
Remove Deprecated u8path overloads From C++26
Document #: P3364R0
Date: 2024-07-22
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2

3 Introduction 2

4 Analysis 2

5 C++23 Review History 3
5.1 Initial LEWGI review: Telecon 2020/07/13 . 3
5.2 SG16 review: Telecon 2020/07/22 . 3
5.3 LEWG consensus (following SG16 review) . 3

6 Design Principles 4

7 Proposed Solution 4

8 C++26 Review History 4
8.1 LEWG review: Telecon 2023/01/10 ([LWG3840]) . 4
8.2 SG16 review: Telecon 2023/05/24 ([P2863]) . 4
8.3 LEWG review: Kona, 2023/11/07 ([P2863]) . 4

9 Wording 5
9.1 Add new identifiers to 16.4.5.3.2 [zombie.names] . 5
9.2 Update Annex C . 5
9.3 Strike from Annex D . 5
9.4 Update cross-reference for stable labels for C++23 . 6

10 Acknowledgements 8

11 References 8

1

mailto:ameredith1@bloomberg.net

1 Abstract
This paper proposes the removal of the deprecated u8path function from the next C++ Standard.

2 Revision History
R0 August 2024 (midterm mailing)

Initial draft of this paper, based on content in [P2863]

3 Introduction
The topic of this paper has been extracted from the general deprecation review paper, [P2863], into its own
paper so as to better track its progress, since this topic has had a couple of reviews but is not reaching a real
conclusion while embedded in the broader paper.

The u8path factory function creates path names from UTF-8 sequences of char and was part of the original
filesystem library component adopted for C++17 via [P0218R1]. The function was deprecated in C++20 with
the addition of char8_t to the core language and the ability to invoke a specific path constructor for UTF-8
encoded (and typed) strings; see [P0482R6] for details.

This paper proposes that this is the right time to remove the deprecated u8path function from the C++ Standard.

4 Analysis
The deprecated u8path function is now the only string-based factory function within the filesystem Standard
Library component since the preferred interface has evolved to directly constructing a path with a string of
the corresponding character type and its implied encoding. This legacy API continues to function but is more
cumbersome than necessary.

No compelling case has been made that the API is a risk through misuse, although the behavior is undefined if
fed malformed UTF-8. Even if the function appears to do no active harm, maintaining text in the Standard has
a cost; for example, the original deprecated specification did not follow Library wording best practices and thus
took up LWG review time to better specify the (also deprecated) Requires: clauses (see [P2874R2]).

The application of zombie names means that even if we remove this clause from Annex D in C++26, Standard
Library vendors are likely to continue shipping this functionality to meet customer demand for some time to
come.

2

5 C++23 Review History
This component was reviewed by telecon, achieving LEWG consensus for removal in C++23. However, the
author ran out of time to complete the large paper handling all Annex D removals, and new information has
since come to light with issue [LWG3840] requesting undeprecation of this function.

5.1 Initial LEWGI review: Telecon 2020/07/13
Discussion was broadly in favor of removing the u8path function from the C++23 specification and relying
on library vendors to maintain source compatibility as long as needed. However, LEWGI explicitly requested,
before proceeding with the recommendation, to confer with SG16 (Unicode) regarding any potential reason to
hold back on removal.

5.2 SG16 review: Telecon 2020/07/22
SG16 was not persuaded that the removal of the u8path function is actually a text issue since filenames, in
practice, accept a broader definition of text, and treating them as straight text is often a source of subtle and
surprising problems. SG16 expressed mild concern at the idea of removing a function deprecated as recently as
C++20 but also noted that the deprecating paper was adopted into the working draft before at least one major
library distribution had provided its initial implementation. SG16 had no objection to the removal and offered
mild encouragement to proceed.

5.3 LEWG consensus (following SG16 review)
Since SG16 raised no concerns, LEWG recommended removal of this feature from C++23.

3

6 Design Principles
Remove deprecated features from the Standard specification at the earliest practical opportunity to minimize
the accumulation of technical debt.

7 Proposed Solution
Remove the deprecated Standard Library API from C++26 while granting vendors permission to continue
supplying it as a conforming extension for as long as they desire through the use of zombie names.

8 C++26 Review History
8.1 LEWG review: Telecon 2023/01/10 ([LWG3840])
Discussion revealed little appetite for undeprecating filesystem::u8path. It is the only Standard Library
interface that requires data provided in char-based storage to be encoded in a different character encoding than
the execution character set or the encoding used for character and string literals.

For those who intentionally store UTF-8 data in char-based storage and would prefer not to use a deprecated
interface, an equivalent to filesystem::u8path can be implemented in a few lines of code:
inline auto myu8path(const char* s) {
std::u8string u8s(s, s+std::strlen(s));
return std::filesystem::path(u8s);

}

SG16, the Unicode and Text Study Group, is evaluating approaches to enable restricted aliasing support for
char8_t such that data in char-based storage could be passed to a char8_t-based interface without having to
perform a copy, such as the one shown in the example code above; [P2626] is one such proposal.

8.2 SG16 review: Telecon 2023/05/24 ([P2863])
SG16 observed that [P2626] aims to solve the root issue behind this problem and that we should not remove
a feature until it has coexisted with the facility to which to migrate for at least one Standard release. SG16
showed no enthusiasm for undeprecation and a general leaning toward removal in due course, maybe C++29.
SG16 strongly recommended abiding by the status quo on this function for C++26.

The observation was made that the original motivation for deprecation was to dissuade continuing to provide
Standard Library functions that require UTF-8 data in char-based storage. This function was one of just two
Standard Library features that did so, and the other has since been recommended for removal by [P2873R2].

8.3 LEWG review: Kona, 2023/11/07 ([P2863])
Some LEWG members mentioned using the u8path function and the awkwardness of writing code that is
portable across multiple Standards and that does not rely on deprecated features; that problem would go away
if we undeprecated this API, which behaves exactly as they expect.

Conversely, others in LEWG would like to remove a potential source of confusion now that we have a type-safe
interface that properly reflects the text encoding.

An observation was made that gaining consensus in either direction — undeprecation or removal — might be
difficult and that this feature might remain in limbo (Annex D) for many Standards.

Since the goal of [P2863] is to move deprecated features out of limbo, LEWG did reach consensus to send this
feature back to SG16 asking for their preferred direction for the long-term future of this function.

4

9 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4986], the latest draft at
the time of writing.

9.1 Add new identifiers to 16.4.5.3.2 [zombie.names]
16.4.5.3.2 [zombie.names] Zombie names

1 In namespace std, the names shown in Table 38 are reserved for previous standardization:

Table 1: Table 38 — Zombie names in namespace std
[tab:zombie.names.std]

auto_ptr
generate_header pointer_to_binary_function

auto_ptr_ref get_pointer_safety pointer_to_unary_function
binary_function get_temporary_buffer ptr_fun
binary_negate get_unexpected random_shuffle
bind1st gets raw_storage_iterator
bind2nd is_literal_type result_of
binder1st is_literal_type_v result_of_t
binder2nd istrstream return_temporary_buffer
codecvt_mode little_endian set_unexpected
codecvt_utf16 mem_fun1_ref_t strstream
codecvt_utf8 mem_fun1_t strstreambuf
codecvt_utf8_utf16 mem_fun_ref_t

u8path
const_mem_fun1_ref_t mem_fun_ref unary_function
const_mem_fun1_t mem_fun_t unary_negate
const_mem_fun_ref_t mem_fun uncaught_exception
const_mem_fun_t not1 undeclare_no_pointers
consume_header not2 undeclare_reachable
declare_no_pointers ostrstream unexpected_handler
declare_reachable pointer_safety wbuffer_convert

generate_header pointer_to_binary_function
wstring_convert

9.2 Update Annex C
S T I L L T O P R O V I D E W O R D S F O R A N N E X C

9.3 Strike from Annex D
[depr.fs.path.factory] Deprecated filesystem path factory functions

1 The header <filesystem> (31.12.4 [fs.filesystem.syn]) has the following additions:
template<class Source>
path u8path(const Source& source);

template<class InputIterator>
path u8path(InputIterator first, InputIterator last);

2 Mandates: The value type of Source and InputIterator is char or char8_t.
3 Preconditions: The source and [first, last) sequences are UTF-8 encoded. Source meets the requirements

specified in 31.12.6.4 [fs.path.req].

5

https://wg21.link/zombie.names
https://wg21.link/zombie.names
https://wg21.link/tab:zombie.names.std
https://wg21.link/fs.filesystem.syn
https://wg21.link/fs.path.req

4 Returns:

— If path::value_type is char and the current native narrow encoding (31.12.6.3.2 [fs.path.type.cvt]) is
UTF-8, return path(source) or path(first, last); otherwise,

— if path::value_type is wchar_t and the native wide encoding is UTF-16, or if path::value_type is
char16_t or char32_t, convert source or [first, last) to a temporary, tmp, of type path::string_type
and return path(tmp); otherwise,

— convert source or [first, last) to a temporary, tmp, of type u32string and return path(tmp).
5 Remarks: Argument format conversion (31.12.6.3.1 [fs.path.fmt.cvt]) applies to the arguments for these functions.

How Unicode encoding conversions are performed is unspecified.
6 [Example 1: A string is to be read from a database that is encoded in UTF-8, and used to create a directory

using the native encoding for filenames:
namespace fs = std::filesystem;
std::string utf8_string = read_utf8_data();
fs::create_directory(fs::u8path(utf8_string));

For POSIX-based operating systems with the native narrow encoding set to UTF-8, no encoding or type conver-
sion occurs.

For POSIX-based operating systems with the native narrow encoding not set to UTF-8, a conversion to UTF-32
occurs, followed by a conversion to the current native narrow encoding. Some Unicode characters may have no
native character set representation.

For Windows-based operating systems a conversion from UTF-8 to UTF-16 occurs. —end example]

[Note 1: The example above is representative of a historical use of filesystem::u8path. To indicate a UTF-8
encoding, passing a std::u8string to path’s constructor is preferred as it is consistent with path’s handling of
other encodings. —end note]

—end note]

9.4 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.arith.conv.enum removed
depr.codecvt.syn removed
depr.conversions removed
depr.conversions.buffer removed
depr.conversions.general removed
depr.conversions.string removed
depr.default.allocator removed
depr.fs.path.factory removed
depr.istrstream removed
depr.istrstream.cons removed
depr.istrstream.general removed
depr.istrstream.members removed
depr.locale.stdcvt removed
depr.locale.stdcvt.general removed
depr.locale.stdcvt.req removed
depr.mem.poly.allocator.mem see

6

https://wg21.link/fs.path.type.cvt
https://wg21.link/fs.path.fmt.cvt

mem.poly.allocator.mem
depr.ostrstream removed
depr.ostrstream.cons removed
depr.ostrstream.general removed
depr.ostrstream.members removed
depr.res.on.required removed
depr.string.capacity removed
depr.str.strstreams removed
depr.strstream removed
depr.strstream.cons removed
depr.strstream.dest removed
depr.strstream.general removed
depr.strstream.oper removed
depr.strstream.syn removed
depr.strstreambuf removed
depr.strstreambuf.cons removed
depr.strstreambuf.general removed
depr.strstreambuf.members removed
depr.strstreambuf.virtuals removed
depr.util.smartptr.shared.atomic removed

mismatch see alg.mismatch

7

10 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks to Lori Hughes for reviewing this paper.

11 References
[LWG3840] Daniel Krügler. filesystem::u8path should be undeprecated.

https://wg21.link/lwg3840

[N4986] Thomas Köppe. 2024-07-16. Working Draft, Programming Languages — C++.
https://wg21.link/n4986

[P0218R1] Beman Dawes. 2016-03-05. Adopt File System TS for C++17.
https://wg21.link/p0218r1

[P0482R6] Tom Honermann. 2018-11-09. char8_t: A type for UTF-8 characters and strings (Revision 6).
https://wg21.link/p0482r6

[P2626] Corentin Jabot. charN_t incremental adoption: Casting pointers of UTF character types.
https://wg21.link/p2626

[P2863] Alisdair Meredith. Review Annex D for C++26.
https://wg21.link/p2863

[P2873R2] Alisdair Meredith, Tom Honermann. 2024-07-06. Remove Deprecated locale category facets for
Unicode from C++26.
https://wg21.link/p2873r2

[P2874R2] Alisdair Meredith. 2023-06-12. Mandating Annex D.
https://wg21.link/p2874r2

8

https://wg21.link/lwg3840
https://wg21.link/n4986
https://wg21.link/p0218r1
https://wg21.link/p0482r6
https://wg21.link/p2626
https://wg21.link/p2863
https://wg21.link/p2873r2
https://wg21.link/p2874r2

	Abstract
	Revision History
	Introduction
	Analysis
	C++23 Review History
	Initial LEWGI review: Telecon 2020/07/13
	SG16 review: Telecon 2020/07/22
	LEWG consensus (following SG16 review)

	Design Principles
	Proposed Solution
	C++26 Review History
	LEWG review: Telecon 2023/01/10 ([LWG3840])
	SG16 review: Telecon 2023/05/24 ([P2863])
	LEWG review: Kona, 2023/11/07 ([P2863])

	Wording
	Add new identifiers to 16.4.5.3.2 [zombie.names]
	Update Annex C
	Strike from Annex D
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

