each of the entities made accessible by
this module.

This part of ISO/IEC 1539 does not prescribe the details of any implementation. Neither the method used to
represent the data entities of the defined type nor the algorithms used to implement the procedures or operators
whose interfaces are defined by this part of 1SO/IEC 1539 are prescribed. A conformant implementation may
use any representation and any algorithms, subject only to the requirement that the publicly accessible names
and interfaces conform to this part of 1SO/IEC 1539, and that the semantics are as required by this part of
ISO/IEC 1539 and those of ISO/IEC 1539-1 : 1997.

It should be noted that a processor is not required to implement this part of 1SO/IEC 1539 in order to be a
standard conforming Fortran processor, but if a processor implements facilities for manipulating varying
length character strings, it is recommended that this be done in a manner that is conformant with this part of
ISO/IEC 1539.

A processor conforming to this part of 1SO/IEC 1539 may extend the facilities provided for the manipulation
of varying length character strings aslong as such extensions do not conflict with this part of 1SO/IEC 1539 or
with ISO/IEC 1539-1 : 1997.

A module, written in standard conforming Fortran, is referenced in Annex A. This module illustrates one way
in which the facilities described in this part of ISO/IEC 1539 could be provided. This module is both
conformant with the requirements of this part of ISO/IEC 1539 and, because it is written in standard
conforming Fortran, it provides a portable implementation of the required facilities. This module is referenced

DRAFT | SO/IEC 1539-2:1999

for information only and is not intended to constrain implementations in any way. This module is a
demonstration that at least one implementation, in standard conforming and hence portable Fortran, is
possible.

It should be noted that this part of 1SO/IEC 1539 defines facilities for dynamically varying length strings of
characters of default kind only. Throughout this part of ISO/IEC 1539 al references to intrinsic type
CHARACTER should be read as meaning characters of default kind. Similar facilities could be defined for
non-default kind characters by a separate, if similar, module for each such character kind.

This part of ISO/IEC 1539 has been designed, as far as is reasonable, to provide for varying length character
strings the facilities that are available for intrinsic fixed length character strings. All the intrinsic operations
and functions that apply to fixed length character strings have extended meanings defined by this part of
ISO/IEC 1539 for varying length character strings. Also asmall number of additional facilities are defined that
are appropriate because of the essential differences between the intrinsic type and the varying length derived
data type.

I SO/IEC 1539-2:1999 DRAFT
3 Requirements

3.1 The Name of the M odule
The name of the module shall be
| SO VARYI NG_STRI NG

Programs shall be able to access the facilities defined by this part of 1SO/IEC 1539 by the inclusion of USE
statements of the form

USE | SO _VARYI NG_STRI NG

3.2 TheType
The type shall have the name
VARYI NG_STRI NG

Entities of thistype shall represent values that are strings of characters of default kind. These character strings
may be of any non-negative length and this length may vary dynamically during the execution of a program.
There shall be no arbitrary upper length limit other than that imposed by the size of the processor and the
complexity of the programs it is able to process. The characters representing the value of the string have
positions 1,2,...,N, where N is the length of the string. The internal structure of the type shall be PRI VATE to
the module.

3.3 Extended Meaningsfor Intrinsic Operators

The meanings for the intrinsic operators of:

assignment =

concatenation //

comparisons ==, /=, <, <=, >=, >

shall be extended to accept any combination of operands of type VARYI NG_STRI NG and type CHARACTER.
Note that the equivalent comparison operator forms. EQ ,. NE.,. LT.,. LE.,. GE. ,and . GTI. aso have
their meanings extended in this manner.

331 Assignment

An elementa assignment of the form

var = expr

shall be defined with the following type combinations:

VARYI NG_STRI NG and VARYI NG_STRI NG
VARY! NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

Action. The charactersthat are the value of the expression expr become the value of the variable var . There
are two cases:

Case(i): Wherethevariableis of type VARYI NG_STRI NG, the length of the variable becomes that of the

DRAFT

| SO/IEC 1539-2:1999

expression.

Case(ii): Where the variable is of type CHARACTER, the rules of intrinsic assignment to a Fortran

character variable apply. Namely, if the expression string islonger than the declared length of the
character variable, only the left-most characters are assigned. If the character variable is longer
than that of the string expression, it is padded on the right with blanks.

3.3.2 Concatenation

The elemental concatenation operation

string_a// string_b

shall be defined with the following type combinations:

VARYI NG_STRI NGand VARYl NG_STRI NG
VARYI NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

The values of the operands are unchanged by the operation.

Result Characterigtics. Of type VARYI NG_STRI NG

Result Value. The result value is a new string whose characters are the same as those produced by
concatenating the operand character strings in the order given.

3.3.3 Comparisons

Elemental comparisons of the form

stri
stri
stri
stri
stri
stri

ng_a
ng_a
ng_a
ng_a
ng_a
ng_a

== string_b
/= string_b
< string_b
<= string_ b
> string_b
>= string_b

shall be defined for operands with the following type combinations:

VARYI NG_STRI NGand VARYl NG_STRI NG
VARY! NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

The values of the operands are unchanged by the operation. Note that the equivalent operator forms . EQ. ,
.NE.,.LT.,.LE ,.GE ,and. GI. aso havetheir meanings extended in this manner.

Result Characteristics. Of type default LOG CAL.

Result Value. Theresult valueistrueif st ri ng_a standsintheindicated relationtost ri ng_b andisfase
otherwise. The collating sequence used for the inequality comparisons is that defined by the processor for
characters of default kind. If st ri ng_a and st ri ng_b areof different lengths, the comparison isdone asif
the shorter string were padded on the right with blanks.

| SO/IEC 1539-2:1999 DRAFT

3.4 Extended Meaningsfor Generic Intrinsic Procedures

The generic intrinsic procedures ADJUSTL, ADJUSTR, CHAR, | ACHAR, | CHAR, | NDEX, LEN, LEN_TRI M
LGE, LGT, LLT, LLE, REPEAT, SCAN, TRI M and VERI FY shall have their meanings extended to include the
appropriate argument type combinations involving VARYI NG STRI NG and CHARACTER. Detailed
descriptions of the extensions are given in this section.

34.1 ADJUSTL (string)

Description. Adjusts to the left, removing any leading blanks and inserting trailing blanks.

Class. Elemental function.

Argument. st ri ng shall be of type VARYl NG_STRI NG

Result Characteristics. Of type VARYI NG_STRI NG

Result Value. The result value is the same as st ri ng except that any leading blanks have been deleted and
the same number of trailing blanks inserted.

3.4.2 ADJUSTR (string)

Description. Adjusts to the right, removing any trailing blanks and inserting leading blanks.

Class. Elemental function.

Argument. st ri ng shal be of type VARYl NG_STRI NG,

Result Characteristics. Of type VARYI NG_STRI NG

Result Value. The result value isthe same as st ri ng except that any trailing blanks have been deleted and
the same number of leading blanks inserted.

343 CHAR (string [, length])

Description. Converts a varying string value to default CHARACTER.

Class. Pure transformational function.

Arguments.

st ri ng shall be scalar and of type VARYlI NG_STRI NG

| engt h (optional) shall be scalar and of type default | NTEGER.

Result Characteristics. Scalar of type default CHARACTER. If | engt h is absent, the result has the same
lengthasstri ng. If | engt h is present, the result has the length specified by the argument | engt h.

Result Value.
Case(i): If | engt h isabsent, the result is a copy of the charactersin the argument st ri ng.

Case(ii): If | engt h ispresent, the result is a copy of the charactersin the argument st r i ng that may have
been truncated or padded. If st ri ng islonger than | engt h, the result is truncated on the right. If
st ri ng isshorter than | engt h, the result is padded on the right with blanks. If | engt h isless than
one, the result is of zero length.

Note. Thisfunction is elemental in Fortran 95, where it hastheform CHAR(i [, ki nd]), with
i of type integer.

DRAFT | SO/IEC 1539-2:1999

344 |ACHAR (o)

Description. Returns the position of a character in the collating sequence defined by the International
Standard 1SO 646 : 1991.

Class. Elemental function.

Argument. ¢ shall be of type VARYl NG_STRI NG and of length exactly one.

Result Characteristics. Of type default | NTEGER.

Result Value. The result value is the position of the character ¢ in the collating sequence defined by the
International Standard 1SO 646 : 1991 for default characters. If the character ¢ is not defined in the standard
set, the result is processor dependent but is always equal to | ACHAR(CHAR(c)) .

345 |ICHAR (c)

Description. Returns the position of a character in the processor defined collating sequence.

Class. Elemental function.

Argument. ¢ shall be of type VARYI NG_STRI NG and of length exactly one.

Result Characteristics. Of type default | NTEGER.

Result Value. Theresult value isthe position of the character ¢ in the processor defined collating sequence for
default characters. That is, the result valueis | CHAR(CHAR(c)) .

3.4.6 INDEX (string, substring [, back])

Description. Returns an integer that is the starting position of a substring within a string.

Class. Elemental function.

Arguments.

string andsubstri ng shall be of one of the type combinations:

VARYI NG_STRI NGand VARYl NG_STRI NG
VARYI NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

back (optional) shall be of type default LOG CAL.
Result Characteristics. Of type default | NTEGER.
Result Value.

Case(i): If back isabsent or is present with the value false, the result is the minimum positive value of | such
that

EXTRACT(string, |, +LEN(substring)-1)==substri ng,
(where EXTRACT isdefined in Section 3.7) or zero if there is no such value.

Case(ii): If back is present with the value true, the result is the maximum value of | less than or equal to
LEN(st ri ng) —LEN(subst ri ng) +1 such that

EXTRACT(string, |, +LEN(substring)-1) ==substri ng,

or zero if there is no such value.

TRIM (string) a, string b) a, string b)

| SO/IEC 1539-2:1999 DRAFT

347 LEN (string)

Description. Returns the length of a character string.

Class. Elemental function.

Argument. st ri ng shall be of type VARYI NG_STRI NG. The argument is unchanged by the procedure.
Result Characteristics. Of type default | NTEGER.

Result Value. The result value is the number of charactersinstri ng.

Note. This function is not elemental for st ri ng of type CHARACTER.

348 LEN_TRIM (string)

Description. Returns the length of a string not counting any trailing blanks.

Class. Elemental function.

Argument. st ri ng shall be of type VARYI NG_STRI NG

Result Characteristics. Of type default | NTEGER.

Result Value. The result value is the position of the last non-blank character in stri ng. If the argument
st ri ng contains only blank characters or is of zero length, the result is zero.

349 LGE (string_a, string_b)

Description. Compares the lexical ordering of two strings based on the 1SO 646 : 1991 collating sequence.
Class. Elemental function.

Arguments.

string_aandstring_b shal beof one of the type combinations:

VARYI NG_STRI NG and VARYI NG_STRI NG
VARY! NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

Result Characteristics. Of type default LOG CAL.

Result Value. The result valueistrue if st ri ng_a islexically greater than or equal to stri ng_b, and is
false otherwise. The collating sequence used to establish the ordering of charactersis that of the International
Standard 1ISO 646 : 1991. If st ri ng_a and st ri ng_b areof different lengths, the comparison is done as if
the shorter string were padded on the right with blanks. If either argument contains a character ¢ not defined
by the standard, the result value is processor dependent and based on the collating value for | ACHAR(c) .
Zero length strings are considered to be lexically equal.

3.4.10 LGT (string_a, string_b)

Description. Compares the lexical ordering of two strings based on the 1SO 646 : 1991 collating sequence.
Class. Elemental function.

Arguments.

string_aandstring b shal beof one of the type combinations:

a, string b) a, string b)

DRAFT | SO/IEC 1539-2:1999

VARY! NG_STRI NGand VARY! NG_STRI NG
VARYI NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

Result Characteristics. Of type default LOG CAL.

Result Value. The result value is true if string_a is lexicaly greater than string_b, and is false
otherwise. The collating sequence used to establish the ordering of characters is that of the International
Standard 1ISO 646 : 1991. If st ri ng_a and st ri ng_b are of different lengths, the comparison is done as if
the shorter string were padded on the right with blanks. If either argument contains a character ¢ not defined
by the standard, the result value is processor dependent and based on the collating value for | ACHAR(c) .
Zero length strings are considered to be lexically equal.

34.11 LLE (string_a, string_b)

Description. Compares the lexical ordering of two strings based on the 1SO 646 : 1991 collating sequence.
Class. Elemental function.

Arguments.

string_aandstring_b shall be of one of the type combinations:

VARYI NG_STRI NGand VARYI NG_STRI NG
VARY! NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

Result Characteristics. Of type default LOG CAL.

Result Value. Theresult valueistrueif st ri ng_a islexicaly lessthan or equal tost ri ng_b, andisfase
otherwise. The collating sequence used to establish the ordering of characters is that of the International
Standard 1SO 646 : 1991. If st ri ng_a and st ri ng_b areof different lengths, the comparison is done as if
the shorter string were padded on the right with blanks. If either argument contains a character ¢ not defined
by the standard, the result value is processor dependent and based on the collating value for | ACHAR(c) .
Zero length strings are considered to be lexically equal.

34.12 LLT (string_a, string_b)

Description. Compares the lexical ordering of two strings based on the 1SO 646 : 1991 collating sequence.
Class. Elemental function.

Arguments.

string_aandstring_b shall be of one of the type combinations:

VARYI NG_STRI NGand VARYI NG_STRI NG
VARYI NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

Result Characteristics. Of type default LOG CAL.

Result Value. Theresult valueistrueif stri ng_a islexicaly lessthan st ri ng_b, and isfalse otherwise.
The collating sequence used to establish the ordering of charactersis that of the International Standard SO
646 : 1991. If string_a and stri ng_b are of different lengths, the comparison is done as if the shorter
string were padded on the right with blanks. If either argument contains a character ¢ not defined by the
standard, the result value is processor dependent and based on the collating value for | ACHAR(c) . Zero

| SO/IEC 1539-2:1999 DRAFT

length strings are considered to be lexically equal.

3.4.13 REPEAT (string, ncopies)

Description. Concatenates several copies of a string.
Class. Elemental function.

Arguments.

st ri ng —shall be of type VARYl NG_STRI NG,
ncopi es — shall be of type default | NTEGER.
Result Characteristics. Of type VARYl NG_STRI NG

Result Value. The result value is the string produced by repeated concatenation of the argument stri ng,
producing a string containing ncopi es copies of st ri ng. If the value of ncopi es is not positive, the
result is of zero length.

Note. This function is not elemental for st ri ng of type CHARACTER.

3.4.14 SCAN (string, set [, back])

Description. Scans a string for any one of the charactersin a set of characters.
Class. Elemental function.

Arguments.

string and set shall be of one of the type combinations:

VARYI NG_STRI NGand VARYl NG_STRI NG
VARYI NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

back (optional) shall be of type default LOG CAL.
Result Characteristics. Of type default | NTEGER.
Result Value.

Case(i): If back isabsent or ispresent with thevaluefalseand if st ri ng contains at |east one character that
isinset , the value of the result is the position of the left-most character of st ri ng that isinset .

Case(ii): If back is present with the value true and if st ri ng contains at least one character that isin set ,
the value of the result is the position of the right-most character of st ri ng thatisinset .

Case(iii): The value of the result is zero if no character of string isin set or if the length of either
stringorset iszero.

3.4.15 TRIM (string)

Description. Removes trailing blanks from a string.

Class. Elemental function.

Argument. st ri ng shall be of type VARYl NG_STRI NG

Result Characteristics. Of type VARYI NG_STRI NG

10

STR (char)

DRAFT | SO/IEC 1539-2:1999

Result Value. Theresult valueisthe sameasst ri ng except that any trailing blanks have been deleted. If the
argument st r i ng contains only blank characters or is of zero length, the result is a zero-length string.

Note. This function is not elemental for st r i ng of type CHARACTER.

3.4.16 VERIFY (string, set [, back])

Description. Verifies that a string contains only characters from a given set by scanning for any character not
in the set.

Class. Elemental function.
Arguments.
string and set shall be of one of the type combinations:

VARY! NG_STRI NGand VARY! NG_STRI NG
VARYI NG_STRI NG and CHARACTER
CHARACTER and VARYI NG_STRI NG

back (optional) shall be of type default LOG CAL.
Result Characteristics. Of type default | NTEGER.
Result Value.

Case(i): If back isabsent or ispresent with thevaluefalseand if st r i ng contains at least one character that
isnot in set , the value of the result is the position of the left-most character of st ri ng that isnot in
set .

Case(ii): If back is present with the value true and if st ri ng contains at least one character that is not in
set , the value of the result is the position of the right-most character of st ri ng that isnot in set .

Case(iii): Thevalue of theresult is zero if each character of st ri ngisinset orif thelengthof stri ngis
zero.

3.5 Additional Generic Procedure for Type Conversion

An additional generic procedure shall be added to convert intrinsic fixed-length character values into
varying-length string val ues.

351 VAR_STR (char)

Description. Converts an intrinsic fixed-length character value into the equivalent varying-length string value.
Class. Elemental function.

Argument. char shall be of type default CHARACTER and may be of any length.

Result Characteristics. Of type VARYlI NG_STRI NG

Result Value. The result value is the same string of characters as the argument.

11

| SO/IEC 1539-2:1999 DRAFT

3.6 Additional Generic Proceduresfor Input/Output

The following additional generic procedures shall be provided to support input and output of varying-length
string values with formatted sequential files.

CGET —input part or al of arecord into a string
PUT — append a string to an output record
PUT_LI NE — append a string to an output record and end the record

3.6.1 GET (string [, maxlen] [, iostat]) or
GET (unit, string [, maxlen] [, iostat]) or
GET (string, set [, separator] [, maxlen] [, iostat]) or
GET (unit, string, set [, separator] [, maxlen] [, iostat])

Description. Reads characters from an externa file into a string.

Class. Subroutine.

Arguments.

st ri ng shal be scaar and of type VARYI NG_STRI NG It isan INTENT(OUT) argument.
max| en (optional) shall be scalar and of type default | NTEGER. It isan INTENT(IN) argument.

uni t shall be scalar and of type default | NTEGER. It is an INTENT(IN) argument that specifies the input
unit to be used. The unit shall be connected to aformatted file for sequential read access. If the argument
uni t isomitted, the default input unit is used.

set shall be scalar and either of type VARYI NG_STRI NG or of type CHARACTER. It is an INTENT(IN)
argument.

separ at or (optional) shall be scalar and of type VARYI NG_STRI NG It isan INTENT(OUT) argument.
i ostat (optional) shall be scalar and of type default | NTEGER. It isan INTENT(OUT) argument.

Action. The GET procedure causes characters from the connected file, starting with the next character in the
current record if thereis acurrent record or the first character of the next record if not, to be read and stored in
the variable st ri ng. The end of record always terminates the input but input may be terminated before this.
If max| en is present, its value indicates the maximum number of characters that will be read. If max| en is
less than or equal to zero, no characters will be read and st ri ng will be set to zero length. If max| en is
absent, amaximum of HUGE(1) isused. If theargument set isprovided, this specifies aset of charactersthe
occurrence of any of which will terminate the input. Thisterminal character, although read from the input file,
will not be included in the result string. The file position after the data transfer is complete, is after the last
character that was read. If the argument separ at or is present, the actua character found which terminates
thetransfer isreturned in separ at or . If thetransfer is terminated other than by the occurrence of a character
inset , azerolength string isreturned in separ at or . If thetransfer is terminated by the end of record being
reached, the fileis positioned after the record just read. If present, the argument i ost at is used to return the
status resulting from the data transfer. A zero value is returned if a valid read operation occurs and the
end-of-record is not reached, a positive value if an error occurs, and a negative value if an end-of-file or
end-of-record condition occurs. Note, the negative value returned for an end-of-file condition shall be different
from that returned for an end-of-record condition. If i ost at is absent and an error or end-of-file condition
occurs, the program execution is terminated.

12

LINE (string [, 1ostat]) or PUT LINE (unit, string [, i1ostat])

DRAFT | SO/IEC 1539-2:1999

3.6.2 PUT (string [, iostat]) or PUT (unit, string [, iostat])
Description. Writes a string to an external file.

Class. Subroutine.

Arguments.

string shall be scalar and either of type VARYl NG_STRI NG or type CHARACTER. It isan INTENT(IN)
argument.

uni t shall be scalar and of type default | NTEGER. It isan INTENT(IN) argument that specifies the output
unit to be used. The unit shall be connected to a formatted file for sequential write access. If the
argument uni t isomitted, the default output unit is used.

i ostat (optional) shall be scalar and of type default | NTEGER. It isan INTENT(OUT) argument.

Action. The PUT procedure causes the characters of st ri ng to be appended to the current record, if thereis
acurrent record, or to the start of the next record if there is no current record. The last character transferred
becomes the last character of the current record, which is the last record of the file. If present, the argument
i ost at isused to return the status resulting from the data transfer. A zero value is returned if avalid write
operation occurs, and a positive value if an error occurs. If i ost at is absent and anything other than avalid
write operation occurs, the program execution is terminated.

3.6.3 PUT_LINE (string [, iostat]) or PUT_LINE (unit, string [, iostat])
Description. Writes a string to an external file and ends the record.

Class. Subroutine.

Arguments.

st ri ng shall bebescalar and either of type VARYlI NG_STRI NGor type CHARACTER. Itisan INTENT(IN)
argument.

uni t shall be be scalar and of type default | NTEGER. It is an INTENT(IN) argument that specifies the
output unit to be used. The unit shall be connected to a formatted file for sequential write access. If the
argument uni t isomitted, the default output unit is used.

i ostat (optional) shall be scalar and of type default | NTEGER. It isan INTENT(OUT) argument.

Action. The PUT_LI NE procedure causes the characters of st ri ng to be appended to the current record, if
thereisacurrent record, or to the start of the next record if there is no current record. Following completion of
the datatransfer, thefileis positioned after the record just written, which becomes the previous and last record
of thefile. If present, theargument i ost at isused to return the status resulting from the datatransfer. A zero
valueisreturned if avalid write operation occurs, and a positive value if an error occurs. If i ost at is absent
and anything other than a valid write operation occurs, the program execution is terminated.

3.7 Additional Generic Proceduresfor Substring Manipulation
The following additional generic procedures shall be provided to support the manipulation of scalar substrings
of scalar varying-length strings.

EXTRACT — extract a section from a string
I NSERT —insert a substring into a string
REMOVE - remove a section of a string
REPLACE — replace a substring in a string

13

| SO/IEC 1539-2:1999 DRAFT

SPLI T —split astring into two at the occurrence of a separator

3.7.1 EXTRACT (string [, start] [, finish])

Description. Extracts a specified substring from a string.

Class. Elemental function.

Arguments.

st ri ng shall be either of type VARYlI NG_STRI NG or type default CHARACTER

start (optiona) shall be of type default | NTEGER.

fini sh (optional) shall be of type default | NTEGER.

Result Characteristics. Scalar of type VARYl NG_STRI NG

Result Value. Theresult value is a copy of the characters of the argument st r i ng between positionsst ar t
andfi ni sh,inclusive. If st art isabsent or less than one, thevalueoneisused for start.If fi ni shis
absent or greater than LEN(st ri ng) , thevalue LEN(st ri ng) isusedforfi ni sh.Iffi ni shislessthan
st art, theresult is a zero-length string.

3.7.2 INSERT (string, start, substring)

Description. Inserts a substring into a string at a specified position.

Class. Elemental function.

Arguments.

st ri ng shall be either type VARYI NG_STRI NG or type default CHARACTER.

st art shall betype default | NTEGER.

subst ri ng shall be either type VARYI NG_STRI NG or type default CHARACTER.

Result Characteristics. Of type VARYI NG_STRI NG

Result Value. The result value is a copy of the characters of the argument st ri ng with the characters of
substri ng inserted into the copy of stri ng before the character at the character position st art. If
st art isgreater than LEN(st ri ng, thevalue LEN(string) +1) isusedforstart andsubstri ngis
appended to the copy of string. If start is less than one, the value one is used for start and
substri ng isinserted before the first character of the copy of stri ng.

3.7.3 REMOVE (string [, start] [, finish])

Description. Removes a specified substring from a string.

Class. Elemental function.

Arguments.

st ri ng shall be either of type VARYI NG_STRI NG or type default CHARACTER
start (optiona) shall be of type default | NTEGER.
fi ni sh (optional) shall be of type default | NTEGER.

Result Characteristics. Of type VARYI NG_STRI NG.

Result Value. The result value is a copy of the characters of st r i ng with the characters between positions
start and fi ni sh, inclusive, removed. If st art is absent or less than one, the value one is used for

14

DRAFT | SO/IEC 1539-2:1999

start.Iffini shisabsentor greater than LEN(st ri ng, thevaueLEN(stri ng) isusedforfi ni sh.If
finishislessthanstart, the characters of st ri ng are delivered unchanged as the result.

3.7.4 REPLACE (string, start, substring) or
REPLACE (string, start, finish, substring) or
REPLACE (string, target, substring [,every] [,back])

Description. Replaces a subset of the characters in a string by a given substring. The subset may be specified
either by position or by content.

Class. Elemental function.

Arguments.

st ri ng shall be either of type VARYI NG_STRI NG or type default CHARACTER.

st art shall be of type default | NTEGER.

fi ni sh shal be of type default | NTEGER.

subst ri ng shall be either of type VARYI NG_STRI NG or type default CHARACTER.

t ar get shal be either of type VARYlI NG_STRI NG or type default CHARACTER. It shall not be of zero
length.

every (optional) shall be of type default LOG CAL.
back (optional) shall be of type default LOG CAL.
Result Characteristics. Of type VARYI NG_STRI NG
Result Value. The result value is a copy of the charactersin st r i ng modified as per one of the cases below.
Case(i): For areference of the form
REPLACE(string, start, substring)

the characters of the argument subst ri ng are inserted into the copy of st ri ng beginning with the
character at the character position start. The characters in positions from start to
M N(start+LEN(substring)—-1, LEN(string)) are deleted. If start is greater than
LEN(string),thevalue LEN(string) +1 isused for start and substri ng is appended to the
copy of string. If start islessthan one, thevalue oneisused for start .

Case(ii): For areference of the form
REPLACE(string, start, finish, substring)

the characters in the copy of stri ng between positions start and fi ni sh, including those at
start andfi ni sh, are deleted and replaced by the characters of substri ng. If start islessthan
one, the value one is used for start. If finish is greater than LEN(stri ng, the vaue
LEN(string) isusedforfi ni sh.Iffini shislessthanst art, thecharactersof substri ng are
inserted before the character at st art and no characters are deleted.

Case(iii): For areference of the form
REPLACE(string, target, substring, every, back)

the copy of stri ng is searched for occurrences of t ar get. The search is done in the backward
direction if the argument back is present with the value true, and in the forward direction otherwise. If
t ar get isfound, itisreplaced by subst ri ng. If every is present with the value true, the search and

15

| SO/IEC 1539-2:1999 DRAFT

replace is continued from the character following t ar get in the search direction specified until al
occurrences of t ar get in the copy string are replaced; otherwise only the first occurrence of t ar get
is replaced.

3.75 SPLIT (string, word, set [, separator] [, back])

Description. Splits a string into two substrings with the substrings separated by the occurrence of a character
from a specified separator set.

Class. Elemental subroutine.

Arguments.

string shal beof type VARYI NG_STRI NG Itisan INTENT(INOUT) argument.

wor d shall be of type VARYI NG_STRI NG It isan INTENT(OUT) argument.

set shall beeither of type VARYlI NG_STRI NGor type default CHARACTER. Itisan INTENT(IN) argument.
separ at or (optional) shall be of type VARYI NG_STRI NG. It isan INTENT(OUT) argument.

back (optional) shall be of type default LOd CAL. Itisan INTENT(IN) argument.

Action. The effect of the procedure isto divide the st ri ng at the first occurrence of a character that isin
set. Thestri ng issearched in the forward direction unless back is present with the value true, in which
case the search is in the backward direction. The characters passed over in the search are returned in the
argument wor d and the remainder of the string, not including the separator character, is returned in the
argument st r i ng. If no character from set isfound or set isof zero length, the whole string is returned in
wor d and st ri ng isreturned as zero length. If the argument separ at or is present, the actual character
found which separates thewor d from the remainder of thest r i ng isreturned in separ at or . The effect of
the procedure is such that, on return, either

wor d/ / separator//string
is the same as the initial string for aforward search, or
string//separator//word

isthe same as the initial string for a backward search.

16

VARYING STRING

DRAFT | SO/IEC 1539-2:1999

Annex A. ModuleISO_VARYING_STRING

A sample implementation of the module ISO_VARYING_STRING is available from ftp.nag.co.uk/sc22wg5
and iswritten in Fortran 95, conformant with the language as specified in the standard 1SO/IEC 1539-1 : 1997.
It is intended to be a portable implementation of a module conformant with this part of 1SO/IEC 1539 family
of standards. It is not intended to be prescriptive of how facilities consistent with this part of 1ISO/IEC 1539
should be provided. This module is intended primarily to demonstrate that portable facilities consistent with
the interfaces and semantics required by this part of 1SO/IEC 1539 could be provided within the confines of
the Fortran language. It is also included as a guide for users of processors which do not have supplier-provided
facilities implementing this part of ISO/IEC 1539.

It should be noted that while every care has been taken by the technical working group to ensure that this
moduleis a correct implementation of this part of 1ISO/IEC 1539 in valid Fortran code, no guarantee is given or
implied that this code will produce correct results, or even that it will execute on any particular processor.
Neither is there any implication that this illustrative module is in any way an optimal implementation of this
standard; it is merely one fairly straightforward portable module that is known to provide a functionally
conformant implementation on afew processors.

Annex B. Two examples

This annex includes some examples illustrating the use of facilities conformant with this part of 1ISO/IEC
1539. It should be noted that while every care has been taken by the technical working group to ensure that
these example programs are a correct implementation of the stated problems using this part of ISO/IEC 1539
and in valid Fortran code, no guarantee is given or implied that this code will produce correct results, or even
that it will execute on any particular processor.

B.1 Word count

The first example performs aword count. Note, it is not claimed that this program is the best way to code this
problem, nor even that it is a good way, merely that it is a way of solving this simple problem using the
facilities defined by use of the facilities defined in this part of 1SO/IEC 1539.

PROGRAM wor d_count

I Counts the number of "words" contained in a file. The words are assunmed to
I be terminated by any one of:

| space, comm, period,!,?, or the EoR

! The file nmay have records of any length and the file nay contai n any nunber
I of records.

I The program pronpts for the nanme of the file to be subject to a word count
I and the result is witten to the default output unit

USE | SO_VARYI NG_STRI NG

| MPLI CI' T NONE

type(VARYI NG STRING :: line,fnane

| NTEGER :: ierr,nd, wcount =0
fnane = "initial string"

17

| SO/IEC 1539-2:1999 DRAFT

VWRI TE(*, ADVANCE=" NO , FMI=' (A)') " Input name of file?"
CALL CET(STRING=fnane) ! read the required filename fromthe default
! input unit assuned to be the whole of the record read
OPEN(UNI T=10, FI LE=CHAR(fnane)) ! CHAR(fnane) converts to the type
I required by FILE= specifier
file_read: DO ! until EoF reached
CALL CET(10,line, | OSTAT=ierr) ! read next line of file

IF(ierr == -1 .OR ierr >0)EXIT file_read
word _scan: DO! until end of line
nd=SCAN(line," ,.!?") | scan to find end of word

IF(nd == 0)THEN ! EoR is end of word
nd = LEN(Ii ne)
EXIT word_scan

ENDI F
| F(nd > 1) wcount=wcount+1 ! at |east one non-terninator character
! in the word
line = REMOVE(line,1,nd) ! strips the counted word and its term nator

I fromthe line reducing its length before
I rescanning for the next word
ENDDO wor d_scan
| F(nd > 0) wcount =wcount +1
ENDDO fil e read
| F(ierr < 0) THEN
WRI TE(*,*) "No. of words in file =", wcount
ELSElI F(i err > 0) THEN
WRI TE(*,*) "Error in GET file in word _count, No. ",ierr
ENDI F
ENDPROGRAM wor d_count

B.2 Vocabulary list

A second and rather more realistic example is one which extends the above trivial example by producing afull
vocabulary list along with frequency of occurrence for each different word. Again thereisno claim that thisis
in anyway an optimal coding of this problem. It is merely an example that uses some of the facilities defined
by this part of 1SO/IEC 1539.

PROGRAM vocabul ary_wor d_count

Counts the nunmber of "words" contained in a file. The words are assuned to
be term nated by any one of:

space, commm, period,!,?, or the EoR

The file may have records of any length and the file may contai n any nunber
of records.

The program pronpts for the nane of the file to be subject to a word count

and the result is witten to the default output unit

Al'so builds a Iist of the vocabulary found and the frequency of occurrence

of each different word. !

USE | SO_VARYI NG_STRI NG
I MPLI CI' T NONE

18

DRAFT | SO/IEC 1539-2:1999

type(VARYI NG STRING :: line,word, fnane
| NTEGER :: ierr,nd, wcount =0

I Vocabul ary list and frequency count arrays. The size of these arrays wll !
I be extended dynami cally in steps of 100 as the used vocabul ary grows !

t ype(VARYI NG_STRI NG , ALLOCATABLE, DI MENSI ON(:) :: vocab

| NTEGER, ALLOCATABLE, DI MENSI O\(:) ;1 freq
| NTEGER c: list_size=200,1ist_top=0
| NTEGER :: i I 1 oop index

I NTEGER :: record_count=1
! Initialise the lists and deternine the file to be processed !

ALLOCATE(vocab(1:1ist_size),freq(1:1ist_size))
VWRI TE(*, ADVANCE=' NO , FMI=' (A)') " Input name of file?"
CALL GET(STRING=fnanme) ! read the required filename fromthe default
! input unit assuned to be the whole of the record read
OPEN(UNI T=1, FI LE=CHAR(f nane)) ! CHAR(fnane) converts to the type
I required by FILE= specifier
file_read: DO! until EoF reached
CALL GET(1,line,l OSTAT=ierr) | read next line of file
IF(ierr == -1 .OR ierr > 0EXTfile_read
WRI TE(*,*) " record #",record_count,"” being processed"
Record_count =record_count +1
word_scan: DO! until end of |ine
nd=SCAN(line," ,.!?") ! scan to find end of word
IF(nd == O)THEN ! EoR is end of word
nd = LEN(line)+1
EXIT word_scan
ENDI F
IF(nd > 1)THEN ! at |east one non-terminator character in the word
wcount =wcount +1
word = EXTRACT(line, 1, nd-1)
CALL update_vocab lists
ENDI F
line = REMOVE(line,1,nd) ! strips the counted word and its term nator
I fromthe Iine reducing its length before
I rescanning for the next word
ENDDO wor d_scan
IF(nd > 1) THEN ! at |east one character in the word
wcount =wcount +1
word = EXTRACT(Iine, 1, nd-1)
CALL update_vocab_lists
ENDI F
ENDDO file read
| F(ierr < 0) THEN
VWRI TE(*,*) "No. of words in file =", wcount
WRI TE(*,*) "There are ",list_top," distinct words"
WRI TE(*,*) "with the follow ng frequenci es of occurance
print_loop: DOi=1,list_top

19

| SO/IEC 1539-2:1999 DRAFT

VWRI TE(*, FMT=" (1X, 16, 2X)"', ADVANCE=' NO) freq(i)
CALL PUT_LI NE(STRI NG=vocab(i))
ENDDO print _| oop
ELSEl F(i err > 0) THEN
WRI TE(*,*) "Error in GET in vocabul ary word_count, No.",ierr
ENDI F

CONTAI NS
SUBROUTI NE extend_lists

I Accesses the host variabl es: !
I type(VARYI NG_STRI NG, ALLOCATABLE, DI MENSI ON(:) :: vocab !
I | NTECGER, ALLOCATABLE, DI MENSI O\(:) o1 freq !
I | NTEGER i list_size !
| so as to extend the size of the |ists preserving the existing vocabul ary !
I and frequency information in the new extended lists !

t ype(VARYI NG_STRI NG), DI MENSI ON(| i st _si ze) :: vocab_swap

| NTEGER, DI MENSI ON(| i st _si ze) i freg_swap

| NTEGER, PARAMETER :: |ist_increnent=100

| NTEGER :: new list_size,alerr

vocab_swap = vocab ! copy old list into tenporary space
freq_swap =freq

new |ist_size = list_size + list_increnent

DEALLOCATE(vocab, freq)
ALLOCATE(vocab(1: new |ist_size),freq(l:new |ist_size), STAT=al err)
| F(al err /= 0) THEN

VWRI TE(*,*) "Unable to extend vocabulary list"

STOP
ENDI F
vocab(1l:list_size) = vocab_swap I copy old list back into bottom
freq(l:1ist_size) = freq_swap I of new extended I|i st

list_size = new |list_size
ENDSUBROUTI NE extend | i sts

SUBRQOUTI NE updat e_vocab_lists

Accesses the host vari abl es:
t ype(VARYI NG_STRI NG, ALLOCATABLE, DI MENSI ON(:) :: vocab

| NTEGER, ALLOCATABLE, DI MENSI ON(:) o1 freq
| NTEGER i list_size,list _top

searches the existing words in vocab to find a match for word
if found increments the freq if not found adds word to

list top + 1 vocab list and sets corresponding freq to 1

if list_size exceeded extend the |ist size before updating

!
!
!
!
I type(VARYI NG_STRI NG :: word
!
!
|
!

| NTEGER :: i I 1 oop index
list search: DOi=1,list _top
| F(word == vocab(i)) THEN

20

DRAFT

freq(i) = freq(i) + 1

RETURN
ENDI F
ENDDO | i st_search
IF(list_top == list_size) THEN
CALL extend lists
ENDI F
list top =1list _top + 1

vocab(list_top) = word
freq(list _top) =1
ENDSUBROUTI NE updat e_vocab_lists

ENDPROGRAM vocabul ary_wor d_count

| SO/IEC 1539-2:1999

21

