______________________________________________________________________ 24 Iterators library [lib.iterators] ______________________________________________________________________ 1 This clause describes components that C++ programs may use to perform iterations over containers (_lib.containers_), streams (_lib.default.iostreams_), and stream buffers (_lib.stream.buffers_). 2 The following subclauses describe iterator requirements, and compo nents for iterator tags, predefined iterators, and stream iterators, as summarized in Table 1: Table 1--Iterators library summary +---------------------------------------------------------+ | Subclause Header(s) | +---------------------------------------------------------+ |_lib.iterator.requirements_ Requirements | +---------------------------------------------------------+ |_lib.iterator.tags_ Iterator tags | |_lib.predef.iterators_ Predefined iterators <iterator> | |_lib.stream.iterators_ Stream iterators | +---------------------------------------------------------+ Header <iterator> synopsis #include <cstddef> // for ptrdiff_t #include <utility> // for empty #include <iosfwd> // for istream, ostream #include <ios> // for ios_traits #include <streambuf> // for streambuf namespace std { // subclause _lib.library.primitives_, primitives: struct input_iterator_tag; struct output_iterator_tag; struct forward_iterator_tag; struct bidirectional_iterator_tag; struct random_access_iterator_tag; template <class T, class Distance = ptrdiff_t> struct input_iterator; struct output_iterator; template <class T, class Distance = ptrdiff_t> struct forward_iterator; template <class T, class Distance = ptrdiff_t> struct bidirectional_iterator; template <class T, class Distance = ptrdiff_t> struct random_access_iterator; template <class T, class Distance> input_iterator_tag iterator_category(const input_iterator<T,Distance>&); output_iterator_tag iterator_category(const output_iterator&); template <class T, class Distance> forward_iterator_tag iterator_category(const forward_iterator<T,Distance>&); template <class T, class Distance> bidirectional_iterator_tag iterator_category(const bidirectional_iterator<T,Distance>&); template <class T, class Distance> random_access_iterator_tag iterator_category(const random_access_iterator<T,Distance>&); template <class T> random_access_iterator_tag iterator_category(const T*); template <class T, class Distance> T* value_type(const input_iterator<T,Distance>&); template <class T, class Distance> T* value_type(const forward_iterator<T,Distance>&); template <class T, class Distance> T* value_type(const bidirectional_iterator<T,Distance>&); template <class T, class Distance> T* value_type(const random_access_iterator<T,Distance>&); template <class T> T* value_type(const T*); template <class T, class Distance> Distance* distance_type(const input_iterator<T,Distance>&); template <class T, class Distance> Distance* distance_type(const forward_iterator<T,Distance>&); template <class T, class Distance> Distance* distance_type(const bidirectional_iterator<T,Distance>&); template <class T, class Distance> Distance* distance_type(const random_access_iterator<T,Distance>&); template <class T> ptrdiff_t* distance_type(const T*); template <class InputIterator, class Distance> void advance(InputIterator& i, Distance n); template <class InputIterator, class Distance> void distance(InputIterator first, InputIterator last, Distance& n); // subclause _lib.iterator.operations_, iterator operations: template <class InputIterator, class Distance> void advance(InputIterator& i, Distance n); template <class InputIterator, class Distance> void distance(InputIterator first, InputIterator last, Distance& n); // subclause _lib.predef.iterators_, predefined iterators: template <class BidirectionalIterator, class T, class Distance = ptrdiff_t> class reverse_bidirectional_iterator; template <class BidirectionalIterator, class T, class Distance> bool operator==( const reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& x, const reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& y); template <class RandomAccessIterator, class T, class Distance = ptrdiff_t> class reverse_iterator : public random_access_iterator<T,Distance>; template <class RandomAccessIterator, class T, class Distance> bool operator==( const reverse_iterator<RandomAccessIterator,T,Distance>& x, const reverse_iterator<RandomAccessIterator,T,Distance>& y); template <class RandomAccessIterator, class T, class Distance> bool operator<( const reverse_iterator<RandomAccessIterator,T,Distance>& x, const reverse_iterator<RandomAccessIterator,T,Distance>& y); template <class RandomAccessIterator, class T, class Distance> Distance operator-( const reverse_iterator<RandomAccessIterator,T,Distance>& x, const reverse_iterator<RandomAccessIterator,T,Distance>& y); template <class RandomAccessIterator, class T, class Distance> reverse_iterator<RandomAccessIterator,T,Distance> operator+( Distance n, const reverse_iterator<RandomAccessIterator,T,Distance>& x); template <class Container> class back_insert_iterator; template <class Container> back_insert_iterator<Container> back_inserter(Container& x); template <class Container> class front_insert_iterator; template <class Container> front_insert_iterator<Container> front_inserter(Container& x); template <class Container> class insert_iterator; template <class Container, class Iterator> insert_iterator<Container> inserter(Container& x, Iterator i); // subclauses _lib.stream.iterators_, stream iterators: template <class T, class Distance = ptrdiff_t> class istream_iterator; template <class T, class Distance> bool operator==(const istream_iterator<T,Distance>& x, const istream_iterator<T,Distance>& y); template <class T> class ostream_iterator; template<class charT, class traits = ios_traits<charT> > class istreambuf_iterator; template <class charT, class traits = ios_traits<charT> > bool operator==(istreambuf_iterator<charT,traits>& a, istreambuf_iterator<charT,traits>& b); template <class charT, class traits = ios_traits<charT> > bool operator!=(istreambuf_iterator<charT,traits>& a, istreambuf_iterator<charT,traits>& b); template <class charT, class traits = ios_char_traits<charT> > class ostreambuf_iterator; output_iterator iterator_category (const ostreambuf_iterator&); template<class charT, class traits = ios_char_traits<charT> > bool operator==(ostreambuf_iterator<charT,traits>& a, ostreambuf_iterator<charT,traits>& b); template<class charT, class traits = ios_char_traits<charT> > bool operator!=(ostreambuf_iterator<charT,traits>& a, ostreambuf_iterator<charT,traits>& b); } 24.1 Iterator requirements [lib.iterator.requirements] 1 Iterators are a generalization of pointers that allow a C++ program to work with different data structures (containers) in a uniform manner. To be able to construct template algorithms that work correctly and efficiently on different types of data structures, we need to formal ize not just the interfaces but also the semantics and complexity assumptions of iterators. Iterators are objects that have operator* returning a value of some class or built-in type T called a value type of the iterator. For every iterator type X for which equality is defined, there is a corresponding signed integral type called the dis tance type of the iterator. 2 Since iterators are a generalization of pointers, their semantics is a generalization of the semantics of pointers in C++. This assures that every template function that takes iterators works with regular point ers. Depending on the operations defined on them, there are five cat egories of iterators: input iterators, output iterators, forward iter ators, bidirectional iterators and random access iterators, as shown in Table 2. Table 2--Relations among iterator categories +----------------------------------------------------------+ |Random access -> Bidirectional -> Forward -> Input | | -> Output | +----------------------------------------------------------+ 3 Forward iterators satisfy all the requirements of the input and output iterators and can be used whenever either kind is specified. Bidirec tional iterators satisfy all the requirements of the forward iterators and can be used whenever a forward iterator is specified. Random access iterators satisfy all the requirements of bidirectional itera tors and can be used whenever a bidirectional iterator is specified. There is an additional attribute that forward, bidirectional and ran dom access iterators might have, that is, they can be mutable or con stant depending on whether the result of the operator* behaves as a reference or as a reference to a constant. Constant iterators do not satisfy the requirements for output iterators. 4 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of the array, so for any iterator type there is an iterator value that points past the last element of a corresponding container. These values are called past- the-end values. Values of the iterator for which the operator* is defined are called dereferenceable. The library never assumes that past-the-end values are dereferenceable. Iterators might also have singular values that are not associated with any container. For exam ple, after the declaration of an uninitialized pointer x (as with int* x; ), x should alwa ys be assumed to have a singular value of a pointer. Results of most expressions are undefined for singular val ues. The only exception is an assignment of a non-singular value to an iterator that holds a singular value. In this case the singular value is overwritten the same way as any other value. Dereferenceable and past-the-end values are always non-singular. 5 An iterator j is called reachable from an iterator i if there is a finite sequence of application s of operator++ to i that makes i == j. If j is reachable from i, they refer to the same container. 6 Most of the library's algorithmic templates that operate on data structures have interfaces that use ranges. A range is a pair of iterators that designate the beginning and end of the computation. A range [i, i) is an empty range; in general, a range [i, j) refers to the elements in the data structure starting with the one pointed to by i and up to but not including the one pointed to by j. Range [i, j) is valid if and only if j is reachable from i. The result of the application of the algorithms in the library to invalid ranges is undefined. 7 All the categories of iterators require only those functions that are realizable for a given category in constant time (amortized). There fore, requirement tables for the iterators do not have a complexity column. 8 In the following sections, we assume: a and b are values of X, n is a value of the dist ance type Distance, tmp, and m are identifiers, r is a value of X&, t is a value of value type T. 24.1.1 Input iterators [lib.input.iterators] 1 A class or a built-in type X satisfies the requirements of an input iterator for the value type T if the fo llowing expressions are valid, as shown in Table 3: Table 3--Input iterator requirements +----------------------------------------------------------------------------------+ |expression return type operational assertion/note | | semantics pre/post-condition | +----------------------------------------------------------------------------------+ |X(a) a == X(a). | | note: a destructor is assumed. | +----------------------------------------------------------------------------------+ |X u(a); | |X u = a; post: u == a. | +----------------------------------------------------------------------------------+ |a == b convertible to bool == is an equivalence relation. | +----------------------------------------------------------------------------------+ |a != b convertible to bool !(a == b) | +----------------------------------------------------------------------------------+ |*a convertible to T pre: a is dereferenceable. | | a == b implies *a == *b. | +----------------------------------------------------------------------------------+ |++r X& pre: r is dereferenceable. | | post: r is dereferenceable or | | r is past-the-end. | | &r == &++r. | +----------------------------------------------------------------------------------+ |r++ X { X tmp = r; | | ++r; | | return tmp; | | } | +----------------------------------------------------------------------------------+ 2 NOTE: For input iterators, a == b does not imply ++a == ++b. (Equal ity does not guarantee the substitution property or referential trans parency.) Algorithms on input iterators should never attempt to pass through the same iterator twice. They should be single pass algo rithms. Value type T is not required to be an lvalue type. These algorithms can be used with istreams as the source of the input data through the istream_iterator class. 24.1.2 Output iterators [lib.output.iterators] 1 A class or a built-in type X satisfies the requirements of an output iterator if the following expressions are valid, as shown in Table 4: Table 4--Output iterator requirements +---------------------------------------------------------------------------------+ |expression return type operational assertion/note | | semantics pre/post-condition | +---------------------------------------------------------------------------------+ |X(a) a = t is equivalent to X(a) = | | t. | | note: a destructor is assumed. | +---------------------------------------------------------------------------------+ |X u(a); | |X u = a; | +---------------------------------------------------------------------------------+ |*a = t result is not used pre: a is dereferenceable. | +---------------------------------------------------------------------------------+ |++r X& pre: r is dereferenceable. | | post: r is dereferenceable or | | r is past-the-end. | | &a == &++a. | +---------------------------------------------------------------------------------+ |r++ X { X tmp = r; | | ++r; | | return tmp; | | } | +---------------------------------------------------------------------------------+ 2 NOTE: The only valid use of an operator* is on the left side of the assignment statement. Assignment through the same value of the itera tor happens only once. Algorithms on output iterators should never attempt to pass through the same iterator twice. They should be sin gle pass algorithms. Equality and inequality might not be defined. Algorithms that take output iterators can be used with ostreams as the destination for placing data through the ostream_iterator class as well as with insert iterators and insert pointers. 24.1.3 Forward iterators [lib.forward.iterators] 1 A class or a built-in type X satisfies the requirements of a forward iterator if the following expressions are valid, as shown in Table 5: Table 5--Forward iterator requirements +-------------------------------------------------------------------------------------+ |expression return type operational assertion/note | | semantics pre/post-condition | +-------------------------------------------------------------------------------------+ |X u; note: u might have a singular | | value. | | note: a destructor is assumed. | +-------------------------------------------------------------------------------------+ |X() note: X() might be singular. | +-------------------------------------------------------------------------------------+ |X(a) a == X(a). | +-------------------------------------------------------------------------------------+ |X u(a); X u; u = a; post: u == a. | |X u = a; | +-------------------------------------------------------------------------------------+ |a == b convertible to bool == is an equivalence relation. | +-------------------------------------------------------------------------------------+ |a != b convertible to bool !(a == b) | +-------------------------------------------------------------------------------------+ |r = a X& post: r == a. | +-------------------------------------------------------------------------------------+ |*a convertible to T pre: a is dereferenceable. | | a == b implies *a == *b. | | If X is mutable, *a = t is valid. | +-------------------------------------------------------------------------------------+ |++r X& pre: r is dereferenceable. | | post: r is dereferenceable or r | | is past-the-end. | | r == s and r is dereferenceable | | implies ++r == ++r. | | &a == &++a. | +-------------------------------------------------------------------------------------+ |r++ X { X tmp = r; | | ++r; | | return tmp; | | } | +-------------------------------------------------------------------------------------+ 2 NOTE: The condition that a == b implies ++a == ++b (which is not true for input and output iterators) and the removal of the restrictions on the number of the assignments through the iterator (which applies to output iterators) allows the use of multi-pass one-directional algo rithms with forward iterators. 24.1.4 Bidirectional iterators [lib.bidirectional.iterators] 1 A class or a built-in type X satisfies the requirements of a bidirec tional iterator if to the table that specifies forward iterators we add the following lines, as shown in Table 6: Table 6--Bidirectional iterator requirements (in addition to forward iterator) +-----------------------------------------------------------------------+ |expression return type operational assertion/note | | semantics pre/post-condition | +-----------------------------------------------------------------------+ |--r X& pre: there exists s such | | that r == ++s. | | post: s is dereferenceable. | | --(++r) == r. | | --r == --r implies r == s. | | &r == &--r. | +-----------------------------------------------------------------------+ |r-- X { X tmp = r; | | --r; | | return tmp; | | } | +-----------------------------------------------------------------------+ 2 NOTE: Bidirectional iterators allow algorithms to move iterators back ward as well as forward. 24.1.5 Random access iterators [lib.random.access.iterators] 1 A class or a built-in type X satisfies the requirements of a random access iterator if to the table that specifies bidirectional iterators we add the following lines, as shown in Table 7: Table 7--Random access iterator requirements (in addition to bidirectional iterator) +------------------------------------------------------------------------------------+ |expression return type operational assertion/note | | semantics pre/post-condition | +------------------------------------------------------------------------------------+ |r += n X& { Distance m = | | n; | | if (m >= 0) | | while (m--) | | ++r; | | else | | while (m++) | | --r; | | return r; } | +------------------------------------------------------------------------------------+ |a + n { X tmp = a; | | X return tmp += a + n == n + a. | | n; } | |n + a | +------------------------------------------------------------------------------------+ |r -= n X& return r += -n; | +------------------------------------------------------------------------------------+ |a - n X { X tmp = a; | | return tmp -= | | n; } | +------------------------------------------------------------------------------------+ |b - a Distance { X tmp = a; pre: there exists a value n of | | Distance m = Distance such that a + n == b. | | 0; b == a + (b - a). | | while (tmp != | | b) | | ++tmp, ++m; | | return m; } | +------------------------------------------------------------------------------------+ |a[n] convertible to T *(a + n) | +------------------------------------------------------------------------------------+ |a < b convertible to bool b - a > 0 < is a total ordering relation | +------------------------------------------------------------------------------------+ |a > b convertible to bool b < a > is a total ordering relation | | opposite to <. | +------------------------------------------------------------------------------------+ |a >= b convertible to bool !(a < b) | +------------------------------------------------------------------------------------+ |a <= b convertible to bool !(a > b) | +------------------------------------------------------------------------------------+ 24.2 Iterator tags [lib.iterator.tags] 1 To implement algorithms only in terms of iterators, it is often neces sary to infer both of the value type and the distance type from the iterator. To enable this task it is required that for an iterator i of any category other than output iterator, the expression value_type(i) returns (T*)(0) and the expression distance_type(i) returns (Distance*)(0). For output iterators, these expressions are not required. 24.2.1 Examples of using iterator tags [lib.examples] 1 For all the regular pointer types we can define value_type and dis tance_type with the help of: template <class T> inline T* value_type(const T*) { return (T*)(0); } template <class T> inline ptrdiff_t* distance_type(const T*) { return (ptrdiff_t*)(0); } 2 Then, if we want to implement a generic reverse function, we do the following: template <class BidirectionalIterator> inline void reverse(BidirectionalIterator first, BidirectionalIterator last) { __reverse(first, last, value_type(first), distance_type(first)); } 3 where __reverse is defined as: template <class BidirectionalIterator, class T, class Distance> void __reverse(BidirectionalIterator first, BidirectionalIterator last, T*, Distance*) { Distance n; distance(first, last, n); // see Iterator operations section --n; while (n > 0) { T tmp = *first; *first++ = *--last; *last = tmp; n -= 2; } } 4 If there is an additional pointer type far such that the difference of two far pointers is of the type long , we define: template <class T> inline T* value_type(const T far *) { return (T*)(0); } template <class T> inline long* distance_type(const T far *) { return (long*)(0); } 5 It is often desirable for a template function to find out what is the most specific category of its iterator argument, so that the function can select the most efficient algorithm at compile time. To facili tate this, the library introduces category tag classes which are used as compile time tags for algorithm selection. They are: input_iterator_tag, output_iterator_tag, forward_iterator_tag, bidi rectional_iterator_tag and random_access_iterator_tag. Every iterator i must have an expression iterator_category(i) defined on it that returns the most specific category tag that describes its behavior. For example, we define that all the pointer types are in the random access iterator category by: template <class T> inline random_access_iterator_tag iterator_category(T*) { return random_access_iterator_tag(); } 6 For a user-defined iterator BinaryTreeIterator, it can be included into the bidirectional iterator category by saying: template <class T> inline bidirectional_iterator_tag iterator_category( const BinaryTreeIterator<T>&) { return bidirectional_iterator_tag(); } 7 If a template function evolve is well defined for bidirectional itera tors, but can be implemented more efficiently for random access itera tors, then the implementation is like: template <class BidirectionalIterator> inline void evolve(BidirectionalIterator first, BidirectionalIterator last) { evolve(first, last, iterator_category(first)); } template <class BidirectionalIterator> void evolve(BidirectionalIterator first, BidirectionalIterator last, bidirectional_iterator_tag) { // ... more generic, but less efficient algorithm } template <class RandomAccessIterator> void evolve(RandomAccessIterator first, RandomAccessIterator last, random_access_iterator_tag) { // ... more efficient, but less generic algorithm } 8 If a user wants to define a bidirectional iterator for some data structure containing double and such that it works on a large memory model of his computer, he can do it with: class MyIterator : public bidirectional_iterator<double, long> { // code implementing ++, etc. }; 9 Then there is no need to define iterator_category, value_type, and distance_type on MyIterator. 24.2.2 Library defined primitives [lib.library.primitives] 1 To simplify the task of defining the iterator_category, value_type and distance_type for user def inable iterators, the library provides the following predefined classes and functions: 24.2.2.1 Standard iterator tags [lib.std.iterator.tags] namespace std { struct input_iterator_tag : empty {}; struct output_iterator_tag : empty {}; struct forward_iterator_tag : empty {}; struct bidirectional_iterator_tag : empty {}; struct random_access_iterator_tag : empty {}; } 24.2.2.2 Basic iterators [lib.basic.iterators] namespace std { template <class T, class Distance = ptrdiff_t> struct input_iterator : empty{}; struct output_iterator : empty{}; template <class T, class Distance = ptrdiff_t> struct forward_iterator : empty{}; template <class T, class Distance = ptrdiff_t> struct bidirectional_iterator : empty {}; template <class T, class Distance = ptrdiff_t> struct random_access_iterator : empty {}; } 1 output_iterator is not a template because output iterators do not have either value type or distance type defined. 24.2.2.3 iterator_category [lib.iterator.category] template <class T, class Distance> input_iterator_tag iterator_category(const input_iterator<T,Distance>&); Returns: input_iterator_tag(). output_iterator_tag iterator_category(const output_iterator&); Returns: output_iterator_tag(). template <class T, class Distance> forward_iterator_tag iterator_category(const forward_iterator<T,Distance>&); Returns: forward_iterator_tag(). template <class T, class Distance> bidirectional_iterator_tag iterator_category(const bidirectional_iterator<T,Distance>&); Returns: bidirectional_iterator_tag(). template <class T, class Distance> random_access_iterator_tag iterator_category(const random_access_iterator<T,Distance>&); Returns: random_access_iterator_tag(). template <class T> random_access_iterator_tag iterator_category(const T*); Returns: random_access_iterator_tag(). 24.2.2.4 value_type [lib.value.type] template <class T, class Distance> T* value_type(const input_iterator<T,Distance>&); Returns: (T*)(0). template <class T, class Distance> T* value_type(const forward_iterator<T,Distance>&); Returns: (T*)(0). template <class T, class Distance> T* value_type(const bidirectional_iterator<T,Distance>&); Returns: (T*)(0). template <class T, class Distance> T* value_type(const random_access_iterator<T,Distance>&); Returns: (T*)(0). template <class T> T* value_type(const T*); Returns: (T*)(0). 24.2.2.5 distance_type [lib.distance.type] template <class T, class Distance> Distance* distance_type(const input_iterator<T,Distance>&); Returns: (Distance*)(0). template <class T, class Distance> Distance* distance_type(const forward_iterator<T,Distance>&); Returns: (Distance*)(0). template <class T, class Distance> Distance* distance_type(const bidirectional_iterator<T,Distance>&); Returns: (Distance*)(0). template <class T, class Distance> Distance* distance_type(const random_access_iterator<T,Distance>&); Returns: (Distance*)(0). template <class T> ptrdiff_t* distance_type(const T*); Returns: (ptrdiff_t*)(0). 24.2.3 Iterator operations [lib.iterator.operations] 1 Since only random access iterators provide + and - operators, the library provides two template functions advance and distance. These functions use + and - for random access iterators (and are, therefore, constant time for them); for input, forward and bidirectional itera tors they use ++ to provide linear time implementations. template <class InputIterator, class Distance> void advance(InputIterator& i, Distance n); Requires: n may be negative only for random access and bidirectional itera tors. Effects: Increments (or decrements for negative n) iterator reference i by n. template <class InputIterator, class Distance> void distance(InputIterator first, InputIterator last, Distance& n); Effects: Increments n by the number of times it takes to get from first to last. _________________________ 1) distance must be a three argument function storing the result into a reference instead of returning the result because the distance type cannot be deduced from built-in iterator types such as int*. 24.3 Predefined iterators [lib.predef.iterators] 24.3.1 Reverse iterators [lib.reverse.iterators] 1 Bidirectional and random access iterators have corresponding reverse iterator adaptors that iterate through the data structure in the oppo site direction. They have the same signatures as the corresponding iterators. The fundamental relation between a reverse iterator and its corresponding iterator i is established by the identity &*(reverse_iterator(i)) == &*(i - 1). 2 This mapping is dictated by the fact that while there is always a pointer past the end of an array, there might not be a valid pointer before the beginning of an array. 3 The formal class parameter T of reverse iterators should be instanti ated with the type that Iterator::operator* returns, which is usually a reference type. For example, to obtain a reverse iterator for int*, one should declare reverse_iterator<int*, int&>. To obtain a constant reverse iterator for int*, one should declare reverse_iterator<const int*, const int&>. The interface thus allows one to use reverse iter ators with those iterator types for which operator* returns something other than a reference type. 24.3.1.1 Template class [lib.reverse.bidir.iter] reverse_bidirectional_iterator namespace std { template <class BidirectionalIterator, class T, class Distance = ptrdiff_t> class reverse_bidirectional_iterator : public bidirectional_iterator<T,Distance> { protected: BidirectionalIterator current; public: reverse_bidirectional_iterator(); reverse_bidirectional_iterator(BidirectionalIterator x); operator BidirectionalIterator(); T operator*(); reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& operator++(); reverse_bidirectional_iterator<BidirectionalIterator,T,Distance> operator++(int); reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& operator--(); reverse_bidirectional_iterator<BidirectionalIterator,T,Distance> operator--(int); }; template <class BidirectionalIterator, class T, class Distance> bool operator==( const reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& x, const reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& y); } 24.3.1.2 [lib.reverse.bidir.iter.ops] reverse_bidirectional_iterator operations 24.3.1.2.1 [lib.reverse.bidir.iter.cons] reverse_bidirectional_iterator constructor reverse_bidirectional_iterator(BidirectionalIterator x); Effects: : current(x) {} 24.3.1.2.2 Conversion [lib.reverse.bidir.iter.conv] operator BidirectionalIterator(); Returns: current 24.3.1.2.3 operator* [lib.reverse.bidir.iter.op.star] T operator*(); Effects: BidirectionalIterator tmp = current; return *--tmp; 24.3.1.2.4 operator++ [lib.reverse.bidir.iter.op++] reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& operator++(); Effects: --current; Returns: *this reverse_bidirectional_iterator<BidirectionalIterator,T,Distance> operator++(int); Effects: reverse_bidirectional_iterator<BidirectionalIterator,T,Distance> tmp = *this; --current; return tmp; 24.3.1.2.5 operator-- [lib.reverse.bidir.iter.op--] reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& operator--(); Effects: ++current Returns: reverse_bidirectional_iterator<BidirectionalIterator,T,Distance> operator--(int); Effects: reverse_bidirectional_iterator<BidirectionalIterator,T,Distance> tmp = *this; ++current; return tmp; 24.3.1.2.6 operator== [lib.reverse.bidir.iter.op==] template <class BidirectionalIterator, class T, class Distance> bool operator==( const reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& x, const reverse_bidirectional_iterator<BidirectionalIterator,T,Distance>& y); Returns: BidirectionalIterator(x) == BidirectionalIterator(y). 24.3.1.3 Template class reverse_iterator [lib.reverse.iterator] namespace std { template <class RandomAccessIterator, class T, class Distance = ptrdiff_t> class reverse_iterator : public random_access_iterator<T,Distance> { protected: RandomAccessIterator current; public: reverse_iterator(); reverse_iterator(RandomAccessIterator x); operator RandomAccessIterator(); T operator*(); reverse_iterator<RandomAccessIterator,T,Distance>& operator++(); reverse_iterator<RandomAccessIterator,T,Distance> operator++(int); reverse_iterator<RandomAccessIterator,T,Distance>& operator--(); reverse_iterator<RandomAccessIterator,T,Distance> operator--(int); reverse_iterator<RandomAccessIterator,T,Distance> operator+(Distance n) const; reverse_iterator<RandomAccessIterator,T,Distance>& operator+=(Distance n) const; reverse_iterator<RandomAccessIterator,T,Distance> operator-(Distance n) const; reverse_iterator<RandomAccessIterator,T,Distance> operator-(Distance n) const; T operator[](Distance n); template <class RandomAccessIterator, class T, class Distance> bool operator==( const reverse_iterator<RandomAccessIterator,T,Distance>& x, const reverse_iterator<RandomAccessIterator,T,Distance>& y); template <class RandomAccessIterator, class T, class Distance> bool operator<( const reverse_iterator<RandomAccessIterator,T,Distance>& x, const reverse_iterator<RandomAccessIterator,T,Distance>& y); template <class RandomAccessIterator, class T, class Distance> Distance operator-( const reverse_iterator<RandomAccessIterator,T,Distance>& x, const reverse_iterator<RandomAccessIterator,T,Distance>& y); template <class RandomAccessIterator, class T, class Distance> reverse_iterator<RandomAccessIterator,T,Distance> operator+( Distance n, const reverse_iterator<RandomAccessIterator,T,Distance>& x); }; } 1 There is no way a default for T can be expressed in terms of Bidirec tionalIterator because the value type cannot be deduced from built-in iterators such as int*. Otherwise, we would have written template <class BidirectionalIterator, class T = BidirectionalIterator::reference_type, class Distance = BidirectionalIterator::difference_type> class reverse_bidirectional_iterator: bidirectional_iterator<T,Distance> { /* ... */ }; 24.3.1.4 reverse_iterator operations [lib.reverse.iter.ops] 24.3.1.4.1 reverse_iterator constructor [lib.reverse.iter.cons] reverse_iterator(RandomAccessIterator x); Effects: : current(x) {} 24.3.1.4.2 Conversion [lib.reverse.iter.conv] operator RandomAccessIterator(); Returns: current 24.3.1.4.3 operator* [lib.reverse.iter.op.star] T operator*(); Effects: RandomAccessIterator tmp = current; return *--tmp; 24.3.1.4.4 operator++ [lib.reverse.iter.op++] reverse_iterator<RandomAccessIterator,T,Distance>& operator++(); Effects: --current; Returns: *this reverse_iterator<RandomAccessIterator,T,Distance> operator++(int); Effects: reverse_iterator<RandomAccessIterator,T,Distance> tmp = *this; --current; return tmp; 24.3.1.4.5 operator-- [lib.reverse.iter.op--] reverse_iterator<RandomAccessIterator,T,Distance>& operator--(); Effects: ++current Returns: reverse_iterator<RandomAccessIterator,T,Distance> operator--(int); Effects: reverse_iterator<RandomAccessIterator,T,Distance> tmp = *this; ++current; return tmp; 24.3.1.4.6 operator== [lib.reverse.iter.op==] template <class RandomAccessIterator, class T, class Distance> bool operator==( const reverse_iterator<RandomAccessIterator,T,Distance>& x, const reverse_iterator<RandomAccessIterator,T,Distance>& y); Returns: x.current == y.current 24.3.2 Insert iterators [lib.insert.iterators] 1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator adaptors, called insert iterators, are provided in the library. With regular iterator classes, while (first != last) *result++ = *first++; 2 causes a range [first, last) to be copied into a range starting with result. The same code with result being an insert iterator will insert corresponding elements into the container. This device allows all of the copying algorithms in the library to work in the insert mode instead of the regular overwrite mode. 3 An insert iterator is constructed from a container and possibly one of its iterators pointing to where insertion takes place if it is neither at the beginning nor at the end of the container. Insert iterators satisfy the requirements of output iterators. operator* returns the insert iterator itself. The assignment operator=(const T& x) is defined on insert iterators to allow writing into them, it inserts x right be fore where the insert iterator is pointing. In other words, an insert iterator is like a cursor pointing into the container where the insertion takes place. back_insert_iterator inserts elements at the end of a container, front_insert_iterator inserts elements at the beginning of a container, and insert_iterator inserts elements where the iterator points to in a container. back_inserter, front_inserter, and inserter are three functions making the insert iterators out of a container. 24.3.2.1 Template class [lib.back.insert.iterator] back_insert_iterator namespace std { template <class Container> class back_insert_iterator : public output_iterator { protected: Container& container; public: back_insert_iterator(Container& x); back_insert_iterator<Container>& operator=(const Container::value_type& value); back_insert_iterator<Container>& operator*(); back_insert_iterator<Container>& operator++(); back_insert_iterator<Container> operator++(int); }; template <class Container> back_insert_iterator<Container> back_inserter(Container& x); 24.3.2.2 back_insert_iterator [lib.back.insert.iter.ops] operations 24.3.2.2.1 back_insert_iterator [lib.back.insert.iter.cons] constructor back_insert_iterator(Container& x); Effects: : container(x) {} 24.3.2.2.2 [lib.back.insert.iter.op=] back_insert_iterator::operator= back_insert_iterator<Container>& operator=(const Container::value_type& value); Effects: container.push_back(value); Returns: *this. 24.3.2.2.3 [lib.back.insert.iter.op*] back_insert_iterator::operator* back_insert_iterator<Container>& operator*(); Returns: *this. 24.3.2.2.4 [lib.back.insert.iter.op++] back_insert_iterator::operator++ back_insert_iterator<Container>& operator++(); back_insert_iterator<Container> operator++(int); Returns: *this. 24.3.2.2.5 back_inserter [lib.back.inserter] template <class Container> back_insert_iterator<Container> back_inserter(Container& x); Returns: back_insert_iterator<Container>(x). 24.3.2.3 Template class [lib.front.insert.iterator] front_insert_iterator namespace std { template <class Container> class front_insert_iterator : public output_iterator { protected: Container& container; public: front_insert_iterator(Container& x); front_insert_iterator<Container>& operator=(const Container::value_type& value); front_insert_iterator<Container>& operator*(); front_insert_iterator<Container>& operator++(); front_insert_iterator<Container> operator++(int); }; template <class Container> front_insert_iterator<Container> front_inserter(Container& x); } Returns: front_insert_iterator<Container>(x). 24.3.2.4 front_insert_iterator [lib.front.insert.iter.ops] operations 24.3.2.4.1 front_insert_iterator [lib.front.insert.iter.cons] constructor front_insert_iterator(Container& x); Effects: : container(x) {} 24.3.2.4.2 [lib.front.insert.iter.op=] front_insert_iterator::operator= front_insert_iterator<Container>& operator=(const Container::value_type& value); Effects: container.push_front(value); Returns: *this. 24.3.2.4.3 [lib.front.insert.iter.op*] front_insert_iterator::operator* front_insert_iterator<Container>& operator*(); Returns: *this. 24.3.2.4.4 [lib.front.insert.iter.op++] front_insert_iterator::operator++ front_insert_iterator<Container>& operator++(); front_insert_iterator<Container> operator++(int); Returns: *this. 24.3.2.4.5 front_inserter [lib.front.inserter] template <class Container> front_insert_iterator<Container> front_inserter(Container& x); Returns: front_insert_iterator<Container>(x). 24.3.2.5 Template class insert_iterator [lib.insert.iterator] namespace std { template <class Container> class insert_iterator : public output_iterator { protected: Container& container; Container::iterator iter; public: insert_iterator(Container& x, Container::iterator i); insert_iterator<Container>& operator=(const Container::value_type& value); insert_iterator<Container>& operator*(); insert_iterator<Container>& operator++(); insert_iterator<Container> operator++(int); }; template <class Container, class Iterator> insert_iterator<Container> inserter(Container& x, Iterator i); } 24.3.2.6 insert_iterator operations [lib.insert.iter.ops] 24.3.2.6.1 insert_iterator constructor [lib.insert.iter.cons] insert_iterator(Container& x); Effects: : container(x), iter(i) {} 24.3.2.6.2 insert_iterator::operator= [lib.insert.iter.op=] insert_iterator<Container>& operator=(const Container::value_type& value); Effects: iter = container.insert(iter, value); ++iter; Returns: *this. 24.3.2.6.3 insert_iterator::operator* [lib.insert.iter.op*] insert_iterator<Container>& operator*(); Returns: *this. 24.3.2.6.4 insert_iterator::operator++ [lib.insert.iter.op++] insert_iterator<Container>& operator++(); insert_iterator<Container> operator++(int); Returns: *this. 24.3.2.6.5 inserter [lib.inserter] template <class Container> insert_iterator<Container> inserter(Container& x); Returns: insert_iterator<Container>(x,Container::iterator(i)). 24.4 Stream iterators [lib.stream.iterators] 1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate iterator-like template classes are provided. For example, partial_sum_copy(istream_iterator<double>(cin), istream_iterator<double>(), ostream_iterator<double>(cout, "\n")); 2 reads a file containing floating point numbers from cin, and prints the partial sums onto cout. 24.4.1 Template class istream_iterator [lib.istream.iterator] 1 istream_iterator<T> reads (using operator>>) successive elements from the input stream for which it was constructed. After it is con structed, and every time ++ is used, the iterator reads and stores a value of T. If the end of stream is reached ( operator void*() on the stream returns false), the iterator becomes equal to the end-of-stream iterator value. The constructor with no arguments istream_iterator() always constructs an end of stream input iterator object, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end of stream is not defined. For any other itera tor value a const T& is returned. It is impossible to store things into istream iterators. The main peculiarity of the istream iterators is the fact that ++ operators are not equality preserving, that is, i == j does not guarantee at all that ++i == ++j. Every time ++ is used a new value is read. 2 The practical consequence of this fact is that istream iterators can be used only for one-pass algorithms, which actually makes perfect sense, since for multi-pass algorithms it is always more appropriate to use in- memory data structures. Two end-of-stream iterators are always equal. An end-of-stream iterator is not equal to a non-end-of- stream iterator. Two non-end-of-stream iterators are equal when they are constructed from the same stream. namespace std { template <class T, class Distance = ptrdiff_t> class istream_iterator : input_iterator<T,Distance> { public: istream_iterator(); istream_iterator(istream& s); istream_iterator(const istream_iterator<T,Distance>& x); ~istream_iterator(); const T& operator*() const; istream_iterator<T,Distance>& operator++(); istream_iterator<T,Distance> operator++(int); }; template <class T, class Distance> bool operator==(const istream_iterator<T,Distance>& x, const istream_iterator<T,Distance>& y); } 24.4.2 Template class ostream_iterator [lib.ostream.iterator] 1 ostream_iterator<T> writes (using operator<<) successive elements onto the output stream from which it was constructed. If it was con structed with char* as a constructor argument, this string, called a delimiter string, is written to the stream after every T is written. It is not possible to get a value out of the output iterator. Its only use is as an output iterator in situations like while (first != last) *result++ = *first++; 2 ostream_iterator is defined as: namespace std { template <class T> class ostream_iterator : public output_iterator { public: ostream_iterator(ostream& s); ostream_iterator(const char* delimiter); ostream_iterator(ostream& s, const char* delimiter); ostream_iterator(const ostream_iterator<T>& x); ~ostream_iterator(); ostream_iterator<T>& operator=(const T& value); ostream_iterator<T>& operator*(); ostream_iterator<T>& operator++(); ostream_iterator<T> operator++(int); }; 24.4.3 Template class [lib.istreambuf.iterator] istreambuf_iterator namespace std { template<class charT, class traits = ios_traits<charT> > class istreambuf_iterator { public: typedef charT char_type; typedef traits traits_type; typedef traits::int_type int_type; typedef basic_streambuf<charT,traits> streambuf; typedef basic_istream<charT,traits> istream; class proxy; public: istreambuf_iterator(); istreambuf_iterator(istream& s); istreambuf_iterator(streambuf* s); istreambuf_iterator(const proxy& p); charT operator*(); istreambuf_iterator<charT,traits>& operator++(); proxy operator++(int); bool equal(istreambuf_iterator& b); private: streambuf* sbuf_; exposition only }; } 1 The template class istreambuf_iterator reads successive characters from the streambuf for which it was constructed. 2 After it is constructed, and every time operator++ is used, the itera tor reads and stores a value of character. If the end of stream is reached (streambuf::sgetc() returns traits::eof()), the iterator becomes equal to the end of stream iterator value. The default con structor istreambuf_iterator() and the constructor istream buf_iterator(0) always construct an end of stream iterator object, which is the only legitimate iterator to be used for the end condi tion. 3 The result of operator*() on an end of stream is undefined. For any other iterator value a const char_type& is returned. It is impossible to store things into input iterators. 4 Note that in the input iterators, ++ operators are not equality pre serving, that is, i == j does not guarantee at all that ++i == ++j. Every time ++ is used a new value is used. 5 The practical consequence of this fact is that an istreambuf_iterator object can be used only for one-pass algorithms, which actually makes perfect sense, since for multi-pass algorithms it is always more appropriate to use in-memory data structures. Two end of stream iter ators are always equal. An end of stream iterator is not equal to a non-end of stream iterator. Two non-end of stream iterators are equal when they are constructed from the same stream. 24.4.3.1 Template class [lib.istreambuf.iterator::proxy] istreambuf_iterator::proxy namespace std { template <class charT, class traits = ios_traits<charT> > class istream_iterator::proxy { charT keep_; streambuf* sbuf_; proxy(charT c, streambuf* sbuf); : keep_(c), sbuf_(sbuf) {} public: charT operator*() { return keep_; } friend class istreambuf_iterator; }; } 1 Class istream_iterator<charT,traits>::proxy provides a temporal place holder as the return value of the post-increment operator ( opera tor++). It keeps the character pointed to by the previous value of the iterator for some possible future access to get the character. 24.4.3.2 istreambuf_iterator [lib.istreambuf.iterator.cons] constructors istreambuf_iterator(); Effects: Constructs the end-of-stream iterator. istreambuf_iterator(basic_istream<charT,traits>& s); Effects: Constructs the istream_iterator pointing to the basic_streambuf object *(s.rdbuf()). istreambuf_iterator(const proxy& p); Effects: Constructs the istreambuf_iterator pointing to the basic_streambuf object related to the proxy object p. 24.4.3.3 [lib.istreambuf.iterator::op*] istreambuf_iterator::operator* charT operator*() 1 Extract one character pointed to by the streambuf *sbuf_. 24.4.3.4 [lib.istreambuf.iterator::op++] istreambuf_iterator::operator++ istreambuf_iterator<charT,traits>& istreambuf_iterator<charT,traits>::operator++(); Effects: Advances the iterator and returns the result proxy istreambuf_iterator<charT,traits>::operator++(int); Effects: Advances the iterator and returns the proxy object keeping the char acter pointed to by the previous iterator. 24.4.3.5 [lib.istreambuf.iterator::equal] istreambuf_iterator::equal bool equal(istreambuf_iterator<charT,traits>& b); Returns: true if the iterators are equal. Equality is defined as follows: --If both a and b are end-of-stream iterators, a == b. --If either a or b is an end-of-stream iterator, if the other points end-of-file, a == b, otherwise a != b. --If both a and b are not end-of-stream, the two streambuf pointed to by the both iterators are compared. 24.4.3.6 iterator_category [lib.iterator.category.i] input_iterator iterator_category(const istreambuf_iterator& s); Returns: the category of the iterator s. 24.4.3.7 operator== [lib.istreambuf.iterator::op==] namespace std { template <class charT, class traits = ios_traits<charT> > bool operator==(istreambuf_iterator<charT,traits>& a, istreambuf_iterator<charT,traits>& b); } Returns: a.equal(b). 24.4.3.8 operator!= [lib.istreambuf.iterator::op!=] namespace std { template <class charT, class traits = ios_traits<charT> > bool operator!=(istreambuf_iterator<charT,traits>& a, istreambuf_iterator<charT,traits>& b); } Returns: !a.equal(b). 24.4.4 Template class [lib.ostreambuf.iterator] ostreambuf_iterator namespace std { template <class charT, class traits = ios_char_traits<charT> > class ostreambuf_iterator { public: typedef charT char_type; typedef traits traits_type; typedef basic_streambuf<charT,traits> streambuf; typedef basic_ostream<charT,traits> ostream; public: ostreambuf_iterator(); ostreambuf_iterator(ostream& s); ostreambuf_iterator(streambuf* s); ostreambuf_iterator& operator=(charT c); ostreambuf_iterator& operator*(); ostreambuf_iterator& operator++(); ostreambuf_iterator& operator++(int); bool equal(ostreambuf_iterator& b); private: streambuf* sbuf_; exposition only }; output_iterator iterator_category (const ostreambuf_iterator&); template<class charT, class traits = ios_char_traits<charT> > bool operator==(ostreambuf_iterator<charT,traits>& a, ostreambuf_iterator<charT,traits>& b); template<class charT, class traits = ios_char_traits<charT> > bool operator!=(ostreambuf_iterator<charT,traits>& a, ostreambuf_iterator<charT,traits>& b); } 1 The template class ostreambuf_iterator writes successive characters onto the output stream from which it was constructed. It is not pos sible to get a value out of the output iterator. 2 Two output iterators are equal if they are constructed with the same output streambuf. 24.4.4.1 ostreambuf_iterator [lib.ostreambuf.iter.ops] operations 24.4.4.1.1 ostreambuf_iterator [lib.ostreambuf.iter.cons] constructors ostreambuf_iterator(); Effects: : sbuf_(0) {} ostreambuf_iterator(ostream& s); Effects: : sbuf_(s.rdbuf()) {} ostreambuf_iterator(streambuf* s); Effects: : sbuf_(s) {} 24.4.4.1.2 [lib.ostreambuf.iter.op=] ostreambuf_iterator::operator= ostreambuf_iterator<Container>& operator=(const Container::value_type& value); Effects: sbuf_->sputc(traits::to_int_type(c)); Returns: *this. 24.4.4.1.3 [lib.ostreambuf.iter.op*] ostreambuf_iterator::operator* ostreambuf_iterator<Container>& operator*(); Returns: *this. 24.4.4.1.4 [lib.ostreambuf.iter.op++] ostreambuf_iterator::operator++ ostreambuf_iterator<Container>& operator++(); ostreambuf_iterator<Container> operator++(int); Returns: *this. 24.4.4.1.5 [lib.ostreambuf.iter.equal] ostreambuf_iterator::equal bool equal(ostreambuf_iterator& b); Returns: sbuf_ == b.sbuf. 24.4.4.1.6 iterator_category [lib.ostreambuf.iterator.category] output_iterator iterator_category (const ostreambuf_iterator&); Returns: output_iterator(). 24.4.4.1.7 ostreambuf_iterator [lib.ostreambuf.iterator.op==] operator== template<class charT, class traits = ios_char_traits<charT> > bool operator==(ostreambuf_iterator<charT,traits>& a, ostreambuf_iterator<charT,traits>& b); Returns: a.equal(b). 24.4.4.1.8 ostreambuf_iterator [lib.ostreambuf.iterator.op!=] operator!= template<class charT, class traits = ios_char_traits<charT> > bool operator!=(ostreambuf_iterator<charT,traits>& a, ostreambuf_iterator<charT,traits>& b); Returns: !a.equal(b).