______________________________________________________________________ 25 Algorithms library [lib.algorithms] ______________________________________________________________________ 1 This clause describes components that C++ programs may use to perform algorithmic operations on containers (_lib.containers_) and other sequences. 2 The following subclauses describe components for non-mutating sequence operation (_lib.alg.nonmutating_), mutating sequence operations (_lib.alg.mutating.operations_), and sorting and related operations (_lib.alg.sorting_). 3 Headers: --<stl algorithms (TBD)> --<cstdlib> (partial) 4 Table 1: Table 1--Header <stl algorithms (TBD)> synopsis +-----------------------------------------------------------+ | Type Name(s) | +-----------------------------------------------------------+ |Template functions: | |adjacent_find [2] prev_permutation [2] | |binary_search [2] push_heap [2] | |copy random_shuffle [2] | |copy_backward remove | |count remove_copy | |count_if remove_copy_if | |equal [2] remove_if | |equal_range [2] replace | |fill replace_copy | |fill_n replace_copy_if | |find replace_if | |find_if reverse | |for_each reverse_copy | |generate rotate | |generate_n rotate_copy | |includes [2] search [2] | |inplace_merge [2] set_difference [2] | |lexicographical_compare [2] set_intersection [2] | |lower_bound [2] set_symmetric_difference [2] | |make_heap [2] set_union [2] | |max [2] sort [2] | |max_element [2] sort_heap [2] | |merge [2] stable_partition | |min [2] stable_sort [2] | |min_element [2] swap | |mismatch [2] swap_ranges | |next_permutation [2] transform [2] | |nth_element [2] unique [2] | |partial_sort [2] unique_copy [2] | |partial_sort_copy [2] upper_bound [2] | |partition | |pop_heap [2] | +-----------------------------------------------------------+ 5 Table 2: Table 2--Header <cstdlib> synopsis +-----------------------------+ | Type Name(s) | +-----------------------------+ |Functions: bsearch qsort | +-----------------------------+ SEE ALSO: ISO C subclause 7.10.5. 6 All of the algorithms are separated from the particular implementa tions of data structures and are parameterized by iterator types. Because of this, they can work with user defined data structures, as long as these data structures have iterator types satisfying the assumptions on the algorithms. 7 Both in-place and copying versions are provided for certain algo rithms. The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing the opera tion dominates the cost of copy, the copying version is not included. For example, sort_copy is not included since the cost of sorting is much more significant, and users might as well do copy followed by sort. When such a version is provided for algorithm it is called algorithm_copy. Algorithms that take predicates end with the suffix _if (which follows the suffix _copy). 8 The Predicate class is used whenever an algorithm expects a function object that when applied to the result of dereferencing the corre sponding iterator returns a value testable as true. In other words, if an algorithm takes Predicate pred as its argument and first as its iterator argument, it should work correctly in the construct if (pred(*first)){...}. The function object pred is assumed not to apply any non-constant function through the dereferenced iterator. 9 The BinaryPredicate class is used whenever an algorithm expects a function object that when applied to the result of dereferencing two corresponding iterators or to dereferencing an iterator and type T when T is part of the signature returns a value testable as true. In other words, if an algorithm takes BinaryPredicate binary_pred as its argument and first1 and first2 as its iterator arguments, it should work correctly in the construct if (pred(*first, *first2)){...}. BinaryPredicate always takes the first iterator type as its first argument, that is, in those cases when T value is part of the signa ture, it should work correctly in the context of if (pred(*first, value)){...}. It is expected that binary_pred will not apply any non- constant function through the dereferenced iterators. 10In the description of the algorithms operators + and - are used for some of the iterator categories for which they do not have to be defined. In these cases the semantics of a+n is the same is that of { X tmp = a; advance(tmp, n); return tmp; } and that of a-b is the same as of { Distance n; distance(a, b, n); return n; } +------- BEGIN BOX 1 -------+ For the following algorithms: reverse, rotate, random_shuffle, parti tion, stable_partition, sort, stable_sort and inplace_merge the itera tor requirement can be relaxed to ForwardIterator. These algorithms could then be dispatched upon the iterator category tags to use the most efficient implementation for each iterator category. We have not included the relaxation at this stage since it is not yet fully imple mented. +------- END BOX 1 -------+ 25.1 Non-mutating sequence operations [lib.alg.nonmutating] 25.1.1 For each [lib.alg.foreach] template <class InputIterator, class Function> void for_each(InputIterator first, InputIterator last, Function f); 1 Applies f to the result of dereferencing every iterator in the range [first, last). f shall not apply any non-constant function through the dereferenced iterator. 2 Complexity: f is applied exactly last - first times. 3 Notes: If f returns a result, the result is ignored. 25.1.2 Find [lib.alg.find] template <class InputIterator, class T> InputIterator find(InputIterator first, InputIterator last, const T& value); template <class InputIterator, class Predicate> InputIterator find_if(InputIterator first, InputIterator last, Predicate pred); 1 Returns the first iterator i in the range [first, last) for which the following corresponding conditions hold: *i == value, pred(*i) == true. Returns last if no such iterator is found. 2 Complexity: At most last - first applications of the corresponding predicate are done. 25.1.3 Adjacent find [lib.alg.adjacent.find] template <class InputIterator> InputIterator adjacent_find(InputIterator first, InputIterator last); template <class InputIterator, class BinaryPredicate> InputIterator adjacent_find(InputIterator first, InputIterator last, BinaryPredicate pred); 1 Returns the first iterator i such that both i and i + 1 are in the range [first, last) for which the following corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) == true. Returns last if no such iterator is found. 2 Complexity: At most max((last - first) - 1, 0) applications of the corresponding predicate are done. 25.1.4 Count [lib.alg.count] template <class InputIterator, class T, class Size> void count(InputIterator first, InputIterator last, const T& value, Size& n); template <class InputIterator, class Predicate, class Size> void count_if(InputIterator first, InputIterator last, Predicate pred, Size& n); 1 Adds to n the number of iterators i in the range [first, last) for which the following corresponding conditions hold: *i == value, pred(*i) == true. 2 Complexity: Exactly last - first applications of the corresponding predicate are done. 3 Notes: count must store the result into a reference argument instead of returning the result because the size type cannot be deduced from built-in iterator types such as int*. 25.1.5 Mismatch [lib.mismatch] template <class InputIterator1, class InputIterator2> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template <class InputIterator1, class InputIterator2, class BinaryPredicate> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); 1 Returns a pair of iterators i and j such that j == first2 + (i - first1) and i is the first iterator in the range [first1, last1) for which the following corresponding conditions hold: !(*i == *(first2 + (i - first1))), pred(*i, *(first2 + (i - first1))) == false. Returns the pair last1 and first2 + (last1 - first1) if such an iterator i is not found. 2 Complexity: At most last1 - first1 applications of the corresponding predicate are done. 25.1.6 Equal [lib.alg.equal] template <class InputIterator1, class InputIterator2> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template <class InputIterator1, class InputIterator2, class BinaryPredicate> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); 1 Returns true if for every iterator i in the range [first1, last1) the following corresponding conditions hold: *i == *(first2 + (i - first1)), pred(*i, *(first2 + (i - first1))) == true. Otherwise, returns false. 2 Complexity: At most last1 - first1 applications of the corresponding predicate are done. 25.1.7 Search [lib.alg.search] template <class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template <class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); 1 Finds a subsequence of equal values in a sequence. 2 Returns the first iterator i in the range [first1, last1 - (last2 - first2)) such that for any non-negative integer n less than last2 - first2 the following corresponding conditions hold: *(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) == true. Returns last1 if no such iterator is found.1) 25.2 Mutating sequence operations [lib.alg.mutating.operations] 25.2.1 Copy [lib.alg.copy] 25.2.1.1 copy [lib.copy] template <class InputIterator, class OutputIterator> OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result); _________________________ 1) The Knuth-Morris-Pratt algorithm is not used here. While the KMP algorithm guarantees linear time, it tends to be slower in most prac tical cases than the naive algorithm with worst-case quadratic behav ior. The worst case is extremely unlikely. We expect that most im plementations will provide a specialization: char* search(char* first1, char* last1, char* first2, char* last2); 3 that will use a variation of the Boyer-Moore algorithm for fast string searching. 1 Copies elements. For each non-negative integer n < (last - first), *(result + n) = *(first + n) is performed. copy returns result + (last - first). 2 result shall not be in the range [first, last). 3 Complexity: Exactly last - first assignments are done. 25.2.1.2 copy_backward [lib.copy.backward] template <class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result); 1 Copies elements in the range [first, last) into the range [result - (last - first), result) starting from last - 1 and proceeding to first.2) For each positive integer n <= (last - first), *(result - n) = *(last - n) is performed. 2 result shall not be in the range [first, last). 3 Returns result - (last - first). 4 Complexity: Exactly last - first assignments are done. 25.2.2 Swap [lib.alg.swap] 25.2.2.1 swap [lib.swap] template <class T> void swap(T& a, T& b); 1 Exchanges values stored in two locations. 25.2.2.2 swap_ranges [lib.swap.ranges] template <class ForwardIterator1, class ForwardIterator2> ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); 1 For each non-negative integer n < (last1 - first1) the swap is per formed: swap(*(first1 + n), *(first2 + n)). 2 The two ranges [first1, last1) and [first2, first2 + (last1 - first1)) shall not overlap. 3 Returns first2 + (last1 - first1). 4 Complexity: Exactly last1 - first1 swaps are done. _________________________ 2) copy_backward (_lib.copy.backward_) should be used instead of copy when last is in the range [result - (last - first), result). 25.2.3 Transform [lib.alg.transform] template <class InputIterator, class OutputIterator, class UnaryOperation> OutputIterator transform(InputIterator first, InputIterator last, OutputIterator result, UnaryOperation op); template <class InputIterator1, class InputIterator2, class OutputIterator, class BinaryOperation> OutputIterator transform(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, OutputIterator result, BinaryOperation binary_op); 1 Assigns through every iterator i in the range [result, result + (last1 - first1)) a new corresponding value equal to op(*(first1 + (i - result)) or binary_op(*(first1 + (i - result), *(first2 + (i - result))). 2 op and binary_op shall not have any side effects. 3 Returns result + (last1 - first1). 4 Complexity: Exactly last1 - first1 applications of op or binary_op are performed. 5 Notes: result may be equal to first in case of unary transform, or to first1 or first2 in case of binary transform. 25.2.4 Replace [lib.alg.replace] 25.2.4.1 replace [lib.replace] template <class ForwardIterator, class T> void replace(ForwardIterator first, ForwardIterator last, const T& old_value, const T& new_value); template <class ForwardIterator, class Predicate, class T> void replace_if(ForwardIterator first, ForwardIterator last, Predicate pred, const T& new_value); 1 Substitutes elements referred by the iterator i in the range [first, last) with new_value, when the following corresponding conditions hold: *i == old_value, pred(*i) == true. 2 Complexity: Exactly last - first applications of the corresponding predicate are done. 25.2.4.2 replace_copy [lib.replace.copy] template <class InputIterator, class OutputIterator, class T> OutputIterator replace_copy(InputIterator first, InputIterator last, OutputIterator result, const T& old_value, const T& new_value); template <class Iterator, class OutputIterator, class Predicate, class T> OutputIterator replace_copy_if(Iterator first, Iterator last, OutputIterator result, Predicate pred, const T& new_value); 1 Assigns to every iterator i in the range [result, result + (last - first)) either new_value or *(first + (i - result)) depending on whether the following corresponding conditions hold: *(first + (i - result)) == old_value, pred(*(first + (i - result))) == true. 2 Returns result + (last - first). 3 Complexity: Exactly last - first applications of the corresponding predicate are done. 25.2.5 Fill [lib.alg.fill] template <class ForwardIterator, class T> void fill(ForwardIterator first, ForwardIterator last, const T& value); template <class OutputIterator, class Size, class T> void fill_n(OutputIterator first, Size n, const T& value); 1 Assigns value through all the iterators in the range [first, last) or [first, first + n). 2 Complexity: Exactly last - first (or n) assignments are done. 25.2.6 Generate [lib.alg.generate] template <class ForwardIterator, class Generator> void generate(ForwardIterator first, ForwardIterator last, Generator gen); template <class OutputIterator, class Size, class Generator> void generate_n(OutputIterator first, Size n, Generator gen); 1 Invokes the function object gen and assigns the return value of gen though all the iterators in the range [first, last) or [first, first + n). gen takes no arguments. 2 Complexity: Exactly last - first (or n) invocations of gen and assign ments are done. 25.2.7 Remove [lib.alg.remove] 25.2.7.1 remove [lib.remove] template <class ForwardIterator, class T> ForwardIterator remove(ForwardIterator first, ForwardIterator last, const T& value); template <class ForwardIterator, class Predicate> ForwardIterator remove_if(ForwardIterator first, ForwardIterator last, Predicate pred); 1 Eliminates all the elements referred to by iterator i in the range [first, last) for which the following corresponding conditions hold: *i == value, pred(*i) == true. 2 Returns the end of the resulting range. remove is stable, that is, the relative order of the elements that are not removed is the same as their relative order in the original range. 3 Complexity: Exactly last - first applications of the corresponding predicate are done. 25.2.7.2 remove_copy [lib.remove.copy] template <class InputIterator, class OutputIterator, class T> OutputIterator remove_copy(InputIterator first, InputIterator last, OutputIterator result, const T& value); template <class InputIterator, class OutputIterator, class Predicate> OutputIterator remove_copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred); 1 Copies all the elements referred to by the iterator i in the range [first, last) for which the following corresponding conditions do not hold: *i == value, pred(*i) == true. 2 Returns the end of the resulting range. 3 Complexity: Exactly last - first applications of the corresponding predicate are done. 4 Notes: remove_copy is stable, that is, the relative order of the ele ments in the resulting range is the same as their relative order in the original range. 25.2.8 Unique [lib.alg.unique] 25.2.8.1 unique [lib.unique] template <class ForwardIterator> ForwardIterator unique(ForwardIterator first, ForwardIterator last); template <class ForwardIterator, class BinaryPredicate> ForwardIterator unique(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); 1 Eliminates all but the first element from every consecutive group of equal elements referred to by the iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1) or pred(*i, *(i - 1)) == true. 2 Returns the end of the resulting range. 3 Complexity: Exactly (last - first) - 1 applications of the correspond ing predicate are done. 25.2.8.2 unique_copy [lib.unique.copy] template <class InputIterator, class OutputIterator> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result); template <class InputIterator, class OutputIterator, class BinaryPredicate> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result, BinaryPredicate pred); 1 Copies only the first element from every consecutive group of equal elements referred to by the iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1) or pred(*i, *(i - 1)) == true. 2 Returns the end of the resulting range. 3 Complexity: Exactly last - first applications of the corresponding predicate are done. 25.2.9 Reverse [lib.alg.reverse] 25.2.9.1 reverse [lib.reverse] template <class BidirectionalIterator> void reverse(BidirectionalIterator first, BidirectionalIterator last); 1 For each non-negative integer i <= (last - first)/2, reverse applies swap to all pairs of iterators first + i, (last - i) - 1. 2 Complexity: Exactly (last - first)/2 swaps are performed. 25.2.9.2 reverse_copy [lib.reverse.copy] template <class BidirectionalIterator, class OutputIterator> OutputIterator reverse_copy(BidirectionalIterator first, BidirectionalIterator last, OutputIterator result); 1 Copies the range [first, last) to the range [result, result + (last - first)) such that for any non-negative integer i < (last - first) the following assignment takes place: *(result + (last - first) - i) = *(first + i). 2 The ranges [first, last) and [result, result + (last - first)) shall not overlap. 3 Returns result + (last - first). 4 Complexity: Exactly last - first assignments are done. 25.2.10 Rotate [lib.alg.rotate] 25.2.10.1 rotate [lib.rotate] template <class BidirectionalIterator> void rotate(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last); 1 For each non-negative integer i < (last - first), rotate places the element from the position first + i into position first + (i + (middle - first)) % (last - first). 2 Complexity: At most last - first swaps are done. 25.2.10.2 rotate_copy [lib.rotate.copy] template <class ForwardIterator, class OutputIterator> OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle, ForwardIterator last, OutputIterator result); 1 Copies the range [first, last) to the range [result, result + (last - first)) such that for each non-negative integer i < (last - first) the following assignment takes place: *(first + i) = *(result + (i + (mid dle - first)) % (last - first)). rotate_copy returns result + (last - first). 2 The ranges [first, last) and [result, result + (last - first)) shall not overlap. 3 Complexity: Exactly last - first assignments are done. 25.2.11 Random shuffle [lib.alg.random.shuffle] template <class RandomAccessIterator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class RandomNumberGenerator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last, RandomNumberGenerator& rand); 1 Shuffles the elements in the range [first, last) with uniform distri bution. 2 Complexity: Exactly (last - first) - 1 swaps are done. 3 Notes: random_shuffle can take a particular random number generating function object rand such that rand returns a randomly chosen double in the interval [0, 1). 25.2.12 Partitions [lib.alg.partitions] 25.2.12.1 partition [lib.partition] template <class BidirectionalIterator, class Predicate> BidirectionalIterator partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred); 1 Places all the elements in the range [first, last) that satisfy pred before all the elements that do not satisfy it. 2 Returns an iterator i such that for any iterator j in the range [first, i), pred(*j) == true, and for any iterator k in the range [i, last), pred(*j) == false. 3 Complexity: At most (last - first)/2 swaps. Exactly last - first applications of the predicate is done. 25.2.12.2 stable_partition [lib.stable.partition] template <class BidirectionalIterator, class Predicate> ForwardIterator stable_partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred); 1 Places all the elements in the range [first, last) that satisfy pred before all the elements that do not satisfy it. 2 Returns an iterator i such that for any iterator j in the range [first, i), pred(*j) == true, and for any iterator k in the range [i, last), pred(*j) == false. The relative order of the elements in both groups is preserved. 3 Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if there is enough extra memory. Exactly last - first applications of the predicate are done. 25.3 Sorting and related operations [lib.alg.sorting] 1 All the operations in this section have two versions: one that takes a function object of type Compare and one that uses an operator<. 2 Compare is used as a function object which returns true if the first argument is less than the second, and false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is assumed that comp will not apply any non-constant function through the dereferenced iterator. For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) == true defaults to *i < *j == true. For the algorithms to work cor rectly, comp has to induce a total ordering on the values. 3 A sequence is sorted with respect to a comparator comp if for any iterator i pointing to the sequence and any non-negative integer n such that i + n is a valid iterator pointing to an element of the sequence, comp(*(i + n), *i) == false. 4 In the descriptions of the functions that deal with ordering relation ships we frequently use a notion of equality to describe concepts such as stability. The equality to which we refer is not necessarily an operator==, but an equality relation induced by the total ordering. That is, two element a and b are considered equal if and only if !(a < b) && !(b < a). 25.3.1 Sorting [lib.alg.sort] 25.3.1.1 sort [lib.sort] template <class RandomAccessIterator> void sort(RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); 1 Sorts the elements in the range [first, last). 2 Complexity: Approximately NlogN (where N equals to last - first) com parisons on the average.3) 25.3.1.2 stable_sort [lib.stable.sort] template <class RandomAccessIterator> void stable_sort(RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void stable_sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); 1 Sorts the elements in the range [first, last). 2 Complexity: It does at most Nlog2N (where N equals to last - first) comparisons; if enough extra memory is available, it is NlogN. 3 Notes: Stable, the relative order of the equal elements is preserved. 25.3.1.3 partial_sort [lib.partial.sort] template <class RandomAccessIterator> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last, Compare comp); 1 Places the first middle - first sorted elements from the range [first, last) into the range [first, middle). The rest of the elements in the range [middle, last) are placed in an undefined order. 2 Complexity: It takes approximately (last - first) * log(middle - first) comparisons. 25.3.1.4 partial_sort_copy [lib.partial.sort.copy] template <class InputIterator, class RandomAccessIterator> RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last); template <class InputIterator, class RandomAccessIterator, class Compare> RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Compare comp); 1 Places the first min(last - first, result_last - result_first) sorted elements into the range [result_first, result_first + min(last - first, result_last - result_first)). _________________________ 3) If the worst case behavior is important stable_sort (_lib.stable.sort_) or partial_sort (_lib.partial.sort_) should be used. 2 Returns either result_last or result_first + (last - first) whichever is smaller. 3 Complexity: Approximately (last - first) * log(min(last - first, result_last - result_first)) comparisons. 25.3.2 Nth element [lib.alg.nth.element] template <class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp); 1 After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted. Also for any iterator i in the range [first, nth) and any iterator j in the range [nth, last) it holds that !(*i > *j) or comp(*i, *j) == false. 2 Complexity: Linear on average. 25.3.3 Binary search [lib.alg.binary.search] 1 All of the algorithms in this section are versions of binary search. They work on non-random access iterators minimizing the number of com parisons, which will be logarithmic for all types of iterators. They are especially appropriate for random access iterators, since these algorithms do a logarithmic number of steps through the data struc ture. For non-random access iterators they execute a linear number of steps. 25.3.3.1 lower_bound [lib.lower.bound] template <class ForwardIterator, class T> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value); template <class ForwardIterator, class T, class Compare> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); 1 Finds the first position into which value can be inserted without vio lating the ordering. lower_bound returns the furthermost iterator i in the range [first, last) such that for any iterator j in the range [first, i) the following corresponding conditions hold: *j < value or comp(*j, value) == true. 2 Complexity: At most log(last - first) + 1 comparisons are done. 25.3.3.2 upper_bound [lib.upper.bound] template <class ForwardIterator, class T> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value); template <class ForwardIterator, class T, class Compare> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); 1 Finds the furthermost position into which value can be inserted with out violating the ordering. upper_bound returns the furthermost iter ator i in the range [first, last) such that for any iterator j in the range [first, i) the following corresponding conditions hold: !(value < *j) or comp(value, *j) == false. 2 Complexity: At most log(last - first) + 1 comparisons are done. 25.3.3.3 equal_range [lib.equal.range] template <class ForwardIterator, class T> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value); template <class ForwardIterator, class T, class Compare> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); 1 Finds the largest subrange [i, j) such that the value can be inserted at any iterator k in it. k satisfies the corresponding conditions: !(*k < value) && !(value < *k) or comp(*k, value) == false && comp(value, *k) == false. 2 Complexity: At most 2 * log(last - first) comparisons are done. 25.3.3.4 binary_search [lib.binary.search] template <class ForwardIterator, class T> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value); template <class ForwardIterator, class T, class Compare> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); 1 Returns true if there is an iterator i in the range [first last) that satisfies the corresponding conditions: !(*i < value) && !(value < *i) or comp(*i, value) == false && comp(value, *i) == false. 2 Complexity: At most log(last - first) + 1 comparisons are done. 25.3.4 Merge [lib.alg.merge] 25.3.4.1 merge [lib.merge] template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template <class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); 1 Merges two sorted ranges [first1, last1) and [first2, last2) into the range [result, result + (last1 - first1) + (last2 - first2)). 2 The resulting range shall not overlap with either of the original ranges. 3 Returns result + (last1 - first1) + (last2 - first2). 4 Complexity: At most (last1 - first1) + (last2 - first2) - 1 compar isons are performed. 5 Notes: The merge is stable, that is, for equal elements in the two ranges, the elements from the first range always precede the elements from the second. 25.3.4.2 inplace_merge [lib.inplace.merge] template <class BidirectionalIterator> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last); template <class BidirectionalIterator, class Compare> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last, Compare comp); 1 Merges two sorted consecutive ranges [first, middle) and [middle, last) putting the result of the merge into the range [first, last). 2 Complexity: At most last - first comparisons are performed. If no additional memory is available, the number of assignments can be equal to NlogN where N is equal to last - first. 3 Notes: The merge is stable, that is, for equal elements in the two ranges, the elements from the first range always precede the elements from the second. 25.3.5 Set operations on sorted [lib.alg.set.operations] structures 1 This section defines all the basic set operations on sorted struc tures. They even work with multisets containing multiple copies of equal elements. The semantics of the set operations is generalized to multisets in a standard way by defining union to contain the maximum number of occurrences of every element, intersection to contain the minimum, and so on. 25.3.5.1 includes [lib.includes] template <class InputIterator1, class InputIterator2> bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template <class InputIterator1, class InputIterator2, class Compare> bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); 1 Returns true if every element in the range [first2, last2) is con tained in the range [first1, last1). Returns false otherwise. 2 Complexity: At most ((last1 - first1) + (last2 - first2)) * 2 - 1 com parisons are performed. 25.3.5.2 set_union [lib.set.union] template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template <class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); 1 Constructs a sorted union of the elements from the two ranges. 2 The resulting range shall not overlap with either of the original ranges. 3 Returns the end of the constructed range. 4 Complexity: At most ((last1 - first1) + (last2 - first2)) * 2 - 1 com parisons are performed. 5 Notes: set_union is stable, that is, if an element is present in both ranges, the one from the first range is copied. 25.3.5.3 set_intersection [lib.set.intersection] template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template <class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); 1 Constructs a sorted intersection of the elements from the two ranges. 2 The resulting range shall not overlap with either of the original ranges. 3 Returns the end of the constructed range. 4 Complexity: At most ((last1 - first1) + (last2 - first2)) * 2 - 1 com parisons are performed. 5 Notes: Stable, that is, if an element is present in both ranges, the one from the first range is copied. 25.3.5.4 set_difference [lib.set.difference] template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template <class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); 1 Constructs a sorted difference of the elements from the two ranges. 2 The resulting range shall not overlap with either of the original ranges. 3 Returns the end of the constructed range. 4 Complexity: At most ((last1 - first1) + (last2 - first2)) * 2 - 1 com parisons are performed. 25.3.5.5 set_symmetric_difference [lib.set.symmetric.difference] template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_symmetric_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template <class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_symmetric_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); 1 Constructs a sorted symmetric difference of the elements from the two ranges. 2 The resulting range shall not overlap with either of the original ranges. 3 Returns the end of the constructed range. 4 Complexity: At most ((last1 - first1) + (last2 - first2)) * 2 - 1 com parisons are performed. 25.3.6 Heap operations [lib.alg.heap.operations] 1 A heap is a particular organization of elements in a range between two random access iterators [a, b). Its two key properties are: (1) *a is the largest element in the range and (2) *a may be removed by pop_heap, or a new element added by push_heap, in O(logN) time. These properties make heaps useful as priority queues. make_heap converts a range into a heap and sort_heap turns a heap into a sorted sequence. 25.3.6.1 push_heap [lib.push.heap] template <class RandomAccessIterator> void push_heap(RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void push_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); 1 The range [first, last - 1) shall be a valid heap. 2 Places the value in the location last - 1 into the resulting heap [first, last). 3 Complexity: At most log(last - first) comparisons are performed. 25.3.6.2 pop_heap [lib.pop.heap] template <class RandomAccessIterator> void pop_heap(RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void pop_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); 1 The range [first, last) shall be a valid heap. 2 Swaps the value in the location first with the value in the location last - 1 and makes [first, last - 1) into a heap. 3 Complexity: At most 2 * log(last - first) comparisons are performed. 25.3.6.3 make_heap [lib.make.heap] template <class RandomAccessIterator> void make_heap(RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void make_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); 1 Constructs a heap out of the range [first, last). 2 Complexity: At most 3*(last - first) comparisons are performed. 25.3.6.4 sort_heap [lib.sort.heap] template <class RandomAccessIterator> void sort_heap(RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class Compare> void sort_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); 1 Sorts elements in the heap [first, last). 2 Complexity: At most NlogN comparisons are performed where N is equal to last - first. 3 Notes: Not stable. 25.3.7 Minimum and maximum [lib.alg.min.max] 25.3.7.1 min [lib.min] template <class T> T min(const T& a, const T& b); template <class T, class Compare> T min(const T& a, const T& b, Compare comp); 25.3.7.2 max [lib.max] 1 Returns the smaller value. Returns the first argument when their arguments are equal. template <class T> T max(const T& a, const T& b); template <class T, class Compare> T max(const T& a, const T& b, Compare comp); 2 Returns the larger value. Returns the first argument when their argu ments are equal. 25.3.7.3 max_element [lib.max.element] template <class InputIterator> InputIterator max_element(InputIterator first, InputIterator last); template <class InputIterator, class Compare> InputIterator max_element(InputIterator first, InputIterator last, Compare comp); 1 Returns the first iterator i in the range [first, last) such that for any iterator j in the range [first, last) the following corresponding conditions hold: !(*i < *j) or comp(*i, *j) == false. 2 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons are done. 25.3.7.4 min_element [lib.min.element] template <class InputIterator> InputIterator min_element(InputIterator first, InputIterator last); template <class InputIterator, class Compare> InputIterator min_element(InputIterator first, InputIterator last, Compare comp); 1 Returns the first iterator i in the range [first, last) such that for any iterator j in the range [first, last) the following corresponding conditions hold: !(*j < *i) or comp(*j, *i) == false. 2 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons are done. 25.3.8 Lexicographical comparison [lib.alg.lex.comparison] template <class InputIterator1, class InputIterator2> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template <class InputIterator1, class InputIterator2, class Compare> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); 1 Returns true if the sequence of elements defined by the range [first1, last1) is lexicographically less than the sequence of elements defined by the range [first2, last2). Returns false otherwise. 2 Complexity: At most min((last1 - first1), (last2 - first2)) applica tions of the corresponding comparison are done. 25.3.9 Permutation generators [lib.alg.permutation.generators] 25.3.9.1 next_permutation [lib.next.permutation] template <class BidirectionalIterator> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last); template <class BidirectionalIterator, class Compare> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); 1 Takes a sequence defined by the range [first, last) and transforms it into the next permutation. The next permutation is found by assuming that the set of all permutations is lexicographically sorted with respect to operator< or comp. If such a permutation exists, it returns true. Otherwise, it transforms the sequence into the smallest permutation, that is, the ascendingly sorted one, and returns false. 2 Complexity: At most (last - first)/2 swaps are performed. 25.3.9.2 prev_permutation [lib.prev.permutation] template <class BidirectionalIterator> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last); template <class BidirectionalIterator, class Compare> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); 1 Takes a sequence defined by the range [first, last) and transforms it into the previous permutation. The previous permutation is found by assuming that the set of all permutations is lexicographically sorted with respect to operator< or comp. 2 Returns true if such a permutation exists. Otherwise, it transforms the sequence into the largest permutation, that is, the descendingly sorted one, and returns false. 3 Complexity: At most (last - first)/2 swaps are performed.