______________________________________________________________________ 25 Algorithms library [lib.algorithms] ______________________________________________________________________ 1 This clause describes components that C++ programs may use to perform algorithmic operations on containers (_lib.containers_) and other sequences. 2 The following subclauses describe components for non-modifying sequence operation, modifying sequence operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Table 1: Table 1--Algorithms library summary +--------------------------------------------------------------------------+ | Subclause Header(s) | +--------------------------------------------------------------------------+ |_lib.alg.nonmodifying_ Non-modifying sequence operations | |_lib.alg.modifying.operations_ Mutating sequence operations <algorithm> | |_lib.alg.sorting_ Sorting and related operations | +--------------------------------------------------------------------------+ |_lib.alg.c.library_ C library algorithms <cstdlib> | +--------------------------------------------------------------------------+ Header <algorithm> synopsis namespace std { // subclause _lib.alg.nonmodifying_, non-modifying sequence operations: template<class InputIterator, class Function> Function for_each(InputIterator first, InputIterator last, Function f); template<class InputIterator, class T> InputIterator find(InputIterator first, InputIterator last, const T& value); template<class InputIterator, class Predicate> InputIterator find_if(InputIterator first, InputIterator last, Predicate pred); template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<class ForwardIterator> ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class BinaryPredicate> ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); template<class InputIterator, class T, class Size> void count(InputIterator first, InputIterator last, const T& value, Size& n); template<class InputIterator, class Predicate, class Size> void count_if(InputIterator first, InputIterator last, Predicate pred, Size& n); template<class InputIterator1, class InputIterator2> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); template<class InputIterator1, class InputIterator2> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<class ForwardIterator, class Size, class T> ForwardIterator search(ForwardIterator first, ForwardIterator last, Size count, const T& value); template<class ForwardIterator, class Size, class T, class BinaryPredicate> ForwardIterator1 search(ForwardIterator first, ForwardIterator last, Size count, T value, BinaryPredicate pred); // subclause _lib.alg.modifying.operations_, modifying sequence operations: // _lib.alg.copy_, copy: template<class InputIterator, class OutputIterator> OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result); template<class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result); // _lib.alg.swap_, swap: template<class T> void swap(T& a, T& b); template<class ForwardIterator1, class ForwardIterator2> ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); template<class ForwardIterator1, class ForwardIterator2> void iter_swap(ForwardIterator1 a, ForwardIterator2 b); template<class InputIterator, class OutputIterator, class UnaryOperation> OutputIterator transform(InputIterator first, InputIterator last, OutputIterator result, UnaryOperation op); template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryOperation> OutputIterator transform(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, OutputIterator result, BinaryOperation binary_op); template<class ForwardIterator, class T> void replace(ForwardIterator first, ForwardIterator last, const T& old_value, const T& new_value); template<class ForwardIterator, class Predicate, class T> void replace_if(ForwardIterator first, ForwardIterator last, Predicate pred, const T& new_value); template<class InputIterator, class OutputIterator, class T> OutputIterator replace_copy(InputIterator first, InputIterator last, OutputIterator result, const T& old_value, const T& new_value); template<class Iterator, class OutputIterator, class Predicate, class T> OutputIterator replace_copy_if(Iterator first, Iterator last, OutputIterator result, Predicate pred, const T& new_value); template<class ForwardIterator, class T> void fill(ForwardIterator first, ForwardIterator last, const T& value); template<class OutputIterator, class Size, class T> void fill_n(OutputIterator first, Size n, const T& value); template<class ForwardIterator, class Generator> void generate(ForwardIterator first, ForwardIterator last, Generator gen); template<class OutputIterator, class Size, class Generator> void generate_n(OutputIterator first, Size n, Generator gen); template<class ForwardIterator, class T> ForwardIterator remove(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class Predicate> ForwardIterator remove_if(ForwardIterator first, ForwardIterator last, Predicate pred); template<class InputIterator, class OutputIterator, class T> OutputIterator remove_copy(InputIterator first, InputIterator last, OutputIterator result, const T& value); template<class InputIterator, class OutputIterator, class Predicate> OutputIterator remove_copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred); template<class ForwardIterator> ForwardIterator unique(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class BinaryPredicate> ForwardIterator unique(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); template<class InputIterator, class OutputIterator> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result); template<class InputIterator, class OutputIterator, class BinaryPredicate> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result, BinaryPredicate pred); template<class BidirectionalIterator> void reverse(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class OutputIterator> OutputIterator reverse_copy(BidirectionalIterator first, BidirectionalIterator last, OutputIterator result); template<class ForwardIterator> void rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last); template<class ForwardIterator, class OutputIterator> OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle, ForwardIterator last, OutputIterator result); template<class RandomAccessIterator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class RandomNumberGenerator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last, RandomNumberGenerator& rand); // _lib.alg.partitions_, partitions: template<class BidirectionalIterator, class Predicate> BidirectionalIterator partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred); template<class BidirectionalIterator, class Predicate> BidirectionalIterator stable_partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred); // subclause _lib.alg.sorting_, sorting and related operations: // _lib.alg.sort_, sorting: template<class RandomAccessIterator> void sort(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void stable_sort(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void stable_sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last, Compare comp); template<class InputIterator, class RandomAccessIterator> RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last); template<class InputIterator, class RandomAccessIterator, class Compare> RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Compare comp); template<class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp); // _lib.alg.binary.search_, binary search: template<class ForwardIterator, class T> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); template<class ForwardIterator, class T> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); template<class ForwardIterator, class T> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); template<class ForwardIterator, class T> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); // _lib.alg.merge_, merge: template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class BidirectionalIterator> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last, Compare comp); // _lib.alg.set.operations_, set operations: template<class InputIterator1, class InputIterator2> bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class InputIterator1, class InputIterator2, class Compare> bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_symmetric_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_symmetric_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); // _lib.alg.heap.operations_, heap operations: template<class RandomAccessIterator> void push_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void push_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void pop_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void pop_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void make_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void make_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void sort_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void sort_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); // _lib.alg.min.max_, minimum and maximum: template<class T> const T& min(const T& a, const T& b); template<class T, class Compare> const T& min(const T& a, const T& b, Compare comp); template<class T> const T& max(const T& a, const T& b); template<class T, class Compare> const T& max(const T& a, const T& b, Compare comp); template<class ForwardIterator> ForwardIterator min_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator min_element(ForwardIterator first, ForwardIterator last, Compare comp); template<class ForwardIterator> ForwardIterator max_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator max_element(ForwardIterator first, ForwardIterator last, Compare comp); template<class InputIterator1, class InputIterator2> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class InputIterator1, class InputIterator2, class Compare> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); // _lib.alg.permutation.generators_, permutations template<class BidirectionalIterator> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); template<class BidirectionalIterator> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); } 3 All of the algorithms are separated from the particular implementa tions of data structures and are parameterized by iterator types. Because of this, they can work with program-defined data structures, as long as these data structures have iterator types satisfying the assumptions on the algorithms. 4 Both in-place and copying versions are provided for certain algorithms.1) When such a version is provided for algorithm it is called algorithm_copy. Algorithms that take predicates end with the suffix _if (which follows the suffix _copy). 5 The Predicate parameter is used whenever an algorithm expects a func tion object that when applied to the result of dereferencing the cor responding iterator returns a value testable as true. In other words, if an algorithm takes Predicate pred as its argument and first as its iterator argument, it should work correctly in the construct if (pred(*first)){...}. The function object pred is assumed not to apply any non-constant function through the dereferenced iterator. 6 The BinaryPredicate parameter is used whenever an algorithm expects a function object that when applied to the result of dereferencing two corresponding iterators or to dereferencing an iterator and type T when T is part of the signature returns a value testable as true. In other words, if an algorithm takes BinaryPredicate binary_pred as its argument and first1 and first2 as its iterator arguments, it should work correctly in the construct if (pred(*first, *first2)){...}. BinaryPredicate always takes the first iterator type as its first argument, that is, in those cases when T value is part of the signa ture, it should work correctly in the context of if (pred(*first, value)){...}. binary_pred shall not apply any non-constant function through the dereferenced iterators. 7 In the description of the algorithms operators + and - are used for some of the iterator categories for which they do not have to be defined. In these cases the semantics of a+n is the same is that of { X tmp = a; advance(tmp, n); return tmp; } and that of a-b is the same as of { Distance n; distance(a, b, n); return n; } +------- BEGIN BOX 1 -------+ _________________________ 1) The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing the operation dominates the cost of copy, the copying version is not included. For example, sort_copy is not included since the cost of sorting is much more significant, and users might as well do copy followed by sort. For the following algorithms: reverse, rotate, random_shuffle, sta ble_partition, sort, stable_sort and inplace_merge the iterator requirement can be relaxed to ForwardIterator. These algorithms could then be dispatched upon the iterator category tags to use the most efficient implementation for each iterator category. We have not included the relaxation at this stage since it is not yet fully imple mented. +------- END BOX 1 -------+ 25.1 Non-modifying sequence operations [lib.alg.nonmodifying] 25.1.1 For each [lib.alg.foreach] template<class InputIterator, class Function> Function for_each(InputIterator first, InputIterator last, Function f); Effects: Applies f to the result of dereferencing every iterator in the range [first, last). Requires: f shall not apply any non-constant function through the dereferenced iterator. Returns: f. Complexity: Applies f exactly last - first times. Notes: If f returns a result, the result is ignored. 25.1.2 Find [lib.alg.find] template<class InputIterator, class T> InputIterator find(InputIterator first, InputIterator last, const T& value); template<class InputIterator, class Predicate> InputIterator find_if(InputIterator first, InputIterator last, Predicate pred); Requires: Type T is EqualityComparable (_lib.equalitycomparable_). Returns: The first iterator i in the range [first, last) for which the fol lowing corresponding conditions hold: *i == value, pred(*i) == true. Returns last if no such iterator is found. Complexity: At most last - first applications of the corresponding predicate. 25.1.3 Find End [lib.alg.find.end] template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); Effects: Finds a subsequence of equal values in a sequence. Returns: The last iterator i in the range [first1, last1 - (last2-first2)) such that for any non-negative integer n < (last2-first2), the fol lowing corresponding conditions hold: *(i+n) == *(first2+n), pred(*(i+n),*(first2+n)) == true. Returns last1 if no such iterator is found. Complexity: At most (last2 - first2) * (last1 - first1-(last2 - first2)+1) applications of the corresponding predicate. 25.1.4 Find First [lib.alg.find.first.of] template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); Effects: Finds an element that matches one of a set of values. Returns: The first iterator i in the range [first1, last1) such that for some integer j in the range [first2, last2) the following conditions hold: *i == *j, pred(*i,*j) == true. Returns last1 if no such iter ator is found. Complexity: At most (last1-first1) * (last2-first2) applications of the corre sponding predicate. 25.1.5 Adjacent find [lib.alg.adjacent.find] +------- BEGIN BOX 2 -------+ Should these be ForwardIterator? +------- END BOX 2 -------+ template<class ForwardIterator> ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class BinaryPredicate> ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which the following corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) == true. Returns last if no such iterator is found. Complexity: Exactly find(first, last, value) - first applications of the corre sponding predicate. 25.1.6 Count [lib.alg.count] template<class InputIterator, class T, class Size> void count(InputIterator first, InputIterator last, const T& value, Size& n); template<class InputIterator, class Predicate, class Size> void count_if(InputIterator first, InputIterator last, Predicate pred, Size& n); Requires: Type T is EqualityComparable (_lib.equalitycomparable_), type Size supports ++. Effects: Adds to n the number of iterators i in the range [first, last) for which the following corresponding conditions hold: *i == value, pred(*i) == true. Complexity: Exactly last - first applications of the corresponding predicate. Notes: count must store the result into a reference argument instead of returning the result because the size type cannot be deduced from built-in iterator types such as int*. 25.1.7 Mismatch [lib.mismatch] template<class InputIterator1, class InputIterator2> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); Returns: A pair of iterators i and j such that j == first2 + (i - first1) and i is the first iterator in the range [first1, last1) for which the following corresponding conditions hold: !(*i == *(first2 + (i - first1))), pred(*i, *(first2 + (i - first1))) == false Returns the pair last1 and first2 + (last1 - first1) if such an iterator i is not found. Complexity: At most last1 - first1 applications of the corresponding predicate. 25.1.8 Equal [lib.alg.equal] template<class InputIterator1, class InputIterator2> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); Returns: true if for every iterator i in the range [first1, last1) the fol lowing corresponding conditions hold: *i == *(first2 + (i - first1)), pred(*i, *(first2 + (i - first1))) == true. Otherwise, returns false. Complexity: At most last1 - first1 applications of the corresponding predicate. 25.1.9 Search [lib.alg.search] template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); Requires: Type T is EqualityComparable (_lib.equalitycomparable_), type Size is convertible to integral type (_conv.integral_, _class.conv_). Effects: Finds a subsequence of equal values in a sequence. Returns: The first iterator i in the range [first1, last1 - (last2 - first2)) such that for any non-negative integer n less than last2 - first2 the following corresponding conditions hold: *(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) == true. Returns last1 if no such iterator is found. Complexity: At most (last1 - first1) * (last2 - first2) applications of the cor responding predicate. template<class ForwardIterator, class Size, class T> ForwardIterator search(ForwardIterator first, ForwardIterator last, Size count, const T& value); template<class ForwardIterator, class Size, class T, class BinaryPredicate> ForwardIterator search(ForwardIterator first, ForwardIterator last, Size count, const T& value, BinaryPredicate pred); Effects: Finds a subsequence of equal values in a sequence. Returns: The first iterator i in the range [first, last - count) such that for any non-negative integer n less than count the following corre sponding conditions hold: *(i + n) == value, pred(*(i + n),value) == true. Returns last if no such iterator is found. Complexity: At most (last1 - first1) * count applications of the corresponding predicate. 25.2 Mutating sequence operations [lib.alg.modifying.operations] 25.2.1 Copy [lib.alg.copy] template<class InputIterator, class OutputIterator> OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result); Effects: Copies elements. For each non-negative integer n < (last - first), performs *(result + n) = *(first + n). Returns: result + (last - first). Requires: result shall not be in the range [first, last). Complexity: Exactly last - first assignments. template<class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result); Effects: Copies elements in the range [first, last) into the range [result - (last - first), result) starting from last - 1 and proceeding to first . 2) For each positive integer n <= (last - first), Performs *(result - n) = *(last - n). Requires: result shall not be in the range [first, last). Returns: result - (last - first). Complexity: Exactly last - first assignments. 25.2.2 Swap [lib.alg.swap] template<class T> void swap(T& a, T& b); Requires: Type T is Assignable (_lib.container.requirements_). Effects: Exchanges values stored in two locations. _________________________ 2) copy_backward (_lib.copy.backward_) should be used instead of copy when last is in the range [result - (last - first), result). template<class ForwardIterator1, class ForwardIterator2> ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); Effects: For each non-negative integer n < (last1 - first1) performs: swap(*(first1 + n), *(first2 + n)). Requires: The two ranges [first1, last1) and [first2, first2 + (last1 - first1)) shall not overlap. Returns: first2 + (last1 - first1). Complexity: Exactly last1 - first1 swaps. template<class ForwardIterator1, class ForwardIterator2> void iter_swap(ForwardIterator1 a, ForwardIterator2 b); Effects: Exchanges the values pointed to by the two iterators a and b. 25.2.3 Transform [lib.alg.transform] template<class InputIterator, class OutputIterator, class UnaryOperation> OutputIterator transform(InputIterator first, InputIterator last, OutputIterator result, UnaryOperation op); template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryOperation> OutputIterator transform(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, OutputIterator result, BinaryOperation binary_op); Effects: Assigns through every iterator i in the range [result, result + (last1 - first1)) a new corresponding value equal to op(*(first1 + (i - result)) or binary_op(*(first1 + (i - result), *(first2 + (i - result))). Requires: op and binary_op shall not have any side effects. Returns: result + (last1 - first1). Complexity: Exactly last1 - first1 applications of op or binary_op Notes: result may be equal to first in case of unary transform, or to first1 or first2 in case of binary transform. 25.2.4 Replace [lib.alg.replace] template<class ForwardIterator, class T> void replace(ForwardIterator first, ForwardIterator last, const T& old_value, const T& new_value); template<class ForwardIterator, class Predicate, class T> void replace_if(ForwardIterator first, ForwardIterator last, Predicate pred, const T& new_value); Requires: Type T is Assignable (_lib.container.requirements_) (and, for replace(), EqualityComparable (_lib.equalitycomparable_). Effects: Substitutes elements referred by the iterator i in the range [first, last) with new_value, when the following corresponding conditions hold: *i == old_value, pred(*i) == true. Complexity: Exactly last - first applications of the corresponding predicate. template<class InputIterator, class OutputIterator, class T> OutputIterator replace_copy(InputIterator first, InputIterator last, OutputIterator result, const T& old_value, const T& new_value); template<class Iterator, class OutputIterator, class Predicate, class T> OutputIterator replace_copy_if(Iterator first, Iterator last, OutputIterator result, Predicate pred, const T& new_value); Requires: Type T is Assignable (_lib.container.requirements_) (and, for replace_copy(), EqualityComparable (_lib.equalitycomparable_). The ranges [first, last) and [result, result+(last-first)) shall not overlap. Effects: Assigns to every iterator i in the range [result, result + (last - first)) either new_value or *(first + (i - result)) depending on whether the following corresponding conditions hold: *(first + (i - result)) == old_value, pred(*(first + (i - result))) == true. Returns: result + (last - first). Complexity: Exactly last - first applications of the corresponding predicate. 25.2.5 Fill [lib.alg.fill] template<class ForwardIterator, class T> void fill(ForwardIterator first, ForwardIterator last, const T& value); template<class OutputIterator, class Size, class T> void fill_n(OutputIterator first, Size n, const T& value); Requires: Type T is Assignable (_lib.container.requirements_), Size is con vertible to an integral type (_conv.integral_, _class.conv_). Effects: Assigns value through all the iterators in the range [first, last)or [first, first + n). Complexity: Exactly last - first (or n) assignments. 25.2.6 Generate [lib.alg.generate] template<class ForwardIterator, class Generator> void generate(ForwardIterator first, ForwardIterator last, Generator gen); template<class OutputIterator, class Size, class Generator> void generate_n(OutputIterator first, Size n, Generator gen); Effects: Invokes the function object gen and assigns the return value of gen though all the iterators in the range [first, last) or [first, first + n). Requires: gen takes no arguments, Size is convertible to an integral type (_conv.integral_, _class.conv_). Complexity: Exactly last - first (or n) invocations of gen and assignments. 25.2.7 Remove [lib.alg.remove] template<class ForwardIterator, class T> ForwardIterator remove(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class Predicate> ForwardIterator remove_if(ForwardIterator first, ForwardIterator last, Predicate pred); Requires: Type T is EqualityComparable (_lib.equalitycomparable_). Effects: Eliminates all the elements referred to by iterator i in the range [first, last) for which the following corresponding conditions hold: *i == value, pred(*i) == true. Returns: The end of the resulting range. Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in the original range. Complexity: Exactly last - first applications of the corresponding predicate. template<class InputIterator, class OutputIterator, class T> OutputIterator remove_copy(InputIterator first, InputIterator last, OutputIterator result, const T& value); template<class InputIterator, class OutputIterator, class Predicate> OutputIterator remove_copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred); Requires: Type T is EqualityComparable (_lib.equalitycomparable_). The ranges [first, last) and [result, result+(last-first)) shall not overlap. Effects: Copies all the elements referred to by the iterator i in the range [first, last) for which the following corresponding conditions do not hold: *i == value, pred(*i) == true. Returns: The end of the resulting range. Complexity: Exactly last - first applications of the corresponding predicate. Notes: Stable: the relative order of the elements in the resulting range is the same as their relative order in the original range. 25.2.8 Unique [lib.alg.unique] template<class ForwardIterator> ForwardIterator unique(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class BinaryPredicate> ForwardIterator unique(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1) or pred(*i, *(i - 1)) == true Returns: The end of the resulting range. Complexity: Exactly (last - first) - 1 applications of the corresponding predicate. template<class InputIterator, class OutputIterator> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result); template<class InputIterator, class OutputIterator, class BinaryPredicate> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result, BinaryPredicate pred); Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap. Effects: Copies only the first element from every consecutive group of equal elements referred to by the iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1) or pred(*i, *(i - 1)) == true Returns: The end of the resulting range. Complexity: Exactly last - first applications of the corresponding predicate. 25.2.9 Reverse [lib.alg.reverse] template<class BidirectionalIterator> void reverse(BidirectionalIterator first, BidirectionalIterator last); Effects: For each non-negative integer i <= (last - first)/2, applies swap to all pairs of iterators first + i, (last - i) - 1. Complexity: Exactly (last - first)/2 swaps. template<class BidirectionalIterator, class OutputIterator> OutputIterator reverse_copy(BidirectionalIterator first, BidirectionalIterator last, OutputIterator result); Effects: Copies the range [first, last) to the range [result, result + (last - first)) such that for any non-negative integer i < (last - first) the following assignment takes place: *(result + (last - first) - i) = *(first + i) Requires: The ranges [first, last) and [result, result + (last - first)) shall not overlap. Returns: result + (last - first). Complexity: Exactly last - first assignments. 25.2.10 Rotate [lib.alg.rotate] template<class ForwardIterator> void rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last); Effects: For each non-negative integer i < (last - first), places the element from the position first + i into position first + (i + (last - mid dle)) % (last - first). Notes: This is a left rotate. Requires: [first, middle) and [middle, last) are valid ranges. Complexity: At most last - first swaps. template<class ForwardIterator, class OutputIterator> OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle, ForwardIterator last, OutputIterator result); Effects: Copies the range [first, last) to the range [result, result + (last - first)) such that for each non-negative integer i < (last - first) the following assignment takes place: *(first + i) = *(result + (i + (middle - first)) % (last - first)) +------- BEGIN BOX 3 -------+ Should this be: *(result + i) = *(first + (i + (middle - first)) % (last - first)) +------- END BOX 3 -------+ Returns: result + (last - first). Requires The ranges [first, last) and [result, result + (last - first)) shall not overlap. Complexity: Exactly last - first assignments. 25.2.11 Random shuffle [lib.alg.random.shuffle] template<class RandomAccessIterator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class RandomNumberGenerator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last, RandomNumberGenerator& rand); Effects: Shuffles the elements in the range [first, last) with uniform dis tribution. Complexity: Exactly (last - first) - 1 swaps. Notes: random_shuffle() can take a particular random number generating function object rand such that rand(n) (where n is a positive argu ment of type RandomAccessIterator::distance) returns a randomly cho sen value of type RandomAccessIterator::distance) in the interval [0, n). +------- BEGIN BOX 4 -------+ Can it accept an argument that yields a result of a type that, although different from RandomAccessIterator::distance, can be con verted to it? +------- END BOX 4 -------+ 25.2.12 Partitions [lib.alg.partitions] template<class BidirectionalIterator, class Predicate> BidirectionalIterator partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred); Effects: Places all the elements in the range [first, last) that satisfy pred before all the elements that do not satisfy it. Returns: An iterator i such that for any iterator j in the range [first, i), pred(*j) == true, and for any iterator k in the range [i, last), pred(*j) == false. Complexity: At most (last - first)/2 swaps. Exactly last - first applications of the predicate is done. template<class BidirectionalIterator, class Predicate> BidirectionalIterator stable_partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred); Effects: Places all the elements in the range [first, last) that satisfy pred before all the elements that do not satisfy it. Returns: An iterator i such that for any iterator j in the range [first, i), pred(*j) == true, and for any iterator k in the range [i, last), pred(*j) == false. The relative order of the elements in both groups is preserved. Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if there is enough extra memory. Exactly last - first applications of the predicate. 25.3 Sorting and related operations [lib.alg.sorting] 1 All the operations in this section have two versions: one that takes a function object of type Compare and one that uses an operator<. 2 Compare is used as a function object which returns true if the first argument is less than the second, and false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is assumed that comp will not apply any non-constant function through the dereferenced iterator. 3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) == true defaults to *i < *j == true. For the algorithms to work correctly, comp has to induce a total ordering on the values. 4 A sequence is sorted with respect to a comparator comp if for any iterator i pointing to the sequence and any non-negative integer n such that i + n is a valid iterator pointing to an element of the sequence, comp(*(i + n), *i) == false. 5 In the descriptions of the functions that deal with ordering relation ships we frequently use a notion of equality to describe concepts such as stability. The equality to which we refer is not necessarily an operator==, but an equality relation induced by the total ordering. That is, two element a and b are considered equal if and only if !(a < b) && !(b < a). 25.3.1 Sorting [lib.alg.sort] 25.3.1.1 sort [lib.sort] template<class RandomAccessIterator> void sort(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); Effects: Sorts the elements in the range [first, last). Complexity: Approximately NlogN (where N == last - first) comparisons on the average.3) 25.3.1.2 stable_sort [lib.stable.sort] template<class RandomAccessIterator> void stable_sort(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void stable_sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); Effects: Sorts the elements in the range [first, last). Complexity: It does at most N(logN)2 (where N == last - first) comparisons; if enough extra memory is available, it is NlogN. Notes: Stable: the relative order of the equal elements is preserved. 25.3.1.3 partial_sort [lib.partial.sort] template<class RandomAccessIterator> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last, Compare comp); Effects: Places the first middle - first sorted elements from the range [first, last) into the range [first, middle). The rest of the _________________________ 3) If the worst case behavior is important stable_sort() (_lib.stable.sort_) or partial_sort() (_lib.partial.sort_) should be used. elements in the range [middle, last) are placed in an unspecified order. Complexity: It takes approximately (last - first) * log(middle - first) compar isons. 25.3.1.4 partial_sort_copy [lib.partial.sort.copy] template<class InputIterator, class RandomAccessIterator> RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last); template<class InputIterator, class RandomAccessIterator, class Compare> RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Compare comp); Effects: Places the first min(last - first, result_last - result_first) sorted elements into the range [result_first, result_first + min(last - first, result_last - result_first)). Returns: The smaller of: result_last or result_first + (last - first) Complexity: Approximately (last - first) * log(min(last - first, result_last - result_first)) comparisons. 25.3.2 Nth element [lib.alg.nth.element] template<class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp); 1 After nth_element the element in the position pointed to by nth is the element that would be in that position if the whole range were sorted. Also for any iterator i in the range [first, nth) and any iterator j in the range [nth, last) it holds that: !(*i > *j) or comp(*j, *i) == false. Complexity: Linear on average. 25.3.3 Binary search [lib.alg.binary.search] 1 All of the algorithms in this section are versions of binary search and assume that the sequence being searched is in order according to the implied or explicit comparison function. They work on non-random access iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are especially appropri ate for random access iterators, since these algorithms do a logarith mic number of steps through the data structure. For non-random access iterators they execute a linear number of steps. 25.3.3.1 lower_bound [lib.lower.bound] template<class ForwardIterator, class T> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); Requires: Type T is LessThanComparable (_lib.lessthancomparable_). Effects: Finds the first position into which value can be inserted without violating the ordering. Returns: The furthermost iterator i in the range [first, last) such that for any iterator j in the range [first, i) the following corresponding conditions hold: *j < value or comp(*j, value) == true +------- BEGIN BOX 5 -------+ Should the range of i be changed to: [first, last]? +------- END BOX 5 -------+ Complexity: At most log(last - first) + 1 comparisons. 25.3.3.2 upper_bound [lib.upper.bound] template<class ForwardIterator, class T> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); Requires: Type T is LessThanComparable (_lib.lessthancomparable_). Effects: Finds the furthermost position into which value can be inserted without violating the ordering. Returns: The furthermost iterator i in the range [first, last) such that for any iterator j in the range [first, i) the following corresponding conditions hold: !(value < *j) or comp(value, *j) == false +------- BEGIN BOX 6 -------+ Should the range of i be changed to: [first, last]? +------- END BOX 6 -------+ Complexity: At most log(last - first) + 1 comparisons. 25.3.3.3 equal_range [lib.equal.range] template<class ForwardIterator, class T> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); Requires: Type T is LessThanComparable (_lib.lessthancomparable_). Effects: Finds the largest subrange [i, j) such that the value can be inserted at any iterator k in it without violating the ordering. k satisfies the corresponding conditions: !(*k < value) && !(value < *k) or comp(*k, value) == false && comp(value, *k) == false. Complexity: At most 2 * log(last - first) + 1 comparisons. 25.3.3.4 binary_search [lib.binary.search] template<class ForwardIterator, class T> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); Requires: Type T is LessThanComparable (_lib.lessthancomparable_). Returns: true if there is an iterator i in the range [first last) that satis fies the corresponding conditions: !(*i < value) && !(value < *i) or comp(*i, value) == false && comp(value, *i) == false. Complexity: At most log(last - first) + 2 comparisons. 25.3.4 Merge [lib.alg.merge] template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); Effects: Merges two sorted ranges [first1, last1) and [first2, last2) into the range [result, result + (last1 - first1) + (last2 - first2)). 1 The resulting range shall not overlap with either of the original ranges. Returns: result + (last1 - first1) + (last2 - first2). Complexity: At most (last1 - first1) + (last2 - first2) - 1 comparisons. Notes: Stable: for equal elements in the two ranges, the elements from the first range always precede the elements from the second. template<class BidirectionalIterator> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last, Compare comp); Effects: Merges two sorted consecutive ranges [first, middle) and [middle, last), putting the result of the merge into the range [first, last). Complexity: When enough additional memory is available, (last - first) - 1 com parisons. If no additional memory is available, an algorithm with complexity NlogN (where N is equal to last - first) may be used. Notes: Stable: for equal elements in the two ranges, the elements from the first range always precede the elements from the second. 25.3.5 Set operations on sorted [lib.alg.set.operations] structures 1 This section defines all the basic set operations on sorted struc tures. They even work with multisets (_lib.multiset_) containing mul tiple copies of equal elements. The semantics of the set operations are generalized to multisets in a standard way by defining union() to contain the maximum number of occurrences of every element, intersec tion() to contain the minimum, and so on. 25.3.5.1 includes [lib.includes] template<class InputIterator1, class InputIterator2> bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class InputIterator1, class InputIterator2, class Compare> bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); Returns: true if every element in the range [first2, last2) is contained in the range [first1, last1). Returns false otherwise. Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons. 25.3.5.2 set_union [lib.set.union] template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); Effects: Constructs a sorted union of the elements from the two ranges; that is, the set of elements that are present in one or both of the ranges. Requires: The resulting range shall not overlap with either of the original ranges. Returns: The end of the constructed range. Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons. Notes: Stable: if an element is present in both ranges, the one from the first range is copied. 25.3.5.3 set_intersection [lib.set.intersection] template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements that are present in both of the ranges. Requires: The resulting range shall not overlap with either of the original ranges. Returns: The end of the constructed range. Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons. Notes: Stable, that is, if an element is present in both ranges, the one from the first range is copied. 25.3.5.4 set_difference [lib.set.difference] template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); Effects: Copies the elements of the range [first1, last1) which are not pre sent in the range [first2, last2) to the range beginning at result. The elements in the constructed range are sorted. Requires: The resulting range shall not overlap with either of the original ranges. Returns: The end of the constructed range. Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons. 25.3.5.5 set_symmetric_difference [lib.set.symmetric.difference] template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_symmetric_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_symmetric_difference(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); Effects: Copies the elements of the range [first1, last1) which are not pre sent in the range [first2, last2), and the elements of the range [first2, last2) which are not present in the range [first1, last1) to the range beginning at result. The elements in the constructed range are sorted. Requires: The resulting range shall not overlap with either of the original ranges. Returns: The end of the constructed range. Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons. 25.3.6 Heap operations [lib.alg.heap.operations] 1 A heap is a particular organization of elements in a range between two random access iterators [a, b). Its two key properties are: (1)*a is the largest element in the range and (2)*a may be removed by pop_heap(), or a new element added by push_heap(), in O(logN) time. 2 These properties make heaps useful as priority queues. 3 make_heap() converts a range into a heap and sort_heap() turns a heap into a sorted sequence. 25.3.6.1 push_heap [lib.push.heap] template<class RandomAccessIterator> void push_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void push_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); Requires: The range [first, last - 1) shall be a valid heap. Effects: Places the value in the location last - 1 into the resulting heap [first, last). Complexity: At most log(last - first) comparisons. 25.3.6.2 pop_heap [lib.pop.heap] template<class RandomAccessIterator> void pop_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void pop_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); Requires: The range [first, last) shall be a valid heap. Effects: Swaps the value in the location first with the value in the location last - 1 and makes [first, last - 1) into a heap. Complexity: At most 2 * log(last - first) comparisons. 25.3.6.3 make_heap [lib.make.heap] template<class RandomAccessIterator> void make_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void make_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); Effects: Constructs a heap out of the range [first, last). Complexity: At most 3 * (last - first) comparisons. 25.3.6.4 sort_heap [lib.sort.heap] template<class RandomAccessIterator> void sort_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void sort_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); Effects: Sorts elements in the heap [first, last). Complexity: At most NlogN comparisons (where N == last - first). Notes: Not stable. 25.3.7 Minimum and maximum [lib.alg.min.max] template<class T> const T& min(const T& a, const T& b); template<class T, class Compare> const T& min(const T& a, const T& b, Compare comp); Requires: Type T is LessThanComparable (_lib.lessthancomparable_) and CopyCon structible (_lib.copyconstructible_). Returns: The smaller value. Notes: Returns the first argument when their arguments are equal. template<class T> const T& max(const T& a, const T& b); template<class T, class Compare> const T& max(const T& a, const T& b, Compare comp); Requires: Type T is LessThanComparable (_lib.lessthancomparable_) and CopyCon structible (_lib.copyconstructible_). Returns: The larger value. Notes: Returns the first argument when their arguments are equal. template<class ForwardIterator> ForwardIterator min_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator min_element(ForwardIterator first, ForwardIterator last, Compare comp); Returns: The first iterator i in the range [first, last) such that for any iterator j in the range [first, last) the following corresponding conditions hold: !(*j < *i) or comp(*j, *i) == false Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons. template<class ForwardIterator> ForwardIterator max_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator max_element(ForwardIterator first, ForwardIterator last, Compare comp); Returns: The first iterator i in the range [first, last) such that for any iterator j in the range [first, last) the following corresponding conditions hold: !(*i < *j) or comp(*i, *j) == false. Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding comparisons. 25.3.8 Lexicographical comparison [lib.alg.lex.comparison] template<class InputIterator1, class InputIterator2> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class InputIterator1, class InputIterator2, class Compare> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); Returns: true if the sequence of elements defined by the range [first1, last1) is lexicographically less than the sequence of elements defined by the range [first2, last2). Returns false otherwise. Complexity: At most min((last1 - first1), (last2 - first2)) applications of the corresponding comparison. Notes: If two sequences have the same number of elements and their corre sponding elements do not compare unequal, then neither sequence is lexicographically less than the other. If one sequence is a prefix of the other, then the shorter sequence is lexicographically less than the longer sequence. Otherwise, the lexicographical comparison of the sequences yields the same result as the lexicographical com parison of the first corresponding pair of elements that compare unequal. for (i = first1, j = first2; i != last1 && j != last2 && !(*i < *j) && !(*j < *i); ++i, ++j); return j == last2 ? false : i == last1 || *i < *j; 25.3.9 Permutation generators [lib.alg.permutation.generators] template<class BidirectionalIterator> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); Effects: Takes a sequence defined by the range [first, last) and transforms it into the next permutation. The next permutation is found by assuming that the set of all permutations is lexicographically sorted with respect to operator< or comp. If such a permutation exists, it returns true. Otherwise, it transforms the sequence into the smallest permutation, that is, the ascendingly sorted one, and returns false. Complexity: At most (last - first)/2 swaps. template<class BidirectionalIterator> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); Effects: Takes a sequence defined by the range [first, last) and transforms it into the previous permutation. The previous permutation is found by assuming that the set of all permutations is lexicographically sorted with respect to operator< or comp. Returns: true if such a permutation exists. Otherwise, it transforms the sequence into the largest permutation, that is, the descendingly sorted one, and returns false. Complexity: At most (last - first)/2 swaps. 25.4 C library algorithms [lib.alg.c.library] 1 Header <cstdlib> (partial, Table 2): Table 2--Header <cstdlib> synopsis +-----------------------------+ | Type Name(s) | +-----------------------------+ |Functions: bsearch qsort | +-----------------------------+ 2 The contents are the same as the Standard C library. [Note: For the Standard C library function: void qsort(void* base, size_t nmemb, size_t size, int (*compar)(const void*, const void*)); the function argument compar shall have extern "C" linkage (_dcl.link_). Also, since compar() may throw an exception, qsort() is allowed to propagate the exception (_lib.res.on.exception.handling_). --end note] SEE ALSO: ISO C subclause 7.10.5.