______________________________________________________________________

  14   Templates                                        [temp]

  ______________________________________________________________________

1 A class template defines the layout and operations  for  an  unbounded
  set  of  related  types.  [Example: a single class template List might
  provide a common definition for list of int, list of float,  and  list
  of pointers to Shapes.  ] A function template defines an unbounded set
  of related functions.  [Example: a  single  function  template  sort()
  might provide a common definition for sorting all the types defined by
  the List class template.  ]

2 A template defines a family of types or functions.
          template-declaration:
                  template < template-parameter-list > declaration
          template-parameter-list:
                  template-parameter
                  template-parameter-list , template-parameter
  The declaration in a template-declaration shall declare  or  define  a
  function  or a class, define a static data member of a template class,
  or define a template member of a class.  A template-declaration  is  a
  declaration.   A  template-declaration  is  a definition (also) if its
  declaration defines a function, a class, or a static data member of  a
  template  class.   There shall be exactly one definition for each tem­
  plate in a program.  [Note: there can be many  declarations.   ]  How­
  ever,  if the multiple definitions are in different translation units,
  the behavior is undefined (and no diagnostic is required).

  +-------                 BEGIN BOX 1                -------+
  This - and all other requirements for unique definitions of  templates
  in  this  clause  -  will  have  to  be rephrased to take the ODR into
  account when the ODR is completely defined.
  +-------                  END BOX 1                 -------+

3 The name of a template obeys the usual scope and access control rules.
  A  template-declaration  can appear only as a global declaration, as a
  member of a namespace, as a member of a class, or as  a  member  of  a
  class template.  A member template shall not be virtual.  A destructor
  shall not be a template.  A local class shall not have a  member  tem­
  plate.

4 A  template shall not have C linkage.  If the linkage of a template is
  something other than C or C++, the behavior is implementation-defined.

5 [Example: An array class template might be declared like this:

          template<class T> class Array {
              T* v;
              int sz;
          public:
              explicit Array(int);
              T& operator[](int);
              T& elem(int i) { return v[i]; }
              // ...
          };
  The  prefix  template  <class  T>  specifies  that a template is being
  declared and that a type-name T will be used in the  declaration.   In
  other words, Array is a parameterized type with T as its parameter.  ]

6 [Note: a class template definition specifies  how  individual  classes
  can be constructed much as a class definition specifies how individual
  objects can be constructed.  ]

7 A member template can be defined within its class  or  separately.   A
  member  template of a template class that is defined outside its class
  is specified with the template parameter list of the class followed by
  the template parameter list of the member template.  [Example:
          template<class T> class string {
          public:
                  template<class T2> int compare(const T2&);
                  template<class T2> string(const string<T2>& s) { /* ... */ }
                  // ...
          };
          template<class T> template<class T2> int string<T>::compare(const T2& s)
          {
                  // ...
          }
   --end example]

  14.1  Template names                                      [temp.names]

1 A template can be referred to by a template-id:
          template-id:
                  template-name < template-argument-list >
          template-name:
                  identifier
          template-argument-list:
                  template-argument
                  template-argument-list , template-argument
          template-argument:
                  assignment-expression
                  type-id
                  template-name

2 A template-id that names a template class is a class-name (_class_).

3 A  template-id that names a defined template class can be used exactly
  like the names of other defined classes.  [Example:
          Array<int> v(10);
          Array<int>* p = &v;

   --end example] [Note: template-ids that name functions are  discussed
  in _temp.fct_.  ]

4 A  template-id  that names a template class that has been declared but
  not defined can be used exactly like the names of other  declared  but
  undefined classes.  [Example:
          template<class T> class X; // X is a class template

          X<int>* p; // ok: pointer to declared class X<int>
          X<int> x;  // error: object of undefined class X<int>
   --end example]

5 The  name  of a template followed by a < is always taken as the begin­
  ning of a template-id and never as a name followed  by  the  less-than
  operator.   Similarly,  the  first non-nested > is taken as the end of
  the  template-argument-list  rather  than  a  greater-than   operator.
  [Example:
          template<int i> class X { /* ... */ }

          X< 1>2 >x1; // syntax error
          X<(1>2)>x2; // ok

          template<class T> class Y { /* ... */ }
          Y< X<1> > x3; // ok
   --end example]

6 The  name  of  a  class template shall not be declared to refer to any
  other template,  class,  function,  object,  enumeration,  enumerator,
  namespace, value, or type in the same scope.  Unless explicitly speci­
  fied to have internal linkage,  a  template  in  namespace  scope  has
  external  linkage  (_basic.link_).   A  global  template name shall be
  unique in a program.

7 In a template-argument, an ambiguity between a type-id and an  expres­
  sion is resolved to a type-id.  [Example:
          template<class T> void f();
          template<int I> void f();

          void g()
          {
                  f<int()>(); // ``int()'' is a type-id: call the first f()
          }
   --end example]

  14.2  Name resolution                                       [temp.res]

1 A  name used in a template is assumed not to name a type unless it has
  been explicitly declared to refer to a type in the  context  enclosing
  the  template  declaration  or  is  qualified by the keyword typename.
  [Example:

          // no B declared here

          class X;

          template<class T> class Y {
                  class Z; // forward declaration of member class

                  void f() {
                          X* a1;    // declare pointer to X
                          T* a2;    // declare pointer to T
                          Y* a3;    // declare pointer to Y
                          Z* a4;    // declare pointer to Z
                          typedef typename T::A TA;
                          TA* a5;   // declare pointer to T's A
                          typename T::A* a6;   // declare pointer to T's A
                          T::A* a7; // T::A is not a type name:
                                    // multiply T::A by a7
                          B* a8;    // B is not a type name:
                                    // multiply B by a8
                  }
          };
   --end example]

2 In a template, any use of a qualified-name where the qualifier depends
  on  a  template-parameter  can  be prefixed by the keyword typename to
  indicate that the qualified-name denotes a type.
          elaborated-type-specifier:
                  ...
                  typename ::opt nested-name-specifier identifier full-template-argument-listopt

          full-template-argument-list:
                  < template-argument-list >

3 If a specialization of that template  is  generated  for  a  template-
  argument such that the qualified-name does not denote a type, the spe­
  cialization is ill-formed.  The keyword typename states that the  fol­
  lowing  qualified-name names a type.  [Note: but gives no clue to what
  that type might be.  ] The qualified-name shall  include  a  qualifier
  containing a template parameter or a template class name.

4 Knowing which names are type names allows the syntax of every template
  declaration to be checked.  Syntax errors in  a  template  declaration
  can  therefore be diagnosed at the point of the declaration exactly as
  errors for non-template constructs.  Other errors, such as type errors
  involving  template  parameters, cannot be diagnosed until later; such
  errors shall be diagnosed at the point  of  instantiation  or  at  the
  point where member functions are generated (_temp.inst_).  Errors that
  can be diagnosed at the point of a template declaration shall be diag­
  nosed  there or later together with the dependent type errors.  [Exam­
  ple:

          template<class T> class X {
                  // ...
                  void f(T t, int i, char* p)
                  {
                          t = i;  // typecheck at point of instantiation,
                                  //        or at function generation
                          p = i;  // typecheck immediately at template declaration,
                                  //        at point of instantiation,
                                  //        or at function generation
                  }
          };
   --end example] No diagnostics shall be issued for a template  defini­
  tion for which a valid specialization can be generated.

5 Three kinds of names can be used within a template definition:

  --The  name  of  the  template  itself,  the  names  of  the template-
    parameters (_temp.param_), and names declared  within  the  template
    itself.

  --Names from the scope of the template definition.

  --Names  dependent  on a template-argument (_temp.arg_) from the scope
    of a template instantiation.

6 [Example:
          #include <iostream>
          using namespace std;

          template<class T> class Set {
                  T* p;
                  int cnt;
          public:
                  Set();
                  Set<T>(const Set<T>&);
                  void printall()
                  {
                          for (int i = 0; i<cnt; i++)
                                  cout << p[i] << '\n';
                  }
                  // ...
          };
   --end example] When looking for the declaration of a name used  in  a
  template definition the usual lookup rules (_basic.lookup.unqual_) are
  first applied.  [Note: in the example,  i  is  the  local  variable  i
  declared  in printall, cnt is the member cnt declared in Set, and cout
  is the standard output stream  declared  in  iostream.   However,  not
  every  declaration can be found this way; the resolution of some names
  must be postponed until the actual template-argument  is  known.   For
  example,  even  though the name operator<< is known within the defini­
  tion of printall() an a declaration of it can be found in  <iostream>,
  the  actual  declaration  of operator<< needed to print p[i] cannot be
  known until it is known what type T is (_temp.dep_).  ]

7 If a name can be bound at the point of the template definition and  it
  is not a function called in a way that depends on a template-parameter
  (as defined in _temp.dep_), it will be bound at the  template  defini­
  tion  point  and  the  binding  is not affected by later declarations.
  [Example:
          void f(char);

          template<class T> void g(T t)
          {
                  f(1);     // f(char)
                  f(T(1));  // dependent
                  f(t);     // dependent
          }
          void f(int);

          void h()
          {
                  g(2);   // will cause one call of f(char) followed
                          //  by two calls of f(int)
                  g('a'); // will cause three calls of f(char)
          }
   --end example]

  14.2.1  Locally declared names                            [temp.local]

1 Within the scope of a class template or a specialization of a template
  the  name  of  the  template is equivalent to the name of the template
  followed by the template-parameters enclosed  in  <>.   [Example:  the
  constructor  for Set can be referred to as Set() or Set<T>().  ] Other
  specializations (_temp.spec_) of the  class  can  be  referred  to  by
  explicitly  qualifying  the  template  name with appropriate template-
  arguments.  [Example:
          template<class T> class X {
                  X* p;           // meaning X<T>
                  X<T>* p2;
                  X<int>* p3;
          };
          template<class T> class Y;

          template<> class Y<int> {
                  Y* p;           // meaning Y<int>
          };
   --end example] [Note: see _temp.param_ for  the  scope  of  template-
  parameters.  ]

2 A template type-parameter can be used in an elaborated-type-specifier.
  [Example:
          template<class T> class A {
                  friend class T;
                  class T* p;
                  class T;        // error: redeclaration of template parameter T
                                  // (a name declaration, not an elaboration)
                  // ...
          }

   --end example]

3 However, a specialization of a template  for  which  a  type-parameter
  used  this  way is not in agreement with the elaborated-type-specifier
  (_dcl.type_) is ill-formed.  [Example:
          class C { /* ... */ };
          struct S { /* ... */ };
          union U { /* ... */ };
          enum E { /* ... */ };

          A<C> ac;        // ok
          A<S> as;        // ok
          A<U> au;        // error: parameter T elaborated as a class,
                          // but the argument supplied for T is a union
          A<int> ai;      // error: parameter T elaborated as a class,
                          // but the argument supplied for T is an int
          A<E> ae;        // error: parameter T elaborated as a class,
                          // but the argument supplied for T is an enumeration
   --end example]

  14.2.2  Names from the template's enclosing scope          [temp.encl]

1 If a name used in a template isn't defined in the template  definition
  itself, names declared in the scope enclosing the template are consid­
  ered.  If the name used is found there, the name used  refers  to  the
  name in the enclosing context.  [Example:
          void g(double);
          void h();

          template<class T> class Z {
          public:
                  void f() {
                          g(1); // calls g(double)
                          h++;  // error: cannot increment function
                  }
          };

          void g(int); // not in scope at the point of the template
                       // definition, not considered for the call g(1)
    --end  example]  [Note:  a  template definition behaves exactly like
  other definitions.  ] [Example:

          void g(double);
          void h();

          class ZZ {
          public:
                  void f() {
                          g(1); // calls g(double)
                          h++;  // error: cannot increment function
                  }
          };

          void g(int); // not in scope at the point of class ZZ
                       // definition, not considered for the call g(1)
   --end example]

  14.2.3  Dependent names                                     [temp.dep]

1 Some names used in a template are neither known at the  point  of  the
  template definition nor declared within the template definition.  Such
  names shall depend on a template-argument and shall be in scope at the
  point of the template instantiation (_temp.inst_).  [Example:
          class Horse { /* ... */ };

          ostream& operator<<(ostream&,const Horse&);

          void hh(Set<Horse>& h)
          {
                  h.printall();
          }
  In  the call of Set<Horse>::printall(), the meaning of the << operator
  used  to  print  p[i]  in   the   definition   of   Set<T>::printall()
  (_temp.res_), is
          operator<<(ostream&,const Horse&);
  This  function  takes  an  argument of type Horse and is called from a
  template with a template-parameter T for which  the  template-argument
  is  Horse.   Because  this function depends on a template-argument the
  call is well-formed.  ]

2 A function call depends on a template-argument if the call would  have
  a  different resolution or no resolution if a type, template, or named
  constant mentioned in the template-argument were missing from the pro­
  gram.  [Example: some calls that depend on an argument type T are:

  1)The  function  called has a parameter that depends on T according to
    the  type  deduction  rules  (_temp.deduct_).   For  example:  f(T),
    f(Array<T>), and f(const T*).

  2)The type of the actual argument depends on T.  For example: f(T(1)),
    f(t), f(g(t)), and f(&t) assuming that t has the type T.

  3)A call is resolved by the use of a conversion to T without either an
    argument  or a parameter of the called function being of a type that
    depended on T as specified in (1) and (2).  For example:

              struct B { };
              struct T : B { };
              struct X { operator T(); };

              void f(B);

              void g(X x)
              {
                      f(x);  // meaning f( B( x.operator T() ) )
                             // so the call f(x) depends on T
              }

3 This ill-formed template instantiation uses a function that  does  not
  depend on a template-argument:
          template<class T> class Z {
          public:
                  void f() {
                          g(1); // g() not found in Z's context.
                                // Look again at point of instantiation
                  }
          };
          void g(int);

          void h(const Z<Horse>& x)
          {
                  x.f(); // error: g(int) called by g(1) does not depend
                         // on template-parameter ``Horse''
          }
  The call x.f() gives raise to the specialization:
          void Z<Horse>::f() { g(1); }
  The call g(1) would call g(int), but since that call in no way depends
  on the template-argument Horse and because g(int) wasn't in  scope  at
  the  point  of  the definition of the template, the call x.f() is ill-
  formed.

4 On the other hand:
          void h(const Z<int>& y)
          {
                  y.f(); // fine: g(int) called by g(1) depends
                         // on template-parameter ``int''
          }
  Here, the call y.f() gives raise to the specialization:
          void Z<int>::f() { g(1); }
  The call g(1) calls g(int), and since that call depends  on  the  tem­
  plate-argument  int,  the  call y.f() is acceptable even though g(int)
  wasn't in scope at the point of the template definition.  ]

5 A name from a base class (of a non-dependent type) can hide  the  name
  of a template-parameter.  [Example:

          struct A {
                  struct B { /* ... */ };
                  int a;
                  int Y;
          };

          template<class B, class a> struct X : A {
                  B b;  // A's B
                  a b;  // error: A's a isn't a type name
          };
   --end example]

6 However,  a  name from a template-argument cannot hide a name declared
  within a template, a template-parameter, or a name from the template's
  enclosing scopes.  [Example:
          int a;

          template<class T> struct Y : T {
                  struct B { /* ... */ };
                  B b;                     // The B defined in Y
                  void f(int i) { a = i; } // the global a;
                  Y* p;                    // Y<T>
          };

          Y<A> ya;
  The  members  A::B,  A::a,  and A::Y of the template argument A do not
  affect the binding of names in Y<A>.  ]

7 A name of a member can hide the name of a template-parameter.   [Exam­
  ple:
          template<class T> struct A {
                  struct B { /* ... */ };
                  void f();
          };

          template<class B> void A<B>::f()
          {
                  B b;  // A's B, not the template parameter
          }
   --end example]

  14.2.4  Non-local names declared within a template       [temp.inject]

1 Names  that are not template members can be declared within a template
  class or function.  When a template is specialized, the names declared
  in  it  are  declared  as  if  the  specialization had been explicitly
  declared at its point of instantiation.  If a template is  first  spe­
  cialized  as the result of use within a block or class, names declared
  within the template shall be used only after  the  template  use  that
  caused the specialization.  [Example:

          // Assume that Y is not yet declared

          template<class T> class X {
                  friend class Y;
          };
          Y* py1;        // ill-formed: Y is not in scope

          void g()
          {
                  X<C>* pc;  // does not cause instantiation
                  Y* py2;    // ill-formed: Y is not in scope
                  X<C> c;    // causes instantiation of X<C>, so
                             // names from X<C> can be used
                             // here on
                  Y* py3;    // ok
          }
          Y* py4;        // ok
   --end example]

  14.3  Template instantiation                               [temp.inst]

1 A  class  generated from a class template is called a generated class.
  A function generated from a function template is  called  a  generated
  function.   A  static  data member generated from a static data member
  template is called a generated static data member.  A class definition
  introduced  by  template<>  is called an explicitly specialized class.
  The name of the class in such a definition shall be a template-id.   A
  function  definition  introduced by template<> is called an explicitly
  specialized function.  The name of the function in such  a  definition
  may  be  a template-id.  A static data member definition introduced by
  template<> is called an explicitly  specialized  static  data  member.
  The name of the class in such a definition shall be a template-id.

  +-------                 BEGIN BOX 2                -------+
  Corfield:  I  don't  think the above wording is quite right for either
  nested class member templates or nested class members  of  class  tem­
  plates.
  +-------                  END BOX 2                 -------+

  A  specialization  is a class, function, or static data member that is
  either generated or explicitly specialized.  [Example:

          template<class T = int> struct A
          {
                  static int x;
          };
          template<class U> void g(U) { }

          template<> struct A<double> { };  // specialize for T == double
          template<> struct A<> { };        // specialize for T == int
          template<> void g(char) { }       // specialize for U == char
                                            // U is deduced from the parameter type
          template<> void g<int>(int) { }   // specialize for U == int
          template<> int A<char>::x = 0;    // specialize for T == char
          template<> int A<>::x = 1;        // specialize for T == int
   --end example]

2 [Note: the act of generating a class, function, or static data  member
  from a template is commonly referred to as template instantiation.  ]

  14.3.1  Template linkage                                [temp.linkage]

1 A function template has external linkage, as does a static member of a
  class template.  Every function template shall have the  same  defini­
  tion in every translation unit in which it appears.

  +-------                 BEGIN BOX 3                -------+
  Corfield:  what about template<classT> static void f(T);?  Should this
  be ill-formed?
  +-------                  END BOX 3                 -------+

  14.3.2  Point of instantiation                            [temp.point]

1 The point of instantiation of a template  is  the  point  where  names
  dependent  on  the  template-argument are bound.  That point is in the
  nearest enclosing global or namespace scope containing the  first  use
  of  the  template  requiring  its  definition.   All names declared in
  global or namespace scope that are visible at that use are visible  at
  the  point  of  instantiation.  In particular the name of the class or
  function that encloses that use is visible at the point of  instantia­
  tion.   [Note:  this  implies that names used in a template definition
  cannot be bound to local names or class member names from the scope of
  the  template  use.  They can, however, be bound to names of namespace
  members.  For example:

          template<class T> class Y {
          public:
                  void f1() { g1(1); }
                  void f2() { g2(2); }
                  void f3() { g3(3); }
                  void f4() { g4(4); }
          };

          void k(const Y<int>& h)
          {
                  void g1(int);
                  h.f1(); // error: g1(int) called by g1(1) not found
                          //        local g1() not considered
          }

          class C {
                  void g2(int);

                  void m(const Y<int>& h)
                  {
                          h.f2(); // error: g2(int) called by g2(2) not found
                                  //        C::g2() not considered
                  }
          };

          namespace N {
                  void g3(int);

                  void n(const Y<int>& h)
                  {
                          h.f3(); // N::g3(int) called by g3(3)
                  }
          }

          void g4(int i)
          {
                  Y<int> h;
                  h.f4();  // g4(int) called by g4(4)
          }
   --end note]

2 Names from both the namespace of the template itself and of the names­
  pace  containing  the  point  of instantiation of a specialization are
  used to resolve names for the specialization.  Overload resolution  is
  used to chose between functions with the same name in these two names­
  paces.

3 [Example:

          namespace NN {
                  void g(int);
                  void h(int);
                  template<class T> void f(T t)
                  {
                          g(t);
                          h(t);
                          k(t);
                  }
          }
          namespace MM {
                  void g(double);
                  void k(double);

                  void m()
                  {
                          NN::f(1);    // indirectly calls NN::g(int),
                                       //                  NN::h, and MM::k.
                          NN::f(1.0);  // indirectly calls MM::g(double),
                                       //                  NN::h, and MM::k.
                  }
          }
   --end example]

4 If a name is found in both namespaces and overload  resolution  cannot
  resolve a use, the program is ill-formed.

5 Each translation unit in which the definition of a template is used in
  a way that require definition of  a  specialization  has  a  point  of
  instantiation for the template.  If this causes names used in the tem­
  plate definition to bind to different names in  different  translation
  units,  the  one-definition  rule has been violated and any use of the
  template is ill-formed.  Such violation does not require a diagnostic.

6 A  template can be either explicitly instantiated for a given argument
  list or be implicitly instantiated.  A template that has been used  in
  a  way  that  require a specialization of its definition will have the
  specialization implicitly generated unless it has either been  explic­
  itly   instantiated   (_temp.explicit_)   or   explicitly  specialized
  (_temp.spec_).  An implementation shall not  instantiate  a  function,
  nonvirtual  member  function,  class  or  member  class  that does not
  require instantiation.  It is unspecified whether or not an  implemen­
  tation  instantiates  a  virtual member function that does not require
  instantiation.

  +-------                 BEGIN BOX 4                -------+
  Corfield: the previous wording was "However, virtual functions can  be
  instantiated  for implementation purposes" - I believe the new wording
  clarifies the intent.
  +-------                  END BOX 4                 -------+

7 [Example:
          template<class T> class Z {
                  void f();
                  void g();
          };
          void h()
          {
                  Z<int> a;     // instantiation of class Z<int> required
                  Z<char>* p;   // instantiation of class Z<char> not required
                  Z<double>* q; // instantiation of class Z<double> not required

                  a.f();  // instantiation of Z<int>::f() required
                  p->g(); // instantiation of class Z<char> required, and
                          // instantiation of Z<char>::g() required
          }
  Nothing in this example  requires  class  Z<double>,  Z<int>::g(),  or
  Z<char>::f() to be instantiated.   --end example]

8 If  a  virtual function is instantiated, its point of instantiation is
  immediately following the point of instantiation for its class.

9 The point of instantiation for a template used inside another template
  and  not  instantiated  previous  to an instantiation of the enclosing
  template is immediately before  the  point  of  instantiation  of  the
  enclosing template.  [Example:
          namespace N {
                  template<class T> class List {
                  public:
                          T* get();
                          // ...
                  };
          }
          template<class K, class V> class Map {
                  List<V> lt;
                  V get(K);
                  //  ...
          };
          void g(Map<char*,int>& m)
          {
                  int i = m.get("Nicholas");
                  // ...
          }
    --end  example]  This  allows instantiation of a used template to be
  done before instantiation of its user.

10Implicitly generated template classes, functions, and static data mem­
  bers  are  placed  in  the  namespace  where the template was defined.
  [Example: a call of lt.get() from  Map<char*,int>::get()  would  place
  List<int>::get()  in  the namespace N rather than in the global names­
  pace.  ]

  +-------                 BEGIN BOX 5                -------+
  Name  injection  from  an  implicitly  generated   template   function

  specialization  is  under  debate.  That  is,  it  might  be banned or
  restricted.
  +-------                  END BOX 5                 -------+

11If a template for which a definition is in scope is used in a way that
  involves  overload  resolution, conversion to a base class, or pointer
  to member conversion, the definition of a template  specialization  is
  generated if the template is defined.  [Example:
          template<class T> class B { /* ... */ };
          template<class T> class D : public B<T> { /* ... */ };

          void f(void*);
          void f(B<int>*);

          void g(D<int>* p, D<char>* pp)
          {
                  f(p); // instantiation of D<int> required: call f(B<int>*)

                  B<char>* q = pp; // instantiation of D<char> required:
                                   // convert D<char>* to B<char>*
          }
   --end example]

12If  an  instantiation of a class template is required and the template
  is declared but not defined, the program is ill-formed.  [Example:
          template<class T> class X;

          X<char> ch; // error: definition of X required
   --end example]

13Recursive instantiation is possible.  [Example:
          template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; }

          int fac<0>() { return 1; }

          int f()
          {
                  return fac<17>();
          }
   --end example]

14There shall be an implementation quantity that specifies the limit  on
  the depth of recursive instantiations.

15The result of an infinite recursion in instantiation is undefined.  In
  particular, an implementation is allowed to report an infinite  recur­
  sion as being ill-formed.  [Example:

          template<class T> class X {
                  X<T>* p; // ok
                  X<T*> a; // instantiation of X<T> requires
                           // the instantiation of X<T*> which requires
                           // the instantiation of X<T**> which ...
          };
   --end example]

16No  program  shall explicitly instantiate any template more than once,
  both explicitly instantiate and explicitly specialize a  template,  or
  specialize  a  template  more  than  once for a given set of template-
  arguments.  An implementation is not required to diagnose a  violation
  of this rule.

17An  explicit  specialization  or  explicit instantiation of a template
  shall be in the namespace in which the template was  defined.   [Exam­
  ple:
          namespace N {
                  template<class T> class X { /* ... */ };
                  template<class T> class Y { /* ... */ };
                  template<class T> class Z {
                          void f(int i) { g(i); }
                          // ...
                  };

                  template<> class X<int> { /* ... */ }; // ok: specialization
                                                         //     in same namespace
          }
          template class Y<int>; // error: explicit instantiation
                                 //        in different namespace
          template class N::Y<char*>; // ok: explicit instantiation
                                      //     in same namespace
          template<> class N::Y<double> { /* ... */ }; // ok: specialization
                                                       //     in same namespace
   --end example]

18A  member  function  of  an  explicitly specialized class shall not be
  implicitly generated from the general template.  Instead,  the  member
  function shall itself be explicitly specialized.  [Example:

          template<class T> struct A {
                  void f() { /* ... */ }
          };

          template<> struct A<int> {
                  void f();
          };

          void h()
          {
                  A<int> a;
                  a.f();  // A<int>::f must be defined somewhere
          }

          template<> void A<int>::f() { /* ... */ }
    --end  example]  Thus, an explicit specialization of a class implies
  the declaration of specializations of all of its members.  The defini­
  tion  of  each such specialized member which is used shall be provided
  in some translation unit.

  14.4  Explicit instantiation                           [temp.explicit]

1 A class or function specialization can be explicitly instantiated from
  its template.

2 The syntax for explicit instantiation is:
          explicit-instantiation:
                  template declaration
  Where  the  unqualified-id  in the declaration shall be a template-id.
  [Example:
          template class Array<char>;

          template void sort<char>(Array<char>&);
   --end example]

  +-------                 BEGIN BOX 6                -------+
  Corfield: requiring a template-id here  seems  unnecessary  for  cases
  where  the  template  arguments can be deduced from the function argu­
  ments. An explicit specialization does not require this \n  should  we
  relax this requirement?
  +-------                  END BOX 6                 -------+

3 A  declaration  of  the  template  shall  be  in scope at the point of
  explicit instantiation.

4 A trailing template-argument can be left unspecified  in  an  explicit
  instantiation  or  explicit specialization of a template function pro­
  vided it can be deduced from the function argument type.  [Example:
          // instantiate sort(Array<int>&):
          // deduce template-argument:
          template void sort<>(Array<int>&);
   --end example]

5 The explicit instantiation of a class implies the instantiation of all
  of  its  members not previously explicitly specialized in the transla­
  tion unit containing the explicit instantiation.

  14.5  Template specialization                              [temp.spec]

1 A specialized template function, a template class, or a static  member
  of  a  template  can  be  declared by a declaration introduced by tem­
  plate<> except for a type member or template class member  of  a  non-
  specialized template class; that is:
          specialization:
                  template < > declaration
  A specialization of a static data member of a template is a definition
  if the declaration includes an initializer; otherwise, it is a  decla­
  ration.

  +-------                 BEGIN BOX 7                -------+
  Corfield: there is still no syntax for the definition of a static data
  member of a template that requires default initialization.
          template<> X Q<int>::x;
  This is a declaration regardless of whether X can be default  initial­
  ized.
  +-------                  END BOX 7                 -------+

  [Example:
          template<class T> class stream;

          template<> class stream<char> { /* ... */ };
          template<class T> void sort(Array<T>& v) { /* ... */ }

          template<> void sort<char*>(Array<char*>&) ;
  Given  these declarations, stream<char> will be used as the definition
  of streams of chars; other streams will be handled by template classes
  generated  from  the  class  template.  Similarly, sort<char*> will be
  used as the sort function for arguments of  type  Array<char*>;  other
  Array  types  will be sorted by functions generated from the template.
  ]

2 A declaration of the template being specialized shall be in  scope  at
  the point of declaration of a specialization.  [Example:
          template<> class X<int> { /* ... */ }; // error: X not a template

          template<class T> class X { /* ... */ };

          template<> class X<char*> { /* ... */ }; // fine: X is a template
   --end example]

3 If a template is explicitly specialized then that specialization shall
  be declared before the first  use  of  that  specialization  in  every
  translation unit in which it is used.  [Example:

          template<class T> void sort(Array<T>& v) { /* ... */ }

          void f(Array<String>& v)
          {
                  sort(v); // use general template
                           // sort(Array<T>&), T is String
          }

          template<> void sort<String>(Array<String>& v); // error: specialize after use
          template<> void sort<>(Array<char*>& v); // fine sort<char*> not yet used
    --end  example]  If a function or class template has been explicitly
  specialized for a template-argument list  no  specialization  will  be
  implicitly generated for that template-argument list.

4 It is possible for a specialization with a given function signature to
  be generated by more than  one  function  template.   In  such  cases,
  explicit  specification  of  the  template  arguments  must be used to
  uniquely identify the template function instance that  is  being  spe­
  cialized.  [Example:
          template <class T> void f(T);
          template <class T> void f(T*);
          template <>        void f(int*);        // Ambiguous
          template <>        void f<int>(int*);   // OK
          template <>        void f(int);         // OK
   --end example]

5 A  function  with  the same name as a template and a type that exactly
  matches that of a template is not a specialization (_temp.over.spec_).

6 A  member  template  of a class template may be explicitly specialized
  for a given instance of the class template.  A specific instance of  a
  member  template  is specified using the template function specializa­
  tion syntax.  Default arguments shall not be supplied in such declara­
  tions.  [Example:
          template<class T> struct A {
                  void f(T);
                  template<class X> void g(T,X);
          };

          // specialization
          template<> void A<int>::f(int);

          // out of class definition
          template<class T> template<class X> void A<T>::g(T,X) { }

          // specialization of member template
          template<> template<class X> void A<int>::g(int,X);

          // specialization of an instance of a member template
          template<> template<>
                  void A<int>::g(int,char);        // X deduced as char
          template<> template<>
                  void A<int>::g<char>(int,char);  // X specified as char

   --end example]

  14.6  Class template specializations                 [temp.class.spec]

1 A  primary  class  template declaration is one in which the class tem­
  plate name is an identifier.  A  template  declaration  in  which  the
  class  template  name is a template-id, is a partial specialization of
  the class template named in the  template-id.   The  primary  template
  shall be declared before any specializations of that template.  A par­
  tial specialization shall be declared before any use of that  template
  that would use that partial specialization.

2 [Example:
          template<class T1, class T2, int I> class A             { }; // #1
          template<class T, int I>            class A<T, T*, I>   { }; // #2
          template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
          template<class T>                   class A<int, T*, 5> { }; // #4
          template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5

3 The  first declaration declares the primary (unspecialized) class tem­
  plate.  The second and subsequent declarations declare specializations
  of the primary template.  ]

4 The  template  parameters  are specified in the angle bracket enclosed
  list that immediately follows the keyword template.  A  template  also
  has  a  template  argument  list.   For  specializations, this list is
  explicitly written immediately following the class template name.  For
  primary  templates,  this list is implicitly described by the template
  parameter list.  Specifically, the order of the template parameters is
  the  sequence  in  which  they  appear in the template parameter list.
  [Example: the template argument list for the primary template  in  the
  example above is <T1, T2, I>.  ]

5 A  nontype  argument  is nonspecialized if it is the name of a nontype
  parameter.  All other nontype arguments are specialized.

6 Within the argument list of a class template specialization, the  fol­
  lowing restrictions apply:

  --A  specialized  nontype argument expression shall not involve a tem­
    plate parameter of the specialization.

  --The type of a specialized  nontype  argument  shall  not  depend  on
    another type parameter of the specialization.

  --The  argument  list  of the specialization shall not be identical to
    the implicit argument list of the primary template.

  14.6.1  Matching of class template             [temp.class.spec.match]
       specializations

1 When  a  template  class is used in a context that requires a complete
  instantiation of the class, it is necessary to determine  whether  the
  instantiation  is to be generated using the primary template or one of
  the partial specializations.  This is done by  matching  the  template
  arguments  of the template class being used with the template argument
  lists of the partial specializations.

  --If no matches are found, the instantiation  is  generated  from  the
    primary template.

  --If  exactly  one matching specialization is found, the instantiation
    is generated from that specialization.

  --If more than one specialization is found, the  partial  order  rules
    (_temp.class.order_)  are  used to determine whether one of the spe­
    cializations is more specialized than the others.  If  none  of  the
    specializations  is  more specialized than all of the other matching
    specializations, then the use of the template class is ambiguous and
    the program is ill-formed.

2 A  specialization matches a given actual template argument list if the
  template arguments of the  specialization  can  be  deduced  from  the
  actual  template  argument  list  (_temp.deduct_).  A nontype template
  parameter can also be deduced from the value  of  an  actual  template
  argument of a nontype parameter of the primary template.  [Example:

3         A<int, int, 1>   a1;  // uses #1
          A<int, int*, 1>  a2;  // uses #2, T is int, I is 1
          A<int, char*, 5> a3;  // uses #4, T is int
          A<int, char*, 1> a4;  // uses #5, T1 is int, T2 is char, I is 1
          A<int*, int*, 2> a5;  // ambiguous: matches #3 and #5
   --end example]

4 In  a  class  template  reference, (e.g., A<int, int, 1>) the argument
  list must match the template parameter list of the  primary  template.
  The  template arguments of a specialization are deduced from the argu­
  ments of the primary template.  The template parameter list of a  spe­
  cialization shall not contain default template argument values.1)

  14.6.2  Partial ordering of class template          [temp.class.order]
       specializations

1 For two class template partial specializations, the first is at  least
  as specialized as the second if:

  --the  type  arguments  of  the  first template's argument list are at
  _________________________
  1) There is no way in which they could be used.

    least as specialized as those of the second template's argument list
    using the ordering rules for function templates (_temp.func.order_),
    and

  --each nontype argument of the first template's argument  list  is  at
    least as specialized as that of the second template's argument list.

2 A nontype argument is at least as specialized as another nontype argu­
  ment if:

  --both are formal arguments,

  --the first is a value and the second is a formal argument, or

  --both are the same value.

3 A  template  class  partial  specialization  is  more specialized than
  another if, and only if, it is at least as specialized  as  the  other
  template  class partial specialization and that template class partial
  specialization is not at least as specialized as the first.  Otherwise
  the two template class partial specializations are unordered.

  14.6.3  Member functions of class              [temp.class.spec.mfunc]
       template specializations

1 The template parameter list of a member function of a  class  template
  specialization  shall  match  the template parameter list of the class
  template specialization.  The template argument list of a member func­
  tion of a class template specialization shall match the template argu­
  ment list of the class template specialization.  A class template spe­
  cialization is a distinct template.  The members of the class template
  specialization are unrelated to the members of the  primary  template.
  Class  template  specialization  members  that  are used in a way that
  requires a definition must be defined; the definitions of  members  of
  the  primary  template  will  never be used to provide definitions for
  members of a class template specialization.  An  explicit  specializa­
  tion of a member of a class template specialization is declared in the
  same way as  an  explicit  specialization  of  the  primary  template.
  [Example:

2

          // primary template
          template<class T, int I> struct A {
                  void f();
          };

          template<class T, int I> void A<T,I>::f() { }

          // class template specialization
          template<class T> struct A<T,2> {
                  void f();
                  void g();
                  void h();
          };

          // member of class template specialization
          template<class T> void A<T,2>::g() { }

          // explicit specialization
          template<> void A<char,2>::h() { }

          int main()
          {
                  A<char,0>       a0;
                  A<char,2>       a2;
                  a0.f();         // ok
                  a2.g();         // ok
                  a2.h();         // ok
                  a2.f();         // no definition of f for A<T,2>
                                          // the primary template is not used here
          }
   --end example]

  14.7  Template parameters                                 [temp.param]

1 The syntax for template-parameters is:
          template-parameter:
                  type-parameter
                  parameter-declaration
          type-parameter:
                  class identifieropt
                  class identifieropt = type-id
                  typename identifieropt
                  typename identifieropt = type-id
                  template < template-parameter-list > class  identifieropt
                  template < template-parameter-list > class  identifieropt = template-name
  [Example:

          template<class T> class myarray { /* ... */ };

          template<class K, class V, template<class T> class C = myarray>
          class Map {
                  C<K> key;
                  C<V> value;
                  // ...
          };
   --end example]

2 Default arguments shall not be specified in a declaration or a defini­
  tion of a specialization.

3 A type-parameter defines its identifier to be a type-name in the scope
  of the template declaration.  A type-parameter shall not be redeclared
  within its scope (including  nested  scopes).   A  non-type  template-
  parameter  shall not be assigned to or in any other way have its value
  changed.  [Example:
          template<class T, int i> class Y {
                  int T;  // error: template-parameter redefined
                  void f() {
                          char T; // error: template-parameter redefined
                          i++;    // error: change of template-argument value
                  }
          };

          template<class X> class X; // error: template-parameter redefined
   --end example]

4 A template-parameter that could be interpreted as either an parameter-
  declaration or a type-parameter (because its identifier is the name of
  an already existing class) is taken as a type-parameter.  A  template-
  parameter  hides  a variable, type, constant, etc. of the same name in
  the enclosing scope.  [Example:
          class T { /* ... */ };
          int i;

          template<class T, T i> void f(T t)
          {
                  T t1 = i;      // template-arguments T and i
                  ::T t2 = ::i;  // globals T and i
          }
  Here, the template f has a type-parameter called  T,  rather  than  an
  unnamed non-type parameter of class T.  ] There is no semantic differ­
  ence between class and typename in a template-parameter.

5 There are no restrictions on what  can  be  a  template-argument  type
  beyond   the   constraints  imposed  by  the  set  of  argument  types
  (_temp.arg_).  In particular, reference types and types containing cv-
  qualifiers are allowed.  A non-reference template-argument cannot have
  its address taken.  When a non-reference template-argument is used  as
  an initializer for a reference a temporary is always used.  [Example:

          template<const X& x, int i> void f()
          {
                  &x; // ok
                  &i; // error: address of non-reference template-argument

                  int& ri = i; // error: non-const reference bound to temporary
                  const int& cri = i; // ok: reference bound to temporary
          }
   --end example]

6 A  non-type  template-parameter shall not be of floating type.  [Exam­
  ple:
          template<double d> class X;    // error
          template<double* pd> class X;  // ok
          template<double& rd> class X;  // ok
   --end example]

7 A default template-argument is a type, value,  or  template  specified
  after  =  in a template-parameter.  A default template-argument can be
  specified in a template declaration or a template definition.  The set
  of  default  template-arguments available for use with a template in a
  translation unit shall be provided by the  first  declaration  of  the
  template in that unit.

8 If  a  template-parameter  has a default argument, all subsequent tem­
  plate-parameters shall have a default argument supplied.  [Example:
          template<class T1 = int, class T2> class B; // error
   --end example]

9 The scope of a template-argument extends from its point of declaration
  until  the  end  of its template.  In particular, a template-parameter
  can be used in the declaration of subsequent  template-parameters  and
  their default arguments.  [Example:
          template<class T, T* p, class U = T> class X { /* ... */ };
          template<class T> void f(T* p = new T);
    --end example] A template-parameter cannot be used in preceding tem­
  plate-parameters or their default arguments.

10A template-parameter can be used in the specification of base classes.
  [Example:
          template<class T> class X : public Array<T> { /* ... */ };
          template<class T> class Y : public T { /* ... */ };
   --end example] [Note: the use of a template-parameter as a base class
  implies that a class used as a template-argument must be  defined  and
  not just declared.  ]

  14.8  Template arguments                                    [temp.arg]

1 The  types  of the template-arguments specified in a template-id shall
  match the types specified for the template in its  template-parameter-
  list.  [Example: Arrays as defined in _temp_ can be used like this:

          Array<int> v1(20);
          typedef complex<double> dcomplex; // complex is a standard
                                            // library template
          Array<dcomplex> v2(30);
          Array<dcomplex> v3(40);

          v1[3] = 7;
          v2[3] = v3.elem(4) = dcomplex(7,8);
   --end example]

2 A  non-type  non-reference  template-argument  shall  be  a  constant-
  expression of non-floating type, the address of an object or  a  func­
  tion  with  external  linkage,  or a non-overloaded pointer to member.
  The address of an object or function shall be expressed as &f, plain f
  (for  function only), or &X::f where f is the function or object name.
  In the case of &X::f, X shall be a  (possibly  qualified)  name  of  a
  class  and  f  the  name of a static member of X.  A pointer to member
  shall be expressed as &X::m where X is a (possibly qualified) name  of
  a  class and m is the name of a nonstatic member of X.  In particular,
  a string literal (_lex.string_) is not an acceptable template-argument
  because a string literal is the address of an object with static link­
  age.  [Example:
          template<class T, char* p> class X {
                  // ...
                  X(const char* q) { /* ... */ }
          };
          X<int,"Studebaker"> x1; // error: string literal as template-argument

          char p[] = "Vivisectionist";
          X<int,p> x2; // ok
   --end example]

3 Similarly, addresses of array elements and  non-static  class  members
  are not acceptable as template-arguments.  [Example:
          int a[10];
          struct S { int m; static int s; } s;

          X<&a[2],p> x3; // error: address of element
          X<&s.m,p> x4;  // error: address of member
          X<&s.s,p> x5;  // error: address of member (dot operator used)
          X<&S::s,p> x6; // ok: address of static member
   --end example]

4 Nor  is a local type or a type with no linkage name an acceptable tem­
  plate-argument.  [Example:
          void f()
          {
                  struct S { /* ... */ };

                  X<S,p> x3; // error: local type used as template-argument
          }
   --end example]

5 Similarly, a reference template-parameter shall not be bound to a tem­
  porary,  an unnamed lvalue, or a named lvalue with no linkage.  [Exam­
  ple:
          template<const int& CRI> struct B { /* ... */ };

          B<1> b2; // error: temporary required for template argument

          int c = 1;
          B<c> b1; // ok
   --end example]

6 An argument to a template-parameter of pointer to function type  shall
  have  exactly  the  type  specified  by  the template parameter.  This
  allows selection from a set of overloaded functions.  [Example:
          void f(char);
          void f(int);

          template<void (*pf)(int)> struct A { /* ... */ };

          A<&f> a; // selects f(int)
   --end example]

7 If a template-argument to a template class is a function type and that
  causes  a  declaration that does not use the syntactic form of a func­
  tion declarator to have function  type,  the  program  is  ill-formed.
  [Example:
          template<class T> struct A {
                  static T t;
          };
          typedef int function();
          A<function> a;  // ill-formed: would declare A<function>::t
                          // as a static member function
   --end example]

8 A  template  has  no  special  access  rights to its template-argument
  types.  A template-argument shall be accessible at the point where  it
  is used as a template-argument.  [Example:
          template<class T> class X { /* ... */ };

          class Y {
          private:
                  struct S { /* ... */ };
                  X<S> x;  // ok: S is accessible
          };

          X<Y::S> y; // error: S not accessible
   --end example]

9 When default template-arguments are used, a template-argument list can
  be empty.  In that case the empty <> brackets  shall  still  be  used.
  [Example:

          template<class T = char> class String;
          String<>* p; // ok: String<char>
          String* q;   // syntax error
    --end  example] The notion of " array type decay"  does not apply to
  template-parameters.  [Example:
          template<int a[5]> struct S { /* ... */ };
          int v[5];
          int* p = v;
          S<v> x; // fine
          S<p> y; // error
   --end example]

  14.9  Type equivalence                                     [temp.type]

1 Two template-ids refer to the same class or function if their template
  names are identical and in the same scope and their template-arguments
  have identical values.  [Example:
          template<class E, int size> class buffer;

          buffer<char,2*512> x;
          buffer<char,1024> y;
  declares x and y to be of the same type, and
          template<class T, void(*err_fct)()> class list { /* ... */ };

          list<int,&error_handler1> x1;
          list<int,&error_handler2> x2;
          list<int,&error_handler2> x3;
          list<char,&error_handler2> x4;
  declares x2 and x3 to be of the same type.  Their  type  differs  from
  the types of x1 and x4.  ]

  14.10  Function templates                                   [temp.fct]

1 A  function  template  specifies  how individual functions can be con­
  structed.  [Example: a family of sort  functions,  might  be  declared
  like this:
          template<class T> void sort(Array<T>&);
    --end  example]  A  function  template specifies an unbounded set of
  (overloaded) functions.  A function generated from a function template
  is  called  a template function, so is an explicit specialization of a
  function template.  Template arguments can either be explicitly speci­
  fied in a call or be deduced from the function arguments.

  14.10.1  Explicit template argument                [temp.arg.explicit]
       specification

1 Template arguments can be specified in a call by qualifying  the  tem­
  plate  function name by the list of template-arguments exactly as tem­
  plate-arguments are specified in uses of a class template.  [Example:

          void f(Array<dcomplex>& cv, Array<int>& ci)
          {
              sort<dcomplex>(cv); // sort(Array<dcomplex>)
              sort<int>(ci);      // sort(Array<int>)
          }
  and
          template<class U, class V> U convert(V v);

          void g(double d)
          {
                  int i = convert<int,double>(d);  // int convert(double)
                  char c = convert<char,double>(d); // char convert(double)
          }
   --end example]

2 Implicit conversions (_conv_) are accepted for a function argument for
  which  the  parameter has been fixed by explicit specification of tem­
  plate-arguments.  [Example:
          template<class T> void f(T);

          class Complex {
                  // ...
                  Complex(double);
          };
          void g()
          {
                  f<Complex>(1); // ok, means f<Complex>(Complex(1))
          }
   --end example]

3 For a template function name to be explicitly  qualified  by  template
  arguments,  the  name  must be known to refer to a template.  When the
  name appears after .  or -> in a postfix-expression, or after :: in  a
  qualified-id  where  the  nested-name-specifier  depends on a template
  parameter, the member template name must be prefixed  by  the  keyword
  template.  Otherwise the name is assumed to name a non-template.

4 [Example:
          class X {
          public:
                  template<size_t> X* alloc();
          };
          void f(X* p)
          {
                  X* p1 = p->alloc<200>();
                          // ill-formed: < means less than

                  X* p2 = p->template alloc<200>();
                          // fine: < starts explicit qualification
          }
   --end example]

5 If a name prefixed by the keyword template in this way is not the name
  of a member template function, the program is ill-formed.

  14.10.2  Template argument deduction                     [temp.deduct]

1 Template arguments that can be deduced from the function arguments  of
  a call need not be explicitly specified.  [Example:
          void f(Array<dcomplex>& cv, Array<int>& ci)
          {
              sort(cv);   // call sort(Array<dcomplex>)
              sort(ci);   // call sort(Array<int>)
          }
  and
          void g(double d)
          {
                  int i = convert<int>(d);   // call convert<int,double>(double)
                  int c = convert<char>(d);  // call convert<char,double>(double)
          }

   --end example]

2 Type  deduction is done for each parameter of a function template that
  contains a reference to a template parameter that  is  not  explicitly
  specified.   The  type of the parameter of the function template (call
  it P) is compared to the type of the  corresponding  argument  of  the
  call  (call  it  A), and an attempt is made to find types for the tem­
  plate type arguments, and values for the template non-type  arguments,
  that  will make P after substitution of the deduced values and explic­
  itly-specified values (call that the deduced P)  compatible  with  the
  call  argument.  Type deduction is done independently for each parame­
  ter/argument pair, and the deduced template argument types and  values
  are  then  combined.  If type deduction cannot be done for any parame­
  ter/argument pair, of if for any parameter/argument pair the deduction
  leads to more than one possible set of deduced values, or if different
  parameter/argument pairs yield different deduced values  for  a  given
  template argument, or if any template argument remains neither deduced
  nor explicitly specified, template argument deduction fails.

3 If P is not a reference type:

  --if A is an array type, the pointer type produced  by  the  array-to-
    pointer standard conversion (_conv.array_) is used in place of A for
    type deduction; otherwise,

  --if A is a function type, the pointer type produced by the  function-
    to-pointer  standard  conversion (_conv.func_) is used in place of A
    for type deduction; otherwise,

  --the cv-unqualified version of A is used  in  place  of  A  for  type
    deduction.

  If  P  is a reference type, the type referred to by P is used in place
  of P for type deduction.

4 In general, the deduction process attempts to find  template  argument
  values  that  will  make the deduced P identical to A.  However, there
  are three cases that allow a difference:

  --If the original P is a reference type, the deduced P (i.e., the type
    referred to by the reference) can be more cv-qualified than A.

  --If  P  is  a  pointer  or  pointer  to member type, A can be another
    pointer or pointer to member type  that  can  be  converted  to  the
    deduced P via a qualification conversion (_conv.qual_).

  --If  P  is  a class, A can be a derived class of the deduced P having
    the  form  class-template-name<arguments>.   Likewise,  if  P  is  a
    pointer  to  a  class,  A can be a pointer to a derived class of the
    underlying type of the deduced P  having  the  form  class-template-
    name<arguments>.   These  alternatives  are  considered only if type
    deduction cannot be done otherwise.  If they  yield  more  than  one
    possible deduced P, the type deduction fails.

  When  deducing  arguments  in  the context of taking the address of an
  overloaded function (_over.over_), these inexact  deductions  are  not
  considered.

5 A  template  type  argument T or a template non-type argument i can be
  deduced if P and A have one of the following forms:
          T
          cv-list T
          T*
          T&
          T[integer-constant]
          class-template-name<T>
          type(*)(T)
          T(*)()
          T(*)(T)
          type T::*
          T type::*
          T (type::*)()
          type (T::*)()
          type (type::*)(T)
          type[i]
          class-template-name<i>

6 where (T) represents parameter lists where at least one parameter type
  contains  a  T,  and  () represents parameter lists where no parameter
  contains a T.  Similarly, <T> represents template argument lists where
  at  least one argument contains a T, and <i> represents template argu­
  ment lists where at least one argument contains an i.  These forms can
  be used in the same way as T is for further composition of types.

  +-------                 BEGIN BOX 8                -------+
  Change  The  lines having to do with pointers to member functions, and
  the second line for pointers to data members, were added to allow, for
  example, all three types to be deduced in

          template<class T1, class T2, class T3>
                  void f(T1 (T2::p)(T3));
  +-------                  END BOX 8                 -------+

  [Example:
          X<int> (*)(char[6])
  is of the form
          class-template-name<T> (*)(type[i])
  which is a variant of
          type (*)(T)
  where type is X<int> and T is char[6].  ]

7 [Note:  the template type parameter cannot be deduced from the type of
  a nontype template argument.  ]

8 In addition, a template-parameter can be deduced from  a  function  or
  pointer to member function argument if the set of overloaded functions
  does not contain template functions and at most one of a set of  over­
  loaded functions provides a unique match.  [Example:
          template<class T> void f(void(*)(T,int));
          template<class T> void foo(int, T);

          void g(int,int);
          void g(char,int);

          void h(int,int,int);
          void h(char,int);

          int m()
          {
                  f(&g);    // error: ambiguous
                  f(&h);    // ok: void h(char,int) is a unique match
                  f(&foo);  // error: type deduction fails because foo is a template
          }
   --end example]

9 Template arguments cannot be deduced from function arguments involving
  constructs other than the ones specified in here (_temp.deduct_).

  +-------                 BEGIN BOX 9                -------+
  Can a template template-parameter be deduced? and  if  so  how?   Cor­
  field: This was Spicer issue 3.19 which disappeared after the Waterloo
  meeting when template template-parameters were accepted. This does not
  appear to be on the current template issues list.
  +-------                  END BOX 9                 -------+

10Template  arguments  of an explicit instantiation or explicit special­
  ization are deduced (_temp.explicit_, _temp.spec_) according to  these
  rules specified for deducing function arguments.

11[Note:  a  major array bound is not part of a function parameter type,
  except for reference types, so it can't be deduced from an argument:

          template<int i> void f1(int a[10][i]);
          template<int i> void f2(int a[i][20]);
          template<int i> void f3(int (&a)[i][20]);
          void g()
          {
                  int v[10][20];
                  f1(v);     // ok: i deduced to be 20
                  f1<10>(v); // ok
                  f2(v);     // error: cannot deduce template-argument i
                  f2<10>(v); // ok
                  f3(v);     // ok: i deduced to be 10
          }
   --end note]

12If a nontype parameter is used in an expression in the function decla­
  ration,  template  argument deduction fails.  The type of the function
  template-parameter shall  match  the  type  of  the  template-argument
  exactly,  except that a template parameter deduced from an array bound
  may be any integral type.2) [Example:
          template<int i> class A { /* ... */ };
          template<short s> void f(A<s>);
          template<short s> void g(A<s+1>);
          A<1> a;
          f(a);       // error: deduction fails for conversion from short to int
          g(a);       // error: deduction fails for expression s+1
          f<1>(a);    // ok
          g<0>(a);    // ok
   --end example]

13If function template-arguments are explicitly specified in a call they
  are  specified  in  declaration order.  Trailing arguments can be left
  out of a list of explicit template-arguments.  [Example:
          template<class X, class Y, class Z> X f(Y,Z);

          void g()
          {
                  f<int,char*,double>("aa",3.0);
                  f<int,char*>("aa",3.0); // Z is deduced to be double
                  f<int>("aa",3.0);       // Y is deduced to be char*, and
                                          // Z is deduced to be double
                  f("aa",3.0);            // error: X cannot be deduced

          }
   --end example]

14A template-parameter cannot be deduced from a default  function  argu­
  ment.  [Example:

  _________________________
  2) Although a template-parameter of type bool may be deduced  from  an
  array bound, the resulting value will always be true because the array
  bound will be non-zero.

          template <class T> void f(T = 5, T = 7);

          void g()
          {
                  f(1);     // ok: call f<int>(1,7)
                  f();      // error: cannot deduce T
                  f<int>(); // ok: call f<int>(5,7)
          }

15Here  is  example  in which different parameter/argument pairs produce
  inconsistent template argument deductions:
          template<class T> void f(T x, T y) { /* ... */ }

          struct A { /* ... */ };
          struct B : A { /* ... */ };

          int g(A a, B b)
          {
                  f(a,a);  // ok: T is A
                  f(b,b);  // ok: T is B
                  f(a,b);  // error T could be A or B
                  f(b,a);  // error: T could be A or B
          }

16Here is an example where a qualification  conversion  applies  between
  the call argument type and the deduced parameter type:
          template<class T> void f(const T*) {}
          int *p;
          void s()
          {
                  f(p);  // f(const int *)
          }

17Here is an example where the deduced parameter type is a derived class
  of a class template reference:
          template <class T> struct B { };
          template <class T> struct D : public B<T> {};
          struct D2 : public B<int> {};
          template <class T> void f(B<T>&){}

          void main()
          {
                  D<int> d;
                  D2     d2;

                  f(d);  // calls f(B<int>&)
                  f(d2); // calls f(B<int>&)
          }
   --end example]

  14.10.3  Overload resolution                               [temp.over]

1 A function template can be overloaded either by (other)  functions  of
  its  name  or by (other) function templates of that same name.  When a
  call to that name is written  (explicitly,  or  implicitly  using  the
  operator  notation),  template  argument  deduction (_temp.deduct_) is
  performed on each function template to find the template argument val­
  ues  (if any) that can be used with that function template to generate
  a function that can be invoked with  the  call  arguments.   For  each
  function  template,  if  the  argument deduction succeeds, the deduced
  template arguments are used to generate a  single  template  function,
  which  is  added to the candidate functions set to be used in overload
  resolution.  If, for a given  function  template,  argument  deduction
  fails, no such function is added to the set of candidate functions for
  that template.  The complete set of candidate functions  includes  all
  the  template  functions  generated  in  this  way and all of the non-
  template overloaded functions of the same name.   The  template  func­
  tions  are  treated like any other functions in the remainder of over­
  load resolution, except as explicitly noted.3)

2 [Example:
          template<class T> T max(T a, T b) { return a>b?a:b; };

          void f(int a, int b, char c, char d)
          {
              int m1 = max(a,b);  // max(int a, int b)
              char m2 = max(c,d); // max(char a, char b)
              int m3 = max(a,c);  // error: cannot generate max(int,char)
          }

3 Adding
          int max(int,int);
  to  the  example  above  would  resolve the third call, by providing a
  function that could be called for max(a,c) after  using  the  standard
  conversion of char to int for c.

4 Here  is  an  example  involving  conversions  on  a function argument
  involved in template-parameter deduction:
          template<class T> struct B { /* ... */ };
          template<class T> struct D : public B<T> { /* ... */ };
          template<class T> void f(B<T>&);

  _________________________
  3) The parameters of template functions contain no template  parameter
  types.   The set of conversions allowed on deduced arguments is limit­
  ed, because the argument deduction process produces template functions
  with parameters that either match the call arguments exactly or differ
  only in ways that can be bridged by the allowed  limited  conversions.
  Non-deduced arguments allow the full range of conversions.

          void g(B<int>& bi, D<int>& di)
          {
                  f(bi);  // f(bi)
                  f(di);  // f( (B<int>&)di )
          }

5 Here is an example involving conversions on a  function  argument  not
  involved in template-parameter deduction:
          template<class T> void f(T*,int);  // #1
          template<class T> void f(T,char);  // #2

          void h(int* pi, int i, char c)
          {
                  f(pi,i);  // #1: f<int>(pi,i)
                  f(pi,c);  // #2: f<int*>(pi,c)

                  f(i,c);   // #2: f<int>(i,c);
                  f(i,i);   // #2: f<int>(i,char(i))
          }
   --end example]

6 The  template  definition  is  needed to generate specializations of a
  template.  However, only a function template declaration is needed  to
  call a specialization.  [Example:
          template<class T> void f(T);    // declaration

          void g()
          {
                  f("Annemarie"); // call of f<char*>
          }
  The  call of f is well formed because of the declaration of f, and the
  program will be ill-formed unless a definition of f is present in some
  translations unit.

7 Here  is  a  case involving explicit specification of some of the tem­
  plate arguments and deduction of the rest:
          template<class X, class Y> void f(X,Y*);  // #1
          template<class X, class Y> void f(X*,Y);  // #2

          void g(char* pc, int* pi)
          {
                  f(0,0); // error: ambiguous: f<int,int>(int,int*)
                            //                or f<int,int>(int*,int) ?
                  f<char*>(pc,pi); // #1: f<char*,int>(char*,int*)
                  f<char>(pc,pi);  // #2: f<char,int*>(char*,int*)
          }
   --end example]

  14.10.4  Overloading and linkage                      [temp.over.link]

1 It is possible to overload template functions so that  specializations
  of two different template functions have the same type.  [Example:

          // file1.c                     // file2.c
          template<class T>              template<class T>
              void f(T*);                    void f(T);
          void g(int* p) {               void h(int* p) {
                  f(p); // call f_PT_pi          f(p); // call f_T_pi
          }                              }
   --end example]

2 Such  specializations  are  distinct  functions and do not violate the
  ODR.

3 The signature of a specialization of a template function  consists  of
  the   actual  template  arguments  (whether  explicitly  specified  or
  deduced) and the signature of the function template.

4 The signature of a function template consists of its  function  signa­
  ture  and  its  return type and template parameter list.  The names of
  the template parameters are  significant  only  for  establishing  the
  relationship  between the template parameters and the rest of the sig­
  nature.

  14.10.5  Overloading and specialization               [temp.over.spec]

1 A template function can be overloaded by a function with the same type
  as a potentially generated function.  [Example:
          template<class T> T max(T a, T b) { return a>b?a:b; }
          int max(int a, int b);
          int min(int a, int b);
          template<class T> T min(T a, T b) { return a<b?a:b; }
    --end  example]  Such an overloaded function is a specialization but
  not an explicit specialization.  The  declaration  simply  guides  the
  overload  resolution.   [Note:  this  implies  that  a  definition  of
  max(int,int) and min(int,int) will be implicitly  generated  from  the
  templates.  If such implicit instantiation is not wanted, the explicit
  specialization syntax should be used instead:
          template<class T> T max(T a, T b) { return a>b?a:b; }
          template<> int max<int>(int a, int b);
   --end note]

2 Defining a function with the same type as  a  template  specialization
  that is called is ill-formed.  [Example:
          template<class T> T max(T a, T b) { return a>b?a:b; }
          int max(int a, int b) { return a>b?a:b; }

          void f(int x, int y)
          {
                  max(x,y); // error: duplicate definition of max()
          }
  If  the  two definitions of max() are not in the same translation unit
  the diagnostic is not required.  If a separate definition of  a  func­
  tion  max(int,int)  is  needed, the specialization syntax can be used.
  If the conversions enabled by an ordinary declaration are also needed,
  both can be used.

          template<class T> T max(T a, T b) { return a>b?a:b; }
          template<> int max<>(int a, int b) { /* ... */ }

          void g(char x, int y)
          {
                  max(x,y); // error: no exact match, and no conversions allowed
          }

          int max(int,int);

          void f(char x, int y)
          {
                  max(x,y); // max<int>(int(x),y)
          }
   --end example]

3 An  explicit  specialization of a function template shall be inline or
  static only if it is explicitly declared to be, and  independently  of
  whether its function template is.  [Example:
          template<class T> void f(T) { /* ... */ }
          template<class T> inline T g(T) { /* ... */ }

          template<> inline void f<>(int) { /* ... */ } // ok: inline
          template<> int g<>(int) { /* ... */ } // ok: not inline
   --end example]

  14.10.6  Partial ordering of function templates      [temp.func.order]

1 Given two function templates, whether one  is  more  specialized  than
  another  can  be  determined by transforming each template in turn and
  using argument deduction to compare it to the other.

2 The transformation used is:

  --For each type template parameter, synthesize a unique type and  sub­
    stitute  that  for each occurrence of that parameter in the function
    parameter list.

  --for each nontype template parameter, synthesize a  unique  value  of
    the appropriate type and substitute that for each occurrence of that
    parameter in the function parameter list.

3 Using the transformed function parameter list, perform argument deduc­
  tion  against the other function template (_temp.deduct_).  The trans­
  formed template is at least as specialized as the other if,  and  only
  if,  the  deduction  succeeds  and  the deduced parameter types are an
  exact match (so the deduction does not rely on implicit  conversions).

4 A  template is more specialized than another if, and only if, it is at
  least as specialized as the other template and that template is not at
  least as specialized as the first.  [Example:

          template<class T> class A {};

          template<class T> void f(T);
          template<class T> void f(T*);
          template<class T> void f(const T*);

          template<class T> void g(T);
          template<class T> void g(T&);

          template<class T> void h(const T&);
          template<class T> void h(A<T>);

          void m() {
                  const int *p;
                  f(p);  // f(const T*) is more specialized than f(T) or f(T*)
                  float x;
                  g(x);  // Ambiguous: g(T) or g(T&)
                  A<int> z;
                  h(z);  // h(A<T>) is more specialized than f(const T&)
                  const A<int> z2;
                  h(z2); // h(const T&) is called because h(A<T>) is not callable
          }
   --end example]

  14.11  Member function templates                       [temp.mem.func]

1 A  member  function of a template class is implicitly a template func­
  tion with the  template-parameters  of  its  class  as  its  template-
  parameters.  [Example:
          template<class T> class Array {
              T* v;
              int sz;
          public:
              explicit Array(int);
              T& operator[](int);
              T& elem(int i) { return v[i]; }
              // ...
          };
  declares  three  function  templates.  The subscript function might be
  defined like this:
          template<class T> T& Array<T>::operator[](int i)
          {
              if (i<0 || sz<=i) error("Array: range error");
              return v[i];
          }

2 The template-argument for Array<T>::operator[]() will be determined by
  the Array to which the subscripting operation is applied.
          Array<int> v1(20);
          Array<dcomplex> v2(30);

          v1[3] = 7;              // Array<int>::operator[]()
          v2[3] = dcomplex(7,8);  // Array<dcomplex>::operator[]()

   --end example]

  14.12  Member class templates                         [temp.mem.class]

1 A member class of a template class is implicitly a template class with
  the template-parameters of its class as its template-parameters.

2 A member class of a template class defined after  the  template  class
  which declares it shall be defined before the first use which requires
  instantiation.  [Example:
          template<class T> struct A {
                  class B;
          };
          A<int>::B* b1;  // ok: requires A to be defined but not A::B
          template<class T> class A<T>::B { };
          A<int>::B  b2;  // ok: requires A::B to be defined
   --end example]

  +-------                BEGIN BOX 10                -------+
  Unruh: this subclause was added to state that the  semantics  of  tem­
  plate  classes  apply to member class templates. The rest of clause 14
  [temp] needs a careful review to  ensure  that  this  has  no  further
  implications.  This relates to Spicer issue 2.25 resolved in Monterey.
  +-------                 END BOX 10                 -------+

  14.13  Friends                                           [temp.friend]

1 A friend function of a template can be a template function or  a  non-
  template function.  [Example:
          template<class T> class task {
              // ...
              friend void next_time();
              friend task<T>* preempt(task<T>*);
              friend task* prmt(task*);           // task is task<T>
              friend class task<int>;
              // ...
          };
  Here,  next_time()  and  task<int> become friends of all task classes,
  and each task has appropriately typed functions preempt()  and  prmt()
  as friends.  The preempt functions might be defined as a template.
          template<class T> task<T>* preempt(task<T>* t) { /* ... */ }
   --end example]

2 A friend template may be defined within a class.  [Example:
          class A {
                  template<class T> friend class B { /* ... /* }; // ok
                  template<class T> friend void f(T){ /* ... /* } // ok
          };
  Note:  a  friend  declaration  can  add  a  name to an enclosing scope
  (_temp.inject_).   --end example]

3 A member of a class template may be declared to be a  friend.   [Exam­
  ple:
          template<class T> struct A {
                  struct B { };
                  void f();
          };

          class C {
                  template<class T> friend struct A<T>::B;
                  template<class T> friend void A<T>::f();
          };
   --end example]

  14.14  Static members and variables                      [temp.static]

1 Each  template class or function generated from a template has its own
  copies of any static variables or members.  [Example:
          template<class T> class X {
              static T s;
              // ...
          };
          X<int> aa;
          X<char*> bb;
  Here X<int> has a static member s of  type  int  and  X<char*>  has  a
  static member s of type char*.  ]

2 Static class member templates are defined similarly to member function
  templates.  [Example:
          template<class T> T X<T>::s = 0;

          template<> int X<int>::s = 3;

3 Similarly,
          template<class T> f(T* p)
          {
              static T s;
              // ...
          };
          void g(int a, char* b)
          {
              f(&a);  // call f<int>(int*)
              f(&b);  // call f<char*>(char**)
          }
  Here  f<int>(int*)  has  a  static  member   s   of   type   int   and
  f<char*>(char**) has a static member s of type char*.  ]