We propose a short syntax for the constrained declaration
of function parameters, function return types and
variables. The new syntax is a “constrained
auto
”, e.g. void sort(Sortable auto& c);
.
auto
”auto
”template <Concept T>
”This paper proposes three things:
auto
”;
the principle being “wherever auto
goes,
a Constraint auto
can also (non-recursively) go”.
The semantics are to deduce like auto
and additionally check a constraint.
In a nutshell,
and all combined:void f(Sortable auto x); Sortable auto f(); // #1 Sortable auto x = f(); // #2 template <Sortable auto N> void f();
An unconstrained version of that is:template <Sortable auto N> Sortable auto f(Sortable auto x) { Sortable auto y = init; }
So, this proposal includestemplate <auto N> auto f(auto x) { auto y = init; }
auto
-typed parameters for
functions, which we already allow for lambdas.auto
is optional
for the cases #1 and #2 illustrated above:
Sortable f(); Sortable x = f();
template <Sortable S>
always
means that S
is a type parameter, and
template <Sortable auto S>
always means
that S
is a non-type parameter. Template template-parameters
are no longer supported in this short form. Moreover, Sortable
is restricted to be a concept that takes a type parameter or type parameter pack;
non-type and template concepts are no longer supported in this short form.
Sortable
is a “type concept” in all the examples of this summary.
This paper specifically does not propose
The idea of this approach is to provide a syntax that
auto
”The approach proposed here borrows a subset of P0807R0 An Adjective Syntax for Concepts. The idea is that we don’t try to come up with a notation that does everything that P0807 does; in particular, there is no proposal for a new syntax to introduce a type name.
The approach is simple: allow auto
parameters to produce
function templates (as they produce polymorphic lambdas), and allow the auto
to be preceded by a concept name. In every case, such a parameter
is a deduced parameter, and we can see which parameters are deduced
and which ones are not:
[](auto a, auto& b, const auto& c, auto&& d) {...}; // unconstrained [](Constraint auto a, Constraint auto& b, const Constraint auto& c, Constraint auto&& d) {...}; // constrained void f1(auto a, auto& b, const auto& c, auto&& d) {...}; // unconstrained void f2(Constraint auto a, Constraint auto& b, const Constraint auto& c, Constraint auto&& d) {...}; // constrained [](Constraint auto&& a, SomethingElse&& b) {...}; // a constrained deduced forwarding reference and a concrete rvalue reference void f3(Constraint auto&& a, SomethingElse&& b) {...}; // a constrained deduced forwarding reference and a concrete rvalue reference
The appearance of auto
(including Constraint auto
)
in a parameter list
tells us that we are dealing with a function template. For each parameter,
we know whether it is deduced or not. We can tell apart
concepts from types: concepts precede auto
, types do not.
Constrained return types work the same way:
auto f4(); // unconstrained, deduced. Constraint auto f5(); // constrained, deduced. Whatever f6(); // See part 2. If Whatever is a type, not deduced. // If Whatever is a concept, constrained and deduced.
Note that f4
, f5
and f6
are not templates (whereas the previous f1
, f2
and f3
are templates). Here, there is no
mention of auto
in the parameter list. Users have the choice
of adopting a style where it is explicit as to whether the return type is deduced.
Constrained types for variables work the same way:
auto x1 = f1(); // unconstrained, deduced. Constraint auto x2 = f2(); // constrained, deduced. Whatever x3 = f3(); // See part 2. If Whatever is a type, not deduced. // If Whatever is a concept, constrained and deduced.
Again, users can make it so that it is easy to see when deduction occurs.
Since non-type template parameters can be deduced via auto
(as in template <auto N> void f();
),
we also allow a constraint there:
template <Constraint auto N> void f7();
Note, however, that this can only be a type constraint; non-type concepts (including auto concepts) are not allowed in this form.
auto
In concert with the general approach that “Constraint auto
goes wherever
auto
goes”, new-expressions and operators work:
auto alloc_next() { return new Sortable auto(this->next_val()); } operator Sortable auto() { }
A “Constraint auto
” cannot be used to indicate that a function declarator has a trailing return type:
Constraint auto f() -> auto; // ill-formed; shall be the single type-specifier
auto
decltype(auto)
can also be constrained:
auto f() -> Constraint decltype(auto); Constraint decltype(auto) x = f();
Structured bindings do deduce auto
in some cases; however, the auto
is deduced from the whole (and not from the individual components).
It is somewhat doubtful that applying the constraint to the whole, as opposed to (for example) applying separately to each component, is the correct semantic.
Therefore, we propose to defer enabling the application of constraints to structured bindings to separate papers.
The constraint applies directly to the deduced type. It does not apply to the possibly cv-qualified type described by the type specifiers, nor does it apply to the type declared for the variable:
const Assignable<int> auto&& c = *static_cast<int *>(p); // Assignable<int &, int>
Naturally, if the deduced type is cv-qualified (or a reference), the constraint applies to that type.
To keep things simple, an auto
being constrained is always immediately preceded by the constraint. So, cv-qualifiers and concept-identifiers
cannot be freely mixed:
const Contraint auto x = foo(); // ok Constraint const auto x = foo(); // ill-formed Constraint auto const y = foo(); // ok
We propose only the ability to apply one single constraint for a parameter, return type, or non-type template parameter. Any proposal to consider multiple constraints should happen separately after C++20.
Partial concept identifiers also work. Given a concept
template <typename T, typename... Args> concept
Constructible = /* ... */;
, we can say:
void f(Constructible<int> auto x); // Constructible<decltype(x), int> is satisfied Constructible<int> auto f(); Constructible<int> auto x = f(); template <Constructible<int> auto N> void f();
auto
”
In the return type of a function declaration, we can leave out the auto
.
So, in addition to
Constraint auto f1();
we can write
Constraint f2();
Neither f1
nor f2
are templates.
It seems fairly reasonable to allow omitting the auto
,
but that is intended to be a relaxation of the general rule,
not a replacement for Constraint auto
.
In variable declarations, omitting the auto
also seems reasonable:
Constraint x = f2();
Note, in particular, that we already have a syntax that does (partial) deduction but doesn’t make that explicit in the syntax:
std::tuple x = foo();
The variable case in particular seems reasonable, considering the already existing deduction syntaxes that don’t call attention to deduction. The user always has a choice to use a more explicit syntax. The return type case might well have a weaker rationale for being allowed. It should be noted, though, that this relaxation in general was present in the TS; this paper is merely not proposing it for parameters.
Certain disambiguation details need to be handled:
bool b(Constructible<int> && bar()); // variable definition void foo() { Constructible<int> * f2(); // disambiguation/type-name interpretation rule required Constructible<int> * selector = f2(); // (same?) disambiguation/type-name interpretation rule required }
Note that the variable definition is unambiguously a variable
definition. This proposal proposes no function declaration
syntax that would clash with it; in particular, Constructible<int>
is not considered a type-name that is short for Constructible<int> auto
except in limited contexts. It’s merely something to be aware of, and a demonstration of how
the presence of auto
avoids ambiguity. For each remaining case above,
Constructible<int>
does appear within such a limited context when parsing
the statements as prospective declaration statements; we propose to generalize the rule for disambiguating
in favor of declaration statements to cover this case.
template <Concept T>
”In [temp.param]/10 we have:
A constrained-parameter declares a template parameter whose kind (type, non-type, template) and type match that of the prototype parameter (17.6.8) of the concept designated by the qualified-concept-name in the constrained-parameter. Let
X
be the prototype parameter of the designated concept. The declared template parameter is determined by the kind ofX
(type, non-type, template) and the optional ellipsis in the constrained-parameter as follows.
- If
X
is a type template-parameter, the declared parameter is a type template-parameter.- If
X
is a non-type template-parameter, the declared parameter is a non-type template-parameter having the same type asX
.- If
X
is a template template-parameter, the declared parameter is a template template-parameter having the same template-parameter-list asX
, excluding default template arguments.- If the qualified-concept-name is followed by an ellipsis, then the declared parameter is a template parameter pack (17.6.3).
[Example:
template<typename T> concept C1 = true; template<template<typename> class X> concept C2 = true; template<int N> concept C3 = true; template<typename... Ts> concept C4 = true; template<char... Cs> concept C5 = true; template<C1 T> void f1(); // OK, T is a type template-parameter template<C2 X> void f2(); // OK, X is a template with one type-parameter template<C3 N> void f3(); // OK, N has type int template<C4... Ts> void f4(); // OK, Ts is a template parameter pack of types template<C4 T> void f5(); // OK, T is a type template-parameter template<C5... Cs> void f6(); // OK, Cs is a template parameter pack of chars
—end example]
Does that seem like a mouthful?
That’s because it is. In template <Constraint T>
, the kind of
T
depends on the kind of the prototype parameter of Constraint
.
We instead propose that, for such a constrained-parameter syntax:
T
should always be a type, andConstraint
would always need to be a concept
that has a corresponding type parameter or type parameter pack.
To be clear, we are not proposing that concepts in general should not
have non-type or template template parameters. We are merely proposing for it to be the case
that the constrained parameter shortcut is not provided for concepts with
such prototype parameters; such concepts would need to be used with a requires-clause.
The constrained parameter syntax should mean just one thing.
Note that the same syntax template <A T>
is still a non-type
parameter when A
is a type name rather than a concept. We are willing
to tolerate this small potential for ambiguity.
The rationale for this part is as follows:
So, to clarify:
template <MyIntTypeDef N>
means
a non-type parameter, like it always did.template <ConceptName T>
means
a type parameter constrained by ConceptName
,
and the prototype parameter of ConceptName
needs to be
a type parameter or a type parameter pack.template <auto N>
means a non-type parameter
with a deduced type.template <ConceptName auto N>
means
a non-type parameter with a deduced type constrained by
ConceptName
, and the prototype parameter of ConceptName
needs to be a type parameter or a type parameter pack.Other use cases can be done with requires-clauses.