
Graph Library: Overview
Document #: P3126r2
Date: 2024-08-05
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency
SG6 Numerics

Revises: D3126r1

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Jesun Firoz
Michael Wong (Intel)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)
Guy Davidson (Creative Assembly)

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com


© ISO/IEC P3126r2

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describes the big picture of what we are proposing.
P3127 Active Background and Terminology provides the motivation, theoretical background, and

terminology used across the other documents.
P3128 Active Algorithms covers the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describes a proposed high-performance compressed_graph container. It
also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

P3337 Soon Comparison to other graph libraries on performance and usage syntax.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview (P3126) paper to
understand the focus and scope of our proposals. You’ll also want to check out it stacks up against other
graph libraries in performance and usage syntax in the Comparison (P3337) paper.

— If you want to understand the terminology and theoretical background that underpins what we’re
doing, you should read the Background and Terminology (P3127) paper.

— If you want to use the algorithms, you should read the Algorithms (P3128) and Graph Containers (P3131)
papers. You may also find the Views (P3129) and Graph Container Interface (P3130) papers helpful.

— If you want to write new algorithms, you should read the Views (P3129), Graph Container Interface
(P3130), and Graph Containers (P3131) papers. You’ll also want to review existing implementations in the
reference library for examples of how to write the algorithms.

— If you want to use your own graph data structures, you should read the Graph Container Interface
(P3130) and Graph Containers (P3131) papers.

2 Revision History
P3126r0

— Split from P1709r5. Added Getting Started section.

— Rewrite Goals and Priorities section to reflect the structure of the papers and to include a section on our
Future Roadmap.

— Added Notes and Considerations section.

— Concepts will be identified as "For exposition only" until we have consensus of whether they belong in the
standard or not.

§2.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3337
https://www.wg21.link/P3126
https://www.wg21.link/P3337
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131


© ISO/IEC P3126r2

P3126r1
— Added Issues Status section to be open with the issues that have been reported and that we are working on.

P3126r2
— Add the edgelist as an abstract data structure as a peer to the adjacency list. This completes an open issue

for completing the definition of the edgelist.

— Added the std::graph::edgelist namespace for edgelist concepts, traits and types to keep identically
named types separate from those for adjacency lists.

— Added a reference to the new P3337 Graph Comparisons paper to the Getting Started section.

— Update text to make it clear parallel algorithms will not be included in the proposal.

3 Overview
Graphs, used in ML and other scientific domains, as well as industrial and general programming, do not
presently exist in the C++ standard. In ML, a graph forms the underlying structure of an artificial neural
network (ANN). In a game, a graph can be used to represent the map of a game world. In business
environments, graphs arise as entity relationship diagrams (ERD) or data flow diagrams (DFD). In the
realm of social media, a graph represents a social network.

All documents, taken as a whole for a Graph Library, proposes the addition of graph algorithms, operators,
views, adaptors, the graph container interface, and a graph container implementation to the C++
library to support machine learning (ML), as well as other applications. ML is a large and growing field, both
in the research community and industry, that has received a great deal of attention in recent years. This
documents presents an interface of the proposed algorithms, operators, adaptors, views, graph functions, and
containers.

4 Goals and Priorities
Because graphs and their algorithms cover a broad range of capabilities and implementations, we have defined
a focused set of goals and priorities that will provide an initial set of useful functionality, as well as a sound
foundation for future work.

— Provide a firm theoretical foundation for the library.

— Follow the separation of algorithms, ranges, views, and containers established by the standard library.

— Include a rich enough set of algorithms for the library to be useful.

— The syntax for an algorithm’s implementation should be simple, expressive, and easy to understand.

— The ability to write high-performance algorithms should not be compromised.

— Algorithms can expect vertices to be in a random access range with an integral vertex id initially.

— Include views for common traversals of a graph’s vertices and edges that is concise and consistant without
having to use a lower level interface.

— Simple views for vertexlist, incidence edges on a vertex, neighbors of a vertex, and edges of a graph.

— Complex views for depth-first search, breath-first search, and topological sort.

— A Graph Container Interface, used by Views and Algorithms, that provides a consistent interface for
different graph data structures. The interface includes concepts, types, traits and functions and provides a
similar role to the Ranges library for standard containers.

— Descriptors for a consistent data model for vertex, edge and neighbor by views and edge lists.

§4.0 3

https://www.wg21.link/P3337


© ISO/IEC P3126r2

— Adjacency list, an outer range of vertices with an inner range of outgoing edges on each vertex.

— Be able to use the algorithms and views with existing graph data structures using customization
points.

— Support for optional user-defined value types on an edge, vertex, and/or the graph itself.

— Support bipartite and multipartite graphs.

— Edgelist, which is a range of edges that allow calling source_id(e) and target_id(e) , and optionally
edge_value(e) . This is available for the following.

— From an edgelist view.

— From a user-defined range of concrete values.

— Provide one or more graph containers that can be used with the algorithms.

— A high-performance compressed_graph container, based on the Compressed Sparse Row matrix.

— The ability to create simple graph container from standard containers, e.g. vector<vector<int>> .

The design should not hinder the ability to extend the functionality to support expanded functionality identified
in the future roadmap that follows.

4.1 Future Roadmap
The following are areas we’d like to see in future proposals, after the initial proposals are accepted. We endeavor
to investigate these to assure the existing design will support them.

— Additional graph algorithms. The Graph Algorithms paper identifies tiers of algorithms we’d like to see
added in the future, including parallel algorithms.

— Support for sparse vertex ids, implying the use of bi-directional containers such as map and unordered_map
for vertices.

— Bi-directional graphs, where vertices have incoming and outgoing edges.

— Constexpr graphs, where vertices and edges are stored in std::array or other constexpr-friendly container.

— Parallel graph algorithms.

5 Examples
The following code demonstrates how a simple graph can be created as a range of ranges, using the standard
containers.

[Phil: Duplicated in Introduction. OK?]

std::vector<std::string> actors { "Tom Cruise", "Kevin Bacon", "Hugo Weaving",
"Carrie-Anne Moss", "Natalie Portman", "Jack Nicholson",
"Kelly McGillis", "Harrison Ford", "Sebastian Stan",
"Mila Kunis", "Michelle Pfeiffer", "Keanu Reeves",
"Julia Roberts" };

using G = std::vector<std::vector<int>>;
G costar_adjacency_list{

{1, 5, 6}, {7, 10, 0, 5, 12}, {4, 3, 11}, {2, 11}, {8, 9, 2, 12}, {0, 1}, {7, 0},
{6, 1, 10}, {4, 9}, {4, 8}, {7, 1}, {2, 3}, {1, 4} };

int main() {
std::vector<int> bacon_number(size(actors));

§5.0 4



© ISO/IEC P3126r2

// 1 -> Kevin Bacon
for (auto&& [uid,vid] : basic_sourced_edges_bfs(costar_adjacency_list, 1)) {

bacon_number[vid] = bacon_number[uid] + 1;
}

for (int i = 0; i < size(actors); ++i) {
std::cout << actors[i] << " has Bacon number " << bacon_number[i] << std::endl;

}
}

target_id(g,uv) defines the required function to get a target_id for an edge in the graph G . Other functions
can also be overridden to allow a developer to adapt their own graph data structures to the library.

6 What this proposal is not
The Graph Library proposal limits itself to adjacency graphs and edgelists only. An adjacency graph is an outer
range of vertices with an inner range of outgoing edges on each vertex. An edgelist is a view of edges on an
adjacency list, or a range of edge types.

Parallel graph algorithms are not included in this proposal for several reasons.

— Parallelism is not beneficial for some algorithms, such as for depth-first search.

— There is no clear industry standard for a parallel version of some algorithms.

— The parallel algorithm is a different algorithm altogether, such as Delta-Stepping for shortest paths. Omitting
them helps to limit the size of this proposal that is already large.

— A richer set of parallelization mechanisms is required because of the irregular and hierarchical nature of
graph data structures. Deferring this to a future proposal constrains the complexity and size of this initial
proposal.

We feel that providing a broader set of algorithms to address different interests is the better choice. We anticipate
that proposals will be submitted for parallel graph algorithms in the future.

Hypergraphs are not supported.

7 Impact on the Standard
This proposal is a pure library extension.

8 Interaction wtih Other Papers
Other than the papers identified as part of the Graph Libary, there is no interaction with other proposals to the
standard.

9 Implementation Experience
The github github.com/stdgraph repository contains an implementation for this proposal.

10 Usage Experience
There is no current use of the library. There are plans to begin using it in 2024 in a commercial setting.

§11.0 5

https://github.com/stdgraph


© ISO/IEC P3126r2

11 Deployment Experience
There is no current deployment experience of the library. There are plans for this to follow the usage experience.

12 Performance Considerations
The algorithms are being ported from NWGraph to the github.com/stdgraph implementation used for this proposal.
Performance analysis from those algorithms can be found in the peer-reviewed papers for NWGraph [1, 2].

13 Prior Art
boost::graph has been an important C++ graph implementation since 2001. It was developed with the goal of
providing a modern (at the time) generic library that addressed all the needs of a graph library user. It is still a
viable library used today, attesting to the value it brings.

However, boost::graph was written using C++98 in an “expert-friendly” style, adding many abstractions and
using sophisticated tempate metaprogramming, making it difficult to use by a casual developer.

NWGraph ([3] and [1]) was published in 2022 by Lumsdaine et al, bringing additional experience gained since
creating boost::graph, to create a modern graph library using C++20 for its implementation that was more
accessible to the average developer.

While NWGraph made important strides to introduce the idea of the graph as a range-of-ranges and implemented
many important algorithms, there are some areas it didn’t address that come a practical use in the field. For
instance, it didn’t have a well-defined API for graph data structures that could be applied to existing graphs,
and there wasn’t a uniform approach to properties.

This proposal takes the best of NWGraph, with previous work done for P1709 to define a Graph Container
Interface, to provide a library that embraces performance, ease-of-use, and the ability to use the algorithms and
views on externally defined graph containers.

GraphBLAS Graph algorithms are traditionally developed, and then implemented, using explicit loops over a
graph data structure—sometimes referred to as “pointer chasing.” An alternative formulation of graph algorithms
leverages the close inherent relationship between graphs and sparse matrices to formulate graph algorithms
as sequences of higher-level operations: sparse matrix multiplication (and other similar operations) over a
semiring [4].

The GraphBLAS is an ad-hoc standardization effort to develop a set of kernel operations for supporting classical
graph algorithms. As an API specification, the GraphBLAS is not a a graph library per se, but rather is intended
to be used to implement graph algorithms (much as the linear algebra BLAS are used to implement linear algebra
libraries such as LAPACK).

A C language binding that specifically implements the API is available as part of SuiteSparse. However, the
resulting library relies on its own (opaque) data structures for representing graphs and would not be inter-operable
with modern C++ approaches to library and application design. There have been early attempts at native C++
realizations of GraphBLAS, e.g., the GraphBLAS Template Library (GBTL).

(NB: Andrew is a co-author of boost::graph; Scott and Andrew were participants in GraphBLAS standardization
and co-authors of GBTL; Andrew, Scott, and Phil are co-authors of NWGraph.)

14 Alternatives
Although the prior efforts have served, and do serve, important roles, they do not meet the needs or expectations
of modern C++ development. We are currently unaware of any existing graph library that meets the same
requirements and uses concepts and ranges from C++20.

§15.0 6

https://github.com/stdgraph


© ISO/IEC P3126r2

15 Feature Test Macro
The __cpp_lib_graph feature test macro is recommended to represent all features in this proposal including
algorithms, views, concepts, traits, types, functions, and graph container(s).

16 Freestanding
We believe this library can be used in a freestanding C++ implementation.

17 Namespaces
Graph containers and their views and algorithms are not interchangeable with existing containers and algorithms.
Additionally, there are some domain-specific terms that may clash with existing or future names, such as degree
and partition_id . For these reasons, we recommend their own namespaces. The following assumption is used in
this proposal.

std::graph , std::graph::views and std::graph::edgelist

Alternative locations include the following:

std::ranges , std::ranges::views , and std::ranges::edgelist

std::ranges/graph , std::ranges::graph::views and std::ranges::graph::edgelist

The advantage of these two options are that there would be no requirement to use the ranges:: prefix for things
in the std::ranges namespace, a common occurance.

18 Notes and Considerations
There are some interesting observations that can be made about graphs and how they compare and contrast to
the standard library that may not be obvious.

— The adjacency list, the primary data structure for this proposal, is a compound data structure of a range of
ranges. This introduces a new form of container beyond a simple range.

— There is more than one possible value type, one each for edge, vertex, and graph. Each is optional. This
is in contrast to existing practice where the value type is the distinguishing difference between different
containers, such as for set and map .

— Algorithms will often use views, though they can use the GCI functions when needed.

— Algorithms and Views often need to allocate memory internally to achieve their purpose. This is a departure
from common practice in the standard.

There are other observations we’ve also discovered along the way that may not be obvious.

— Storing vertices in a map (bi-directional range) requires a different style of programming algorithms,
compared to being kept in a vector (random access range). When using a vector , edges(g,uid) would
normally be used without much thought. Using that with a map would incur a O(log(V )) cost. Instead, it
will use vertex id once to get the vertex reference and then use edges(g,uv) . This is expected to result in
overloading of existing algorithms based on the range type of a container, distinguished with concepts.

The addition of concepts to the standard library is a serious consideration because, once added, they cannot be
removed. We believe that graphs as a range-of-ranges merits the addition new concepts but we recognize that it
may be a controversial decision. Toward that end, we will continue to include them to help clarify the examples
given and are assumed to be "For exposition only" as suggested implementation until a clear decision to include
them, or not, is made.

§19.0 7



© ISO/IEC P3126r2

19 Issues Status
This sections lists the known and open issues for the Graph Library proposal across all papers. They are organized
by the paper they are associated with.

19.1 Open Design Issues
— Pxxxx: Graph Operators (paper not yet submitted)

1. Complete the paper for additional utility functions including degree, sort, relabel, transpose and join.

— Build on mdspan and try to standardize (or at least understand) what might reasonably be called an
unstructured span

— The statement assumes vertices are in a random-access range and prevents the use of bi-directional
ranges like std::map, which could be used for sparse vertex ids. The existing design should be able to
adept easily to mdspan.

— I don’t think I expressed myself very well here. I completely take your point about not assuming that
vertices are in a random-access range. But what I’m trying to get at is as follows.

Suppose someone standardizes unstructured span, as a natural extension of mdspan. What could we
learn from its api that may be relevant for graphs? In both cases, we will presumably have a method
which allows iteration over the ith partition (or edges of a given node, for graphs). Consistency of the
stl may mean we want these to have the same look/feel.

19.2 Open Reported Issues
— P3127 Background and Terminology

1. P1709 has lots of details which I think to be irrelevant. (P1709 is the original proposal that was split
into multiple papers)

— Clarification: I don’t find the discussion about adjacency matrices helpful, but rather a distraction.
It’s not that it shouldn’t be there in some form, but at the moment it has a prominence which I
don’t think is commensurate with its importance to the paper, perhaps exacerbated by the fact
that the paper lacks many salient details (see next point).

2. It is very hard to follow

— Clarification: As it stands, the paper lacks a discussion of the authors’ standpoint on graph
terminology, defining features (e.g. self loops, multi-edges) and the sort of trade-offs you get by
allowing/not allowing them. Put another way, I think the paper would be easier to follow if there’s
a technical narrative that reveals the way the authors are thinking about this huge area.

I like the style of the motivation in P1709R5; if this could be greatly extended to include
the mathematical background that Andrew is working on, this would be really helpful. And
beyond the mathematical background, as discussion of the computational tradeoffs for both graph
implementations and the associated algorithms, given certain choice, would be great to have.

— This paper includes much of the content from P1709R5 for motivation. Andrew will be extending
the paper to include a more rigorous mathematical description.

3. We need to add a mathematical perspective to the paper.

— P3127 includes some of this. We plan on extending it to include a more rigorous mathematical
description.

4. There needs to be a proper discussion about whether the paper’s definition of graph is what some
authors call a multigraph and whether it does/doesn’t include loops.

§19.2 8

https://www.wg21.link/P3127


© ISO/IEC P3126r2

— The current version of P3128 Algorithms has a summary table for each algorithm that includes
Complexity, Directed?, Multi-edge?, Cycles?, Self-loops?, and Throws?. We still need to make a
pass through the algorithms to assure the values are correct.

— The summary tables for the algorithms are necessary but not sufficient:

— There needs to be a discussion of these aspects for graph implementations themselves. Various
graph operations may be more efficient if the graph structure is more constrained. However,
not allowing e.g. multiple edges between pairs of nodes prohibits representing many useful
systems. There are trade-offs and these need to be discussed.

— A justification of the choices made for the algorithms may be helpful.

5. The electrical circuit example has issues in P3127, section 6.1.

— We acknowledge this and will remove it, or replace it with a better example.

— I think it’s very valuable to include electrical circuits in addition to a simpler example. As we’ve
discussed, electrical circuits are surprisingly subtle to represent using graphs, but I think users of
a graph library should rightly expect that it can be elegantly done. I think signs of a good design
for std::graph is that people can do this. So I think electrical circuits should stay in, in all their
glory, but complemented by something less subtle.

— P3128 Graph Algorithms

1. A concern is that the DFS and BFS functionality isn’t flexible enough, especially when compared to
boost::graph’s visitors.

— We agree having a more general and flexible BFS and DFS would be valuable. We are investigating
the merits of implementations based on coroutines and boost::graph-like visitors.

— If we propose the use of coroutines we should explain our choice when compared to boost::graph’s
visitors, which are the closest to a defacto standard available. The purpose of the standard library
is to adopt standard practice, and it would help smooth the process to justify our decision.

— P3337: Comparison to boost::graph (paper not yet submitted)

1. My comment about the structure of the paper changing was a reference to previous comparisons with
boost::graph. I’m sure these were in an earlier version, or am I misremembering?

— We never had any comparisons to boost::graph.

— We are planning on adding a new paper to compare it to graph-v2 in regards to syntax and
performance.

19.3 Resolved Issues
— P3126 Overview

1. GraphBLAS is not included as part of the prior art.

— Added in P3126r1.

— P3130 Graph Container Interface

1. I’m not convinced by the load API.

— We agree because the use of both load functions and constructors creates ambiguity and complexity
when both are defined. Even though constructors weren’t in the paper it wasn’t clear whether
they should be included or not. We have removed the load functions and added constructors for
compressed_graph to simplify the interface.

2. Complete the definition of the edgelist concepts, types and CPO functions. This is distinct from the
existing edgelist view.

§19.3 9

https://www.wg21.link/P3128
https://www.wg21.link/P3126
https://www.wg21.link/P3130


© ISO/IEC P3126r2

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

§19.3 10



© ISO/IEC P3126r2

References
[1] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski,

“Nwgraph: A library of generic graph algorithms and data structures in c++20.” "https://drops.dagstuhl.de/
opus/volltexte/2022/16259/".

[2] A. Azad, M. M. Aznaveh, S. Beamer, M. P. Blanco, J. Chen, L. D’Alessandro, R. Dathathri, T. Davis,
K. Deweese, J. Firoz, H. A. Gabb, G. Gill, B. Hegyi, S. Kolodziej, T. M. Low, A. Lumsdaine, T. Manlaibaatar,
T. G. Mattson, S. McMillan, R. Peri, K. Pingali, U. Sridhar, G. Szarnyas, Y. Zhang, and Y. Zhang, “Evaluation
of graph analytics frameworks using the gap benchmark suite,” in 2020 IEEE International Symposium on
Workload Characterization (IISWC), pp. 216–227, 2020.

[3] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski,
“Nwgraph library code.” "https://github.com/pnnl/NWGraph".

[4] J. Kepner and J. R. Gilbert, eds., Graph Algorithms in the Language of Linear Algebra, vol. 22 of Software,
environments, tools. SIAM, 2011.

[5] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual.
Addison-Wesley Professional, Dec. 2001.

§19.3 11

"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://github.com/pnnl/NWGraph"

	Getting Started
	Revision History
	Overview
	Goals and Priorities
	Future Roadmap

	Examples
	What this proposal is not
	Impact on the Standard
	Interaction wtih Other Papers
	Implementation Experience
	Usage Experience
	Deployment Experience
	Performance Considerations
	Prior Art
	Alternatives
	Feature Test Macro
	Freestanding
	Namespaces
	Notes and Considerations
	Issues Status
	Open Design Issues
	Open Reported Issues
	Resolved Issues

	Acknowledgements

