______________________________________________________________________ 26 Numerics library [lib.numerics] ______________________________________________________________________ 1 This clause describes components that C++ programs may use to perform seminumerical operations. 2 The following subclauses describe components for complex number types, numeric ( n-at-a-time) arrays, generalized numeric algorithms, and facilities included from the ISO C library, as summarized in Table 1: Table 1--Numerics library summary +--------------------------------------------------------------+ | Subclause Header(s) | +--------------------------------------------------------------+ |_lib.numeric.requirements_ Requirements | +--------------------------------------------------------------+ |_lib.complex.numbers_ Complex numbers <complex> | +--------------------------------------------------------------+ |_lib.numarray_ Numeric arrays <valarray> | +--------------------------------------------------------------+ |_lib.numeric.ops_ Generalized numeric operations <numeric> | +--------------------------------------------------------------+ |_lib.c.math_ C library <cmath> | | <cstdlib> | +--------------------------------------------------------------+ 26.1 Numeric type requirements [lib.numeric.requirements] 1 The complex and valarray components are parameterized by the type of information they contain and manipulate. A C++ program shall instan tiate these components with types that satisfy the following requirements:1) --T is not an abstract class (it has no pure virtual member func tions); --T is not a reference type; _________________________ 1) In other words, value types. These include built-in arithmetic types, pointers, the library class complex, and instantiations of valarray for value types. --T is not cv-qualified; --If T is a class, it has a public default constructor; --If T is a class, it has a public copy constructor with the signature T::T(const T&) --If T is a class, it has a public destructor; --If T is a class, it has a public assignment operator whose signature is either T& T::operator=(const T&) or T& T::operator=(T) --If T is a class, its assignment operator, copy and default construc tors, and destructor must correspond to each other in the following sense: Initialization of raw storage using the default constructor, followed by assignment, is semantically equivalent to initialization of raw storage using the copy constructor. Destruction of an object, followed by initialization of its raw storage using the copy constructor, is semantically equivalent to assignment to the origi nal object. [Note: This rule states that there must not be any subtle differ ences in the semantics of initialization versus assignment. This gives an implementation considerable flexibility in how arrays are initialized. [Example: An implementation is allowed to initialize a valarray by allocating storage using the new operator (which implies a call to the default constructor for each element) and then assigning each element its value. Or the implementation can allocate raw storage and use the copy constructor to initialize each element. --end example] If the distinction between initialization and assignment is impor tant for a class, or if it fails to satisfy any of the other condi tions listed above, the programmer should use vector (_lib.vector_) instead of valarray for that class; --end note] --If T is a class, it does not overload unary operator&. 2 In addition, many member and related functions of valarray<T> can be successfully instantiated and will exhibit well-defined behavior if and only if T satisfies additional requirements specified for each such member or related function. 3 [Example: It is valid to instantiate valarray<complex>, but opera tor>() will not be successfully instantiated for valarray<complex> operands, since complex does not have any ordering operators. --end example] 26.2 Complex numbers [lib.complex.numbers] 1 The header <complex> defines a template class, and numerous functions for representing and manipulating complex numbers. Header <complex> synopsis namespace std { template<class T> class complex; class complex<float>; class complex<double>; class complex<long double>; // _lib.complex.ops_ operators: template<class T> complex<T> operator+(const complex<T>&, const complex<T>&); template<class T> complex<T> operator+(const complex<T>&, T); template<class T> complex<T> operator+(T, const complex<T>&); template<class T> complex<T> operator-(const complex<T>&, const complex<T>&); template<class T> complex<T> operator-(const complex<T>&, T); template<class T> complex<T> operator-(T, const complex<T>&); template<class T> complex<T> operator*(const complex<T>&, const complex<T>&); template<class T> complex<T> operator*(const complex<T>&, T); template<class T> complex<T> operator*(T, const complex<T>&); template<class T> complex<T> operator/(const complex<T>&, const complex<T>&); template<class T> complex<T> operator/(const complex<T>&, const complex<T>&); template<class T> complex<T> operator/(T, const complex<T>&); template<class T> complex<T> operator+(const complex<T>&); template<class T> complex<T> operator-(const complex<T>&); template<class T> bool operator==(const complex<T>&, const complex<T>&); template<class T> bool operator==(const complex<T>&, T); template<class T> bool operator==(T, const complex<T>&); template<class T> bool operator!=(const complex<T>&, const complex<T>&); template<class T> bool operator!=(const complex<T>&, T); template<class T> bool operator!=(T, const complex<T>&); template<class T, class charT, class traits> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, complex<T>&); template<class T, class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const complex<T>&); // _lib.complex.value.ops_ values: template<class T> T real(const complex<T>&); template<class T> T imag(const complex<T>&); template<class T> T abs(const complex<T>&); template<class T> T arg(const complex<T>&); template<class T> T norm(const complex<T>&); template<class T> complex<T> conj(const complex<T>&); template<class T> complex<T> polar(T, T); // _lib.complex.transcendentals_ transcendentals: template<class T> complex<T> acos (const complex<T>&); template<class T> complex<T> asin (const complex<T>&); template<class T> complex<T> atan (const complex<T>&); template<class T> complex<T> atan2(const complex<T>&, const complex<T>&); template<class T> complex<T> atan2(const complex<T>&, T); template<class T> complex<T> atan2(T, const complex<T>&); template<class T> complex<T> cos (const complex<T>&); template<class T> complex<T> cosh (const complex<T>&); template<class T> complex<T> exp (const complex<T>&); template<class T> complex<T> log (const complex<T>&); template<class T> complex<T> log10(const complex<T>&); template<class T> complex<T> pow(const complex<T>&, int); template<class T> complex<T> pow(const complex<T>&, T); template<class T> complex<T> pow(const complex<T>&, const complex<T>&); template<class T> complex<T> pow(T, const complex<T>&); template<class T> complex<T> sin (const complex<T>&); template<class T> complex<T> sinh (const complex<T>&); template<class T> complex<T> sqrt (const complex<T>&); template<class T> complex<T> tan (const complex<T>&); template<class T> complex<T> tanh (const complex<T>&); } 26.2.1 Template class complex [lib.complex] namespace std { template<class T> class complex { public: typedef T value_type; complex(T re = T(), T im = T()); template<class X> complex(const complex<X>&); T real() const; T imag() const; complex<T>& operator= (const T&); complex<T>& operator+=(const T&); complex<T>& operator-=(const T&); complex<T>& operator*=(const T&); complex<T>& operator/=(const T&); template<class X> complex<T>& operator= (const complex<X>&); template<class X> complex<T>& operator+=(const complex<X>&); template<class X> complex<T>& operator-=(const complex<X>&); template<class X> complex<T>& operator*=(const complex<X>&); template<class X> complex<T>& operator/=(const complex<X>&); }; template<class T> complex<T> operator+(const complex<T>&, T); template<class T> complex<T> operator+(T, const complex<T>&); template<class T> complex<T> operator-(const complex<T>&, T); template<class T> complex<T> operator-(T, const complex<T>&); template<class T> complex<T> operator*(const complex<T>&, T); template<class T> complex<T> operator*(T, const complex<T>&); template<class T> complex<T> operator/(const complex<T>&, T); template<class T> complex<T> operator/(T, const complex<T>&); template<class T> complex<T> operator==(const complex<T>&, T); template<class T> complex<T> operator==(T, const complex<T>&); template<class T> complex<T> operator!=(const complex<T>&, T); template<class T> complex<T> operator!=(T, const complex<T>&); +------- BEGIN BOX 1 -------+ (David Vandevoorde) I suspect the scalar argument really should be passed by reference to const as is done elsewhere in the library (for the generic case, that is). +------- END BOX 1 -------+ +------- BEGIN BOX 2 -------+ Change: Collapsed the three constructors into one with default argu ments to match [lib.complex.members]. --ark +------- END BOX 2 -------+ 1 The class complex describes an object that can store the Cartesian components, real() and imag(), of a complex number. 26.2.2 complex specializations [lib.complex.special] class complex<float> { public: typedef float value_type; complex(float re = 0.0f, float im = 0.0f); explicit complex(const complex<double>&); explicit complex(const complex<long double>&); float real() const; float imag() const; complex<float>& operator= (float); complex<float>& operator+=(float); complex<float>& operator-=(float); complex<float>& operator*=(float); complex<float>& operator/=(float); template<class X> complex<float>& operator= (const complex<X>&); template<class X> complex<float>& operator+=(const complex<X>&); template<class X> complex<float>& operator-=(const complex<X>&); template<class X> complex<float>& operator*=(const complex<X>&); template<class X> complex<float>& operator/=(const complex<X>&); }; class complex<double> { public: typedef double value_type; complex(double re = 0.0, double im = 0.0); complex(const complex<float>&); explicit complex(const complex<long double>&); double real() const; double imag() const; complex<double>& operator= (double); complex<double>& operator+=(double); complex<double>& operator-=(double); complex<double>& operator*=(double); complex<double>& operator/=(double); template<class X> complex<double>& operator= (const complex<X>&); template<class X> complex<double>& operator+=(const complex<X>&); template<class X> complex<double>& operator-=(const complex<X>&); template<class X> complex<double>& operator*=(const complex<X>&); template<class X> complex<double>& operator/=(const complex<X>&); }; class complex<long double> { public: typedef long double value_type; complex(long double re = 0.0L, long double im = 0.0L); complex(const complex<float>&); complex(const complex<double>&); long double real() const; long double imag() const; complex<long double>& operator= (long double&); complex<long double>& operator+=(long double&); complex<long double>& operator-=(long double&); complex<long double>& operator*=(long double&); complex<long double>& operator/=(long double&); template<class X> complex<long double>& operator= (const complex<X>&); template<class X> complex<long double>& operator+=(const complex<X>&); template<class X> complex<long double>& operator-=(const complex<X>&); template<class X> complex<long double>& operator*=(const complex<X>&); template<class X> complex<long double>& operator/=(const complex<X>&); }; 26.2.3 complex member functions [lib.complex.members] template<class T> complex(T re = T(), T im = T()); Effects: Constructs an object of class complex. 1 Postcondition: real() == re && imag() == im. 26.2.4 complex member operators [lib.complex.member.ops] complex<T>& operator+=(const T& rhs); Effects: Adds the scalar value rhs to the real part of the complex value *this and stores the result in the real part of *this, leaving the imaginary part unchanged. Returns: *this. complex<T>& operator-=(const T& rhs); Effects: Subtracts the scalar value rhs from the real part of the complex value *this and stores the result in the real part of *this, leaving the imaginary part unchanged. Returns: *this. complex<T>& operator*=(const T& rhs); Effects: Multiplies the scalar value rhs by the complex value *this and stores the result in *this. Returns: *this. complex<T>& operator/=(const T& rhs); Effects: Divides the scalar value rhs into the complex value *this and stores the result in *this. Returns: *this. template<class T> complex<T>& operator+=(const complex<T>& rhs); Effects: Adds the complex value rhs to the complex value *this and stores the sum in *this. Returns: *this. template<class T> complex<T>& operator-=(const complex<T>& rhs); Effects: Subtracts the complex value rhs from the complex value *this and stores the difference in *this. Returns: *this. template<class T> complex<T>& operator*=(const complex<T>& rhs); Effects: Multiplies the complex value rhs by the complex value *this and stores the product in *this. Returns: *this. template<class T> complex<T>& operator/=(const complex<T>& rhs); Effects: Divides the complex value rhs into the complex value *this and stores the quotient in *this. Returns: *this. 26.2.5 complex non-member operations [lib.complex.ops] template<class T> complex<T> operator+(const complex<T>& lhs); Notes: unary operator. Returns: complex<T>(lhs). template<class T> complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs); template<class T> complex<T> operator+(const complex<T>& lhs, T rhs); template<class T> complex<T> operator+(T lhs, const complex<T>& rhs); Returns: complex<T>(lhs) += rhs. template<class T> complex<T> operator-(const complex<T>& lhs); Notes: unary operator. Returns: complex<T>(-lhs.real(),-lhs.imag()). template<class T> complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs); template<class T> complex<T> operator-(const complex<T>& lhs, T rhs); template<class T> complex<T> operator-(T lhs, const complex<T>& rhs); Returns: complex<T>(lhs) -= rhs. template<class T> complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs); template<class T> complex<T> operator*(const complex<T>& lhs, T rhs); template<class T> complex<T> operator*(T lhs, const complex<T>& rhs); Returns: complex<T>(lhs) *= rhs. template<class T> complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs); template<class T> complex<T> operator/(const complex<T>& lhs, T rhs); template<class T> complex<T> operator/(T lhs, const complex<T>& rhs); Returns: complex<T>(lhs) /= rhs. template<class T> bool operator==(const complex<T>& lhs, const complex<T>& >rhs); template<class T> bool operator==(const complex<T>& lhs, T rhs); template<class T> bool operator==(T lhs, const complex<T>& rhs); Returns: lhs.real() == rhs.real() && lhs.imag() == rhs.imag(). Notes: The imaginary part is assumed to be T(), or 0.0, for the T argu ments. template<class T> bool operator!=(complex<T>& lhs, complex<T>& rhs); template<class T> bool operator!=(complex<T>& lhs, T rhs); template<class T> bool operator!=(T lhs, complex<T>& rhs); Returns: rhs.real() != lhs.real() || rhs.imag() != lhs.imag(). template<class T, class charT, class traits> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& is, complex<T>& x); Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the imaginary part (_lib.istream.formatted_). Requires: The input values be convertible to T. If bad input is encountered, calls is.setstate(ios::failbit) (which may throw ios::failure (_lib.iostate.flags_). Returns: is. template<class T, class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& o, const complex<T>& x); Effects: inserts the complex number x onto the stream o as if it were imple mented as follows: template<class T, class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& o, const complex<T>& x) { basic_ostringstream<charT, traits> s; s.flags(o.flags()); s.imbue(o.getloc()); s.precision(o.precision()); s << '(' << x.real() << "," << x.imag() << ')' << ends; return o << s.str(); } 26.2.6 complex value operations [lib.complex.value.ops] template<class T> T real(const complex<T>& x); Returns: x.real(). template<class T> T imag(const complex<T>& x); Returns: x.imag(). template<class T> T abs(const complex<T>& x); Returns: the magnitude of x. template<class T> T arg(const complex<T>& x); Returns: the phase angle of x. template<class T> T norm(const complex<T>& x); Returns: the squared magnitude of x. template<class T> complex<T> conj(const complex<T>& x); Returns: the complex conjugate of x. template<class T> complex<T> polar(T rho, const T& theta = 0); Returns: the complex value corresponding to a complex number whose magnitude is rho and whose phase angle is theta. 26.2.7 complex transcendentals [lib.complex.transcendentals] template<class T> complex<T> acos (const complex<T>& x); template<class T> complex<T> asin (const complex<T>& x); template<class T> complex<T> atan (const complex<T>& x); template<class T> complex<T> atan2(const complex<T>& x); template<class T> complex<T> atan2(const complex<T>& x, T y); template<class T> complex<T> atan2(T x, const complex<T>& y); template<class T> complex<T> cos (const complex<T>& x); template<class T> complex<T> cosh (const complex<T>& x); template<class T> complex<T> exp (const complex<T>& x); template<class T> complex<T> log (const complex<T>& x); template<class T> complex<T> log10(const complex<T>& x); template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y); template<class T> complex<T> pow (const complex<T>& x, T y); template<class T> complex<T> pow (T x, const complex<T>& y); template<class T> complex<T> pow (const complex<T>& x, int y); template<class T> complex<T> sin (const complex<T>& x); template<class T> complex<T> sinh (const complex<T>& x); template<class T> complex<T> sqrt (const complex<T>& x); template<class T> complex<T> tan (const complex<T>& x); template<class T> complex<T> tanh (const complex<T>& x); 1 Each of these functions returns a complex value corresponding to the mathematical function (_lib.c.math_) computed for complex arguments. 2 The sqrt function returns the complex value whose phase angle is greater than -$pi$/2 and less than or equal to $pi$/2. All other functions which can produce multiple values return a complex value whose imaginary part is greater than -$pi$ and less than or equal to $pi$. +------- BEGIN BOX 3 -------+ (David Vandevoorde) This last sentence is erroneous as acknowledged during the formal voting session in Santa Cruz. The following is word ing that is somewhat closer to what was intended: The log function returns the complex value whose phase angle is greater than -$pi$ and less than $pi$ (I believe equality should not be included). The remaining multivalued functions should return the complex values that ensue from their canonical reduction in terms of the log function. +------- END BOX 3 -------+ complex arguments. 26.3 Numeric arrays [lib.numarray] Header <valarray> synopsis #include <cstddef> // for size_t namespace std { template<class T> class valarray; // An array of type T class slice; // a BLAS-like slice out of an array template<class T> class slice_array; class gslice; // a generalized slice out of an array template<class T> class gslice_array; template<class T> class mask_array; // a masked array template<class T> class indirect_array; // an indirected array template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator* (const valarray<T>&, const T&); template<class T> valarray<T> operator* (const T&, const valarray<T>&); template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator/ (const valarray<T>&, const T&); template<class T> valarray<T> operator/ (const T&, const valarray<T>&); template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator% (const valarray<T>&, const T&); template<class T> valarray<T> operator% (const T&, const valarray<T>&); template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator+ (const valarray<T>&, const T&); template<class T> valarray<T> operator+ (const T&, const valarray<T>&); template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator- (const valarray<T>&, const T&); template<class T> valarray<T> operator- (const T&, const valarray<T>&); template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator^ (const valarray<T>&, const T&); template<class T> valarray<T> operator^ (const T&, const valarray<T>&); template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator& (const valarray<T>&, const T&); template<class T> valarray<T> operator& (const T&, const valarray<T>&); template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator| (const valarray<T>&, const T&); template<class T> valarray<T> operator| (const T&, const valarray<T>&); template<class T> valarray<T> operator<< (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator<<(const valarray<T>&, const T&); template<class T> valarray<T> operator<<(const T&, const valarray<T>&); template<class T> valarray<T> operator>> (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator>>(const valarray<T>&, const T&); template<class T> valarray<T> operator>>(const T&, const valarray<T>&); template<class T> valarray<T> operator&& (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator&&(const valarray<T>&, const T&); template<class T> valarray<T> operator&&(const T&, const valarray<T>&); template<class T> valarray<T> operator|| (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator||(const valarray<T>&, const T&); template<class T> valarray<T> operator||(const T&, const valarray<T>&); template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator==(const valarray<T>&, const T&); template<class T> valarray<bool> operator==(const T&, const valarray<T>&); template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator!=(const valarray<T>&, const T&); template<class T> valarray<bool> operator!=(const T&, const valarray<T>&); template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator< (const valarray<T>&, const T&); template<class T> valarray<bool> operator< (const T&, const valarray<T>&); template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator> (const valarray<T>&, const T&); template<class T> valarray<bool> operator> (const T&, const valarray<T>&); template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator<=(const valarray<T>&, const T&); template<class T> valarray<bool> operator<=(const T&, const valarray<T>&); template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator>=(const valarray<T>&, const T&); template<class T> valarray<bool> operator>=(const T&, const valarray<T>&); template<class T> T min(const valarray<T>&); template<class T> T max(const valarray<T>&); template<class T> valarray<T> abs (const valarray<T>&); template<class T> valarray<T> acos (const valarray<T>&); template<class T> valarray<T> asin (const valarray<T>&); template<class T> valarray<T> atan (const valarray<T>&); template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&); template<class T> valarray<T> atan2(const valarray<T>&, const T&); template<class T> valarray<T> atan2(const T&, const valarray<T>&); template<class T> valarray<T> cos (const valarray<T>&); template<class T> valarray<T> cosh (const valarray<T>&); template<class T> valarray<T> exp (const valarray<T>&); template<class T> valarray<T> log (const valarray<T>&); template<class T> valarray<T> log10(const valarray<T>&); template<class T> valarray<T> pow (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> pow (const valarray<T>&, const T&); template<class T> valarray<T> pow (const T&, const valarray<T>&); template<class T> valarray<T> sin (const valarray<T>&); template<class T> valarray<T> sinh (const valarray<T>&); template<class T> valarray<T> sqrt (const valarray<T>&); template<class T> valarray<T> tan (const valarray<T>&); template<class T> valarray<T> tanh (const valarray<T>&); } 1 The header <valarray> defines five template classes ( valarray, slice_array, gslice_array, mask_array, and indirect_array), two classes ( slice and gslice), and a series of related function signa tures for representing and manipulating arrays of values. 2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations on these classes to be optimized. 3 These library functions are permitted to throw a bad_alloc (_lib.bad.alloc_) exception if there are not sufficient resources available to carry out the operation. Note that the exception is not mandated. +------- BEGIN BOX 4 -------+ ISSUE: The descriptions of valarray and the associated classes which follow lack any discussion of possible exceptions. +------- END BOX 4 -------+ 26.3.1 Template class valarray [lib.template.valarray] namespace std { template<class T> class valarray { public: typedef T value_type; // _lib.valarray.cons_ construct/destroy: valarray(); explicit valarray(size_t); valarray(const T&, size_t); valarray(const T*, size_t); valarray(const valarray&); valarray(const slice_array<T>&); valarray(const gslice_array<T>&); valarray(const mask_array<T>&); valarray(const indirect_array<T>&); ~valarray(); // _lib.valarray.assign_ assignment: valarray<T>& operator=(const valarray<T>&); valarray<T>& operator=(const T&); valarray<T>& operator=(const slice_array<T>&); valarray<T>& operator=(const gslice_array<T>&); valarray<T>& operator=(const mask_array<T>&); valarray<T>& operator=(const indirect_array<T>&); // _lib.valarray.access_ element access: T operator[](size_t) const; T& operator[](size_t); // _lib.valarray.subset_ subset operations: valarray<T> operator[](slice) const; slice_array<T> operator[](slice); valarray<T> operator[](const gslice&) const; gslice_array<T> operator[](const gslice&); valarray<T> operator[](const valarray<bool>&) const; mask_array<T> operator[](const valarray<bool>&); valarray<T> operator[](const valarray<size_t>&) const; indirect_array<T> operator[](const valarray<size_t>&); // _lib.valarray.unary_ unary operators: valarray<T> operator+() const; valarray<T> operator-() const; valarray<T> operator~() const; valarray<T> operator!() const; // _lib.valarray.cassign_ computed assignment: valarray<T>& operator*= (const T&); valarray<T>& operator/= (const T&); valarray<T>& operator%= (const T&); valarray<T>& operator+= (const T&); valarray<T>& operator-= (const T&); valarray<T>& operator^= (const T&); valarray<T>& operator&= (const T&); valarray<T>& operator|= (const T&); valarray<T>& operator<<=(const T&); valarray<T>& operator>>=(const T&); valarray<T>& operator*= (const valarray<T>&); valarray<T>& operator/= (const valarray<T>&); valarray<T>& operator%= (const valarray<T>&); valarray<T>& operator+= (const valarray<T>&); valarray<T>& operator-= (const valarray<T>&); valarray<T>& operator^= (const valarray<T>&); valarray<T>& operator|= (const valarray<T>&); valarray<T>& operator&= (const valarray<T>&); valarray<T>& operator<<=(const valarray<T>&); valarray<T>& operator>>=(const valarray<T>&); // _lib.valarray.members_ member functions: size_t length() const; operator T*(); operator const T*() const; T sum() const; T min() const; T max() const; valarray<T> shift (int) const; valarray<T> cshift(int) const; valarray<T> apply(T func(T)) const; valarray<T> apply(T func(const T&)) const; void free(); void resize(size_t sz, const T& c = T()); }; } 1 The template class valarray<T> is a one-dimensional smart array, with elements numbered sequentially from zero. It is a representation of the mathematical concept of an ordered set of values. The illusion of higher dimensionality may be produced by the familiar idiom of com puted indices, together with the powerful subsetting capabilities pro vided by the generalized subscript operators.2) 2 An implementation is permitted to qualify any of the functions declared in <valarray> as inline. 26.3.1.1 valarray constructors [lib.valarray.cons] valarray(); Effects: Constructs an object of class valarray<T>,3) which has zero length until it is passed into a library function as a modifiable lvalue or through a non-constant this pointer. This default constructor is essential, since arrays of valarray are likely to prove useful. There must also be a way to change the size of an array after ini tialization; this is supplied by the semantics of the assignment operator. explicit valarray(size_t); 1 The array created by this constructor has a length equal to the value of the argument. The elements of the array are constructed using the default constructor for the instantiating type T. valarray(const T&, size_t); 2 The array created by this constructor has a length equal to the second argument. The elements of the array are initialized with the value of the first argument. valarray(const T*, size_t); 3 The array created by this constructor has a length equal to the second argument n. The values of the elements of the array are initialized _________________________ 2) The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities and the pro liferation of temporaries. Thus, the valarray template is neither a matrix class nor a field class. However, it is a very useful building block for designing such classes. 3) For convenience, such objects are referred to as ``arrays'' throughout the remainder of subclause _lib.numarray_. with the first n values pointed to by the first argument. If the value of the second argument is greater than the number of values pointed to by the first argument, the behavior is undefined. This constructor is the preferred method for converting a C array to a valarray object. valarray(const valarray<T>&); 4 The array created by this constructor has the same length as the argu ment array. The elements are initialized with the values of the cor responding elements of the argument array. This copy constructor cre ates a distinct array rather than an alias. Implementations in which arrays share storage are permitted, but they must implement a copy-on- reference mechanism to ensure that arrays are conceptually distinct. valarray(const slice_array<T>&); valarray(const gslice_array<T>&); valarray(const mask_array<T>&); valarray(const indirect_array<T>&); 5 These conversion constructors convert one of the four reference tem plates to a valarray. ~valarray(); 26.3.1.2 valarray assignment [lib.valarray.assign] valarray<T>& operator=(const valarray<T>&); 1 Each element of the *this array is assigned the value of the corre sponding element of the argument array. The resulting behavior is undefined if the length of the argument array is not equal to the length of the *this array. valarray<T>& operator=(const T&); 2 The scalar assignment operator causes each element of the *this array to be assigned the value of the argument. valarray<T>& operator=(const slice_array<T>&); valarray<T>& operator=(const gslice_array<T>&); valarray<T>& operator=(const mask_array<T>&); valarray<T>& operator=(const indirect_array<T>&); 3 These operators allow the results of a generalized subscripting opera tion to be assigned directly to a valarray. 4 If the value of an element in the left hand side of a valarray assign ment operator depends on the value of another element in that left hand side, the resulting behavior is undefined. 26.3.1.3 valarray element access [lib.valarray.access] T operator[](size_t) const; T& operator[](size_t); 1 When applied to a constant array, the subscript operator returns the value of the corresponding element of the array. When applied to a non-constant array, the subscript operator returns a reference to the corresponding element of the array. 2 Thus, the expression (a[i] = q, a[i]) == q evaluates as true for any non-constant valarray<T> a, any T q, and for any size_t i such that the value of i is less than the length of a. 3 The expression &a[i+j] == &a[i] + j evaluates as true for all size_t i and size_t j such that i+j is less than the length of the non-constant array a. 4 Likewise, the expression &a[i] != &b[j] evaluates as true for any two non-constant arrays a and b and for any size_t i and size_t j such that i is less than the length of a and j is less than the length of b. This property indicates an absence of aliasing and may be used to advantage by optimizing compilers.4) 5 The reference returned by the subscript operator for a non-constant array is guaranteed to be valid until the member function resize(size_t, const T&) (_lib.valarray.members_) is called for that array or until the lifetime of that array ends, whichever happens first. 6 If the subscript operator is invoked with a size_t argument whose value is not less than the length of the array, the behavior is unde fined. _________________________ 4) Compilers may take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained from operator new, and oth er techniques to generate efficient valarrays. +------- BEGIN BOX 5 -------+ (David Vandevoorde) I misdrafted motion 55 (to disassociate assigment of valarrays from resizing valarrays) in Santa Cruz saying the the paragraph above should be removed. It should have stated that only the first sentence should be removed: that is the change reflected here. +------- END BOX 5 -------+ 26.3.1.4 valarray subset operations [lib.valarray.sub] valarray<T> operator[](slice) const; slice_array<T> operator[](slice); valarray<T> operator[](const gslice&) const; gslice_array<T> operator[](const gslice&); valarray<T> operator[](const valarray<bool>&) const; mask_array<T> operator[](const valarray<bool>&); valarray<T> operator[](const valarray<size_t>&) const; indirect_array<T> operator[](const valarray<size_t>&); 1 Each of these operations returns a subset of the array. The const- qualified versions return this subset as a new valarray. The non- const versions return a class template object which has reference semantics to the original array. 26.3.1.5 valarray unary operators [lib.valarray.unary] valarray<T> operator+() const; valarray<T> operator-() const; valarray<T> operator~() const; valarray<T> operator!() const; 1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type &T or which may be unambigu ously converted to type T. 2 Each of these operators returns an array whose length is equal to the length of the array. Each element of the returned array is initial ized with the result of applying the indicated operator to the corre sponding element of the array. 26.3.1.6 valarray computed assignment [lib.valarray.cassign] valarray<T>& operator*= (const valarray<T>&); valarray<T>& operator/= (const valarray<T>&); valarray<T>& operator%= (const valarray<T>&); valarray<T>& operator+= (const valarray<T>&); valarray<T>& operator-= (const valarray<T>&); valarray<T>& operator^= (const valarray<T>&); valarray<T>& operator&= (const valarray<T>&); valarray<T>& operator|= (const valarray<T>&); valarray<T>& operator<<=(const valarray<T>&); valarray<T>& operator>>=(const valarray<T>&); 1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied. Each of these operators per forms the indicated operation on each of its elements and the corre sponding element of the argument array. 2 The array is then returned by reference. 3 If the array and the argument array do not have the same length, the behavior is undefined. The appearance of an array on the left hand side of a computed assignment does not invalidate references or point ers. 4 If the value of an element in the left hand side of a valarray com puted assignment operator depends on the value of another element in that left hand side, the resulting behavior is undefined. valarray<T>& operator*= (const T&); valarray<T>& operator/= (const T&); valarray<T>& operator%= (const T&); valarray<T>& operator+= (const T&); valarray<T>& operator-= (const T&); valarray<T>& operator^= (const T&); valarray<T>& operator&= (const T&); valarray<T>& operator|= (const T&); valarray<T>& operator<<=(const T&); valarray<T>& operator>>=(const T&); 5 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied. 6 Each of these operators applies the indicated operation to each ele ment of the array and the non-array argument. 7 The array is then returned by reference. 8 The appearance of an array on the left hand side of a computed assign ment does not invalidate references or pointers to the elements of the array. 26.3.1.7 valarray member functions [lib.valarray.members] size_t length() const; 1 This function returns the number of elements in the array. operator T*(); operator const T*() const; 2 A non-constant array may be converted to a pointer to the instantiat ing type. A constant array may be converted to a pointer to the instantiating type, qualified by const. 3 It is guaranteed that &a[0] == (T*)a for any non-constant valarray<T> a. The pointer returned for a non-constant array (whether or not it points to a type qualified by const) is valid for the same duration as a reference returned by the size_t subscript operator. The pointer returned for a constant array is valid for the lifetime of the array.5) T sum() const; This function may only be instantiated for a type T to which opera tor+= can be applied. This function returns the sum of all the ele ments of the array. 4 If the array has length 0, the behavior is undefined. If the array has length 1, sum returns the value of element 0. Otherwise, the returned value is calculated by applying operator+= to a copy of an element of the array and all other elements of the array in an unspec ified order. valarray<T> shift(int) const; 5 This function returns an array whose length is identical to the array, but whose element values are shifted the number of places indicated by the argument. 6 A positive argument value results in a left shift, a negative value in a right shift, and a zero value in no shift. _________________________ 5) This form of access is essential for reusability and cross-language programming. 7 [Example: If the argument has the value -2, the first two elements of the result will be constructed using the default constructor; the third element of the result will be assigned the value of the first element of the argument; etc. --end example] valarray<T> cshift(int) const; 8 This function returns an array whose length is identical to the array, but whose element values are shifted in a circular fashion the number of places indicated by the argument. 9 A positive argument value results in a left shift, a negative value in a right shift, and a zero value in no shift. valarray<T> apply(T func(T)) const; valarray<T> apply(T func(const T&)) const; 10These functions return an array whose length is equal to the array. Each element of the returned array is assigned the value returned by applying the argument function to the corresponding element of the array. void free(); 11This function sets the length of an array to zero.6) void resize(size_t sz, const T& c = T()); 12This member function changes the length of the *thisarray szand Resiz ing invalidates all pointers and references to elements in the array. 26.3.2 valarray non-member operations [lib.valarray.nonmembers] 26.3.2.1 valarray binary operators [lib.valarray.binary] _________________________ 6) An implementation may reclaim the storage used by the array when this function is called. template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator<< (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator>> (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator&& (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator|| (const valarray<T>&, const valarray<T>&); 1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type T or which can be unambigu ously converted to type T. 2 Each of these operators returns an array whose length is equal to the lengths of the argument arrays. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding elements of the argument arrays. 3 If the argument arrays do not have the same length, the behavior is undefined. template<class T> valarray<T> operator* (const valarray<T>&, const T&); template<class T> valarray<T> operator* (const T&, const valarray<T>&); template<class T> valarray<T> operator/ (const valarray<T>&, const T&); template<class T> valarray<T> operator/ (const T&, const valarray<T>&); template<class T> valarray<T> operator% (const valarray<T>&, const T&); template<class T> valarray<T> operator% (const T&, const valarray<T>&); template<class T> valarray<T> operator+ (const valarray<T>&, const T&); template<class T> valarray<T> operator+ (const T&, const valarray<T>&); template<class T> valarray<T> operator- (const valarray<T>&, const T&); template<class T> valarray<T> operator- (const T&, const valarray<T>&); template<class T> valarray<T> operator^ (const valarray<T>&, const T&); template<class T> valarray<T> operator^ (const T&, const valarray<T>&); template<class T> valarray<T> operator& (const valarray<T>&, const T&); template<class T> valarray<T> operator& (const T&, const valarray<T>&); template<class T> valarray<T> operator| (const valarray<T>&, const T&); template<class T> valarray<T> operator| (const T&, const valarray<T>&); template<class T> valarray<T> operator<<(const valarray<T>&, const T&); template<class T> valarray<T> operator<<(const T&, const valarray<T>&); template<class T> valarray<T> operator>>(const valarray<T>&, const T&); template<class T> valarray<T> operator>>(const T&, const valarray<T>&); template<class T> valarray<T> operator&&(const valarray<T>&, const T&); template<class T> valarray<T> operator&&(const T&, const valarray<T>&); template<class T> valarray<T> operator||(const valarray<T>&, const T&); template<class T> valarray<T> operator||(const T&, const valarray<T>&); 4 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type T or which can be unambigu ously converted to type T. 5 Each of these operators returns an array whose length is equal to the length of the array argument. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding element of the array argument and the non-array argu ment. 26.3.2.2 valarray comparison operators [lib.valarray.comparison] template<class T> valarray<bool> operator== (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator!= (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator<= (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator>= (const valarray<T>&, const valarray<T>&); 1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type bool or which can be unam biguously converted to type bool. 2 Each of these operators returns a bool array whose length is equal to the length of the array arguments. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding elements of the argument arrays. 3 If the two array arguments do not have the same length, the behavior is undefined. template<class T> valarray<bool> operator==(const valarray&, const T&); template<class T> valarray<bool> operator==(const T&, const valarray&); template<class T> valarray<bool> operator!=(const valarray&, const T&); template<class T> valarray<bool> operator!=(const T&, const valarray&); template<class T> valarray<bool> operator< (const valarray&, const T&); template<class T> valarray<bool> operator< (const T&, const valarray&); template<class T> valarray<bool> operator> (const valarray&, const T&); template<class T> valarray<bool> operator> (const T&, const valarray&); template<class T> valarray<bool> operator<=(const valarray&, const T&); template<class T> valarray<bool> operator<=(const T&, const valarray&); template<class T> valarray<bool> operator>=(const valarray&, const T&); template<class T> valarray<bool> operator>=(const T&, const valarray&); 4 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type bool or which can be unam biguously converted to type bool. 5 Each of these operators returns a bool array whose length is equal to the length of the array argument. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding element of the array and the non-array argument. 26.3.2.3 valarray min and max functions [lib.valarray.min.max] template<class T> T min(const valarray<T>& a); template<class T> T max(const valarray<T>& a); 1 These functions may only be instantiated for a type T to which opera tor> and operator< may be applied and for which operator> and opera tor< return a value which is of type bool or which can be unambigu ously converted to type bool. 2 These functions return the minimum ( a.min()) or maximum ( a.max()) value found in the argument array a. 3 The value returned for an array of length 0 is undefined. For an array of length 1, the value of element 0 is returned. For all other array lengths, the determination is made using operator> and opera tor<, in a manner analogous to the application of operator+= for the sum function. 26.3.2.4 valarray transcendentals [lib.valarray.transcend] template<class T> valarray<T> abs (const valarray<T>&); template<class T> valarray<T> acos (const valarray<T>&); template<class T> valarray<T> asin (const valarray<T>&); template<class T> valarray<T> atan (const valarray<T>&); template<class T> valarray<T> atan2 (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> atan2(const valarray<T>&, const T&); template<class T> valarray<T> atan2(const T&, const valarray<T>&); template<class T> valarray<T> cos (const valarray<T>&); template<class T> valarray<T> cosh (const valarray<T>&); template<class T> valarray<T> exp (const valarray<T>&); template<class T> valarray<T> log (const valarray<T>&); template<class T> valarray<T> log10(const valarray<T>&); template<class T> valarray<T> pow (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> pow (const valarray<T>&, const T&); template<class T> valarray<T> pow (const T&, const valarray<T>&); template<class T> valarray<T> sin (const valarray<T>&); template<class T> valarray<T> sinh (const valarray<T>&); template<class T> valarray<T> sqrt (const valarray<T>&); template<class T> valarray<T> tan (const valarray<T>&); template<class T> valarray<T> tanh (const valarray<T>&); 1 Each of these functions may only be instantiated for a type T to which a unique function with the indicated name can be applied. This func tion must return a value which is of type T or which can be unambigu ously converted to type T. 26.3.3 Class slice [lib.class.slice] namespace std { class slice { public: slice(); slice(size_t, size_t, size_t); size_t start() const; size_t length() const; size_t stride() const; }; } 1 The slice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index, a length, and a stride.7) _________________________ 7) BLAS stands for Basic Linear Algebra Subprograms. C++ programs may 26.3.3.1 slice constructors [lib.cons.slice] slice(); slice(size_t start, size_t length, size_t stride); slice(const slice&); 1 The default constructor for slice creates a slice which specifies no elements. A default constructor is provided only to permit the decla ration of arrays of slices. The constructor with arguments for a slice takes a start, length, and stride parameter. 2 [Example: slice(3, 8, 2) constructs a slice which selects elements 3, 5, 7, ... 17 from an array. --end example] 26.3.3.2 slice access functions [lib.slice.access] size_t start() const; size_t length() const; size_t stride() const; 1 These functions return the start, length, or stride specified by a slice object. 26.3.4 Template class slice_array [lib.template.slice.array] namespace std { template <class T> class slice_array { public: typedef T value_type; void operator= (const valarray<T>&) const; void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; _________________________ instantiate this class. See, for example, Dongarra, Du Croz, Duff, and Hammerling: A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS-P1-0888, Argonne National Laboratory (USA), Math ematics and Computer Science Division, August, 1988. void fill(const T&); ~slice_array(); private: slice_array(); slice_array(const slice_array&); slice_array& operator=(const slice_array&); // remainder implementation defined }; } 1 The slice_array template is a helper template used by the slice sub script operator slice_array<T> valarray<T>::operator[](slice); It has reference semantics to a subset of an array specified by a slice object. 2 [Example: The expression a[slice(1, 5, 3)] = b; has the effect of assigning the elements of b to a slice of the elements in a. For the slice shown, the elements selected from a are 1, 4, ..., 13. --end example] 3 [Note: C++ programs may not instantiate slice_array, since all its constructors are private. It is intended purely as a helper class and should be transparent to the user. --end note] 26.3.4.1 slice_array constructors [lib.cons.slice.arr] slice_array(); slice_array(const slice_array&); 1 The slice_array template has no public constructors. These construc tors are declared to be private. These constructors need not be defined. 26.3.4.2 slice_array assignment [lib.slice.arr.assign] void operator=(const valarray<T>&) const; slice_array& operator=(const slice_array&); 1 The second of these two assignment operators is declared private and need not be defined. The first has reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which the slice_array object refers. 26.3.4.3 slice_array computed [lib.slice.arr.comp.assign] assignment void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; 1 These computed assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the slice_array object refers. 26.3.4.4 slice_array fill function [lib.slice.arr.fill] void fill(const T&); 1 This function has reference semantics, assigning the value of its argument to the elements of the valarray<T> object to which the slice_array object refers. 26.3.5 The gslice class [lib.class.gslice] namespace std { class gslice { public: gslice(); gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d); size_t start() const; valarray<size_t> length() const; valarray<size_t> stride() const; }; } 1 This class represents a generalized slice out of an array. A gslice is defined by a starting offset (s), a set of lengths (lj), and a set of strides (dj). The number of lengths must equal the number of strides. 2 A gslice represents a mapping from a set of indices (ij), equal in number to the number of strides, to a single index k. It is useful for building multidimensional array classes using the valarray tem plate, which is one-dimensional. The set of one-dimensional index values specified by a gslice are k=s+>ijdj where the multidimensional indices ij range in value from 0 to lij-1. 3 [Example: The gslice specification start = 3 length = {2, 4, 3} stride = {19, 4, 1} yields the sequence of one-dimensional indices k=3+(0,1)×19+(0,1,2,3)×4+(0,1,2)×1 which are ordered as shown in the following table: (i0, i1, i2, k) = (0, 0, 0, 3), (0, 0, 1, 4), (0, 0, 2, 5), (0, 1, 0, 7), (0, 1, 1, 8), (0, 1, 2, 9), (0, 2, 0, 11), (0, 2, 1, 12), (0, 2, 2, 13), (0, 3, 0, 15), (0, 3, 1, 16), (0, 3, 2, 17), (1, 0, 0, 22), (1, 0, 1, 23), ... (1, 3, 2, 36) That is, the highest-ordered index turns fastest. --end example] 4 It is possible to have degenerate generalized slices in which an address is repeated. 5 [Example: If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements of the resulting sequence of indices will be (0, 0, 0, 3), (0, 0, 1, 4), (0, 0, 2, 5), (0, 1, 0, 4), (0, 1, 1, 5), (0, 1, 2, 6), ... --end example] 6 If a degenerate slice is used as the argument to the non-const version of operator[](const gslice&), the resulting behavior is undefined. 26.3.5.1 gslice constructors [lib.gslice.cons] gslice(); gslice(size_t start, const valarray<size_t>& lengths, const valarray<size_t>& strides); gslice(const gslice&); 1 The default constructor creates a gslice which specifies no elements. The constructor with arguments builds a gslice based on a specifica tion of start, lengths, and strides, as explained in the previous sec tion. 26.3.5.2 gslice access functions [lib.gslice.access] size_t start() const; valarray<size_t> length() const; valarray<size_t> stride() const; These access functions return the representation of the start, lengths, or strides specified for the gslice. 26.3.6 Template class gslice_array [lib.template.gslice.array] namespace std { template <class T> class gslice_array { public: typedef T value_type; void operator= (const valarray<T>&) const; void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; void fill(const T&); ~gslice_array(); private: gslice_array(); gslice_array(const gslice_array&); gslice_array& operator=(const gslice_array&); // remainder implementation defined }; } 1 This template is a helper template used by the slice subscript opera tor gslice_array<T> valarray<T>::operator[](const gslice&); It has reference semantics to a subset of an array specified by a gslice object. 2 Thus, the expression a[gslice(1, length, stride)] = b has the effect of assigning the elements of b to a generalized slice of the elements in a. 3 [Note: C++ programs may not instantiate gslice_array, since all its constructors are private. It is intended purely as a helper class and should be transparent to the user. --end note] 26.3.6.1 gslice_array constructors [lib.gslice.array.cons] gslice_array(); gslice_array(const gslice_array&); 1 The gslice_array template has no public constructors. It declares the above constructors to be private. These constructors need not be defined. 26.3.6.2 gslice_array assignment [lib.gslice.array.assign] void operator=(const valarray<T>&) const; gslice_array& operator=(const gslice_array&); 1 The second of these two assignment operators is declared private and need not be defined. The first has reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which the gslice_array refers. 26.3.6.3 gslice_array computed [lib.gslice.array.comp.assign] assignment void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; 1 These computed assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the gslice_array object refers. 26.3.6.4 gslice_array fill function [lib.gslice.array.fill] void fill(const T&); 1 This function has reference semantics, assigning the value of its argument to the elements of the valarray<T> object to which the gslice_array object refers. 26.3.7 Template class mask_array [lib.template.mask.array] namespace std { template <class T> class mask_array { public: typedef T value_type; void operator= (const valarray<T>&) const; void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; void fill(const T&); ~mask_array(); private: mask_array(); mask_array(const mask_array&); mask_array& operator=(const mask_array&); // remainder implementation defined }; } 1 This template is a helper template used by the mask subscript opera tor: mask_array<T> valarray<T>::operator[](const valarray<bool>&). It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression a[mask] = b; has the effect of assigning the elements of b to the masked elements in a (those for which the corresponding element in mask is true. 2 [Note: C++ programs may not declare instances of mask_array, since all its constructors are private. It is intended purely as a helper class, and should be transparent to the user. --end note] 26.3.7.1 mask_array constructors [lib.mask.array.cons] mask_array(); mask_array(const mask_array&); 1 The mask_array template has no public constructors. It declares the above constructors to be private. These constructors need not be defined. 26.3.7.2 mask_array assignment [lib.mask.array.assign] void operator=(const valarray<T>&) const; mask_array& operator=(const mask_array&); 1 The second of these two assignment operators is declared private and need not be defined. The first has reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which it refers. 26.3.7.3 mask_array computed [lib.mask.array.comp.assign] assignment void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; 1 These computed assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the mask object refers. 26.3.7.4 mask_array fill function [lib.mask.array.fill] void fill(const T&); This function has reference semantics, assigning the value of its argument to the elements of the valarray<T> object to which the mask_array object refers. 26.3.8 Template class [lib.template.indirect.array] indirect_array namespace std { template <class T> class indirect_array { public: typedef T value_type; void operator= (const valarray<T>&) const; void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; void fill(const T&); ~indirect_array(); private: indirect_array(); indirect_array(const indirect_array&); indirect_array& operator=(const indirect_array&); // remainder implementation defined }; } 1 This template is a helper template used by the indirect subscript operator indirect_array<T> valarray<T>::operator[](const valarray<int>&). It has reference semantics to a subset of an array specified by an indirect_array. Thus the expression a[indirect] = b; has the effect of assigning the elements of b to the elements in a whose indices appear in indirect. 2 [Note: C++ programs may not declare instances of indirect_array, since all its constructors are private. It is intended purely as a helper class, and should be transparent to the user. --end note] 26.3.8.1 indirect_array constructors [lib.indirect.array.cons] indirect_array(); indirect_array(const indirect_array&); The indirect_array template has no public constructors. The construc tors listed above are private. These constructors need not be defined. 26.3.8.2 indirect_array assignment [lib.indirect.array.assign] void operator=(const valarray<T>&) const; indirect_array& operator=(const indirect_array&); 1 The second of these two assignment operators is declared private and need not be defined. The first has reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which it refers. 2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than once, the behavior is undefined. 3 [Example: int addr[] = {2, 3, 1, 4, 4}; valarray<int> indirect(addr, 5); valarray<double> a(0., 10), b(1., 5); array[indirect] = b; results in undefined behavior since element 4 is specified twice in the indirection. --end example] 26.3.8.3 indirect_array [lib.indirect.array.comp.assign] computed assignment void operator*= (const valarray<T>&) const; void operator/= (const valarray<T>&) const; void operator%= (const valarray<T>&) const; void operator+= (const valarray<T>&) const; void operator-= (const valarray<T>&) const; void operator^= (const valarray<T>&) const; void operator&= (const valarray<T>&) const; void operator|= (const valarray<T>&) const; void operator<<=(const valarray<T>&) const; void operator>>=(const valarray<T>&) const; 1 These computed assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the indirect_array object refers. 2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than once, the behavior is undefined. 26.3.8.4 indirect_array fill function [lib.indirect.array.fill] void fill(const T&); 1 This function has reference semantics, assigning the value of its argument to the elements of the valarray<T> object to which the indi rect_array object refers. 26.4 Generalized numeric operations [lib.numeric.ops] Header <numeric> synopsis namspace std { template <class InputIterator, class T> T accumulate(InputIterator first, InputIterator last, T init); template <class InputIterator, class T, class BinaryOperation> T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation binary_op); template <class InputIterator1, class InputIterator2, class T> T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init); template <class InputIterator1, class InputIterator2, class T, class BinaryOperation1, class BinaryOperation2> T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template <class InputIterator, class OutputIterator> OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result); template <class InputIterator, class OutputIterator, class BinaryOperation> OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); template <class InputIterator, class OutputIterator> OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result); template <class InputIterator, class OutputIterator, class BinaryOperation> OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); } 26.4.1 Accumulate [lib.accumulate] template <class InputIterator, class T> T accumulate(InputIterator first, InputIterator last, T init); template <class InputIterator, class T, class BinaryOperation> T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation binary_op); Effects: Initializes the accumulator acc with the initial value init and then modifies it with acc = acc + *i or acc = binary_op(acc, *i) for every iterator i in the range [first, last) in order.8) _________________________ 8) accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of defining the result of reduction on an empty sequence by always requiring an initial val ue. Requires: binary_op shall not cause side effects. 26.4.2 Inner product [lib.inner.product] template <class InputIterator1, class InputIterator2, class T> T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init); template <class InputIterator1, class InputIterator2, class T, class BinaryOperation1, class BinaryOperation2> T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); Effects: Computes its result by initializing the accumulator acc with the initial value init and then modifying it with acc = acc + (*i1) * (*i2) or acc = binary_op1(acc, binary_op2(*i1, *i2)) for every iter ator i1 in the range [first, last) and iterator i2 in the range [first2, first2 + (last - first)) in order. Requires: binary_op1 and binary_op2 shall not cause side effects. 26.4.3 Partial sum [lib.partial.sum] template <class InputIterator, class OutputIterator> OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result); template <class InputIterator, class OutputIterator, class BinaryOperation> OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); Effects: Assigns to every iterator i in the range [result, result + (last - first)) a value correspondingly equal to ((...(*first + *(first + 1)) + ...) + *(first + (i - result))) or binary_op(binary_op(..., binary_op(*first, *(first + 1)),...), *(first + (i - result))) Returns: result + (last - first). Complexity: Exactly (last - first) - 1 applications of binary_op. Requires: binary_op is expected not to have any side effects. Notes: result may be equal to first. 26.4.4 Adjacent difference [lib.adjacent.difference] template <class InputIterator, class OutputIterator> OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result); template <class InputIterator, class OutputIterator, class BinaryOperation> OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); Effects: Assigns to every element referred to by iterator i in the range [result + 1, result + (last - first)) a value correspondingly equal to *(first + (i - result)) - *(first + (i - result) - 1) or binary_op(*(first + (i - result)), *(first + (i - result) - 1)). result gets the value of *first. Requires: binary_op shall not have any side effects. Notes: result may be equal to first. Returns: result + (last - first). Complexity: Exactly (last - first) - 1 applications of binary_op. 26.5 C Library [lib.c.math] 1 Tables 2 and 3 describe headers <cmath> and <cstdlib> ( abs(), div(), rand(), srand()), respectively. Table 2--Header <cmath> synopsis +----------------------------------------+ | Type Name(s) | +----------------------------------------+ |Macro: HUGE_VAL | +----------------------------------------+ |Functions: | |acos cos fmod modf tan | |asin cosh frexp pow tanh | |atan exp ldexp sin | |atan2 fabs log sinh | |ceil floor log10 sqrt | +----------------------------------------+ Table 2--Header <cstdlib> synopsis +----------------------------+ | Type Name(s) | +----------------------------+ |Macros: RAND_MAX | +----------------------------+ |Types: div_t ldiv_t | +----------------------------+ |Functions: | |abs labs srand | |div ldiv rand | +----------------------------+ 2 The contents are the same as the Standard C library, with the follow ing additions: 3 In addition to the int versions of certain math functions in <cst dlib>, C++ adds long overloaded versions of these functions, with the same semantics. 4 The added signatures are: long abs(long); // labs() ldiv_t div(long, long); // ldiv() 5 In addition to the double versions of the math functions in <cmath>, C++ adds float and long double overloaded versions of these functions, with the same semantics. 6 The added signatures are: float abs (float); float acos (float); float asin (float); float atan (float); float atan2(float, float); float ceil (float); float cos (float); float cosh (float); float exp (float); float fabs (float); float floor(float); float fmod (float, float); float frexp(float, int*); float ldexp(float, int); float log (float); float log10(float); float modf (float, float*); float pow (float, float); float pow (float, int); float sin (float); float sinh (float); float sqrt (float); float tan (float); float tanh (float); double abs(double); // fabs() double pow(double, int); long double abs (long double); long double acos (long double); long double asin (long double); long double atan (long double); long double atan2(long double, long double); long double ceil (long double); long double cos (long double); long double cosh (long double); long double exp (long double); long double fabs (long double); long double floor(long double); long double frexp(long double, int*); long double fmod (long double, long double); long double frexp(long double, int*); long double ldexp(long double, int); long double log (long double); long double log10(long double); long double modf (long double, long double*); long double pow (long double, long double); long double pow (long double, int); long double sin (long double); long double sinh (long double); long double sqrt (long double); long double tan (long double); long double tanh (long double); SEE ALSO: ISO C subclauses 7.5, 7.10.2, 7.10.6.