Document Number: P0088R2, ISO/IEC JTC1 SC22 WG21
Audience:LWG
Date:2016-03-21
Author:Axel Naumann (axel@cern.ch)

Variant: a type-safe union for C++17 (v7).

Table of Contents

 

Variant is the very spice of life,
That gives it all its flavor.
- William Cowper's "The Task", or actually a variant thereof

Introduction

C++17 needs a type-safe union:

Lets not make the same mistake we made with std::optional by putting this library into a TS. We waited three years where no substantial feedback or discussion occurred, and then moved it into the IS virtually unchanged. Meanwhile, the C++ community suffered, and we continue to suffer from lack of this essential vocabulary type in interfaces.

The implications of the consensus variant design are well understood and have been explored over several LEWG discussions, over a thousand emails, a joint LEWG/EWG session, and not to mention 12 years of experience with Boost and other libraries. The last major change made to the proposal was non-breaking and added exception throws where previously there was undefined behavior. Since then, all suggested modifications have been cosmetic, rehashes of older discussions, or would be handled just as well by defect resolutions.

The C++ community should not wait three years for a widely useful library that is already done, fits its purpose, and has had such extensive review. There is a low chance that we will regret including variant in C++17, but a high chance that we will regret omitting it.

This proposal attempts to apply the lessons learned from optional (1). It behaves as below:


variant<int, float> v, w;
v = 12;
int i = get<int>(v);
w = get<int>(v);
w = get<0>(v); // same effect as the previous line
w = v; // same effect as the previous line

get<double>(v); // ill formed
get<3>(v); // ill formed

try {
  get<float>(w); // will throw.
}
catch (bad_variant_access&) {}

Results of the LEWG review in Urbana

The LEWG review in Urbana resulted in the following straw polls that motivated changes in this revision of the paper:

Results of the LEWG review in Lenexa

In Lenexa, LEWG decided that variant should model a discriminated union.

Results of the second LEWG review in Lenexa

Results of Evening Session review in Kona

Results of LEWG Session in Kona

This addressed items raised by LWG.

Revision history

Differences to revision 1 (N4218)

As requested by the LEWG review in Urbana, this revision

Beyond these requests, this revision

Differences to revision 2 (N4450)

Differences to revision 3 (N4516)

Differences to revision 4 (N4542)

Differences to revision 5 (P0088R0)

Differences to revision 6 (P0088R1)

Discussion

Additional empty state

LEWG opted against introducing an explicit additional variant state, representing its invalid (and possibly empty, default constructed) state. This is meant to simplify the variant use: as getting a variant into the invalid state is sufficiently difficult, it was felt that there is no need to regularly check for a variant becoming invalid. This prevents all get<int>(v) calls from being protected by if (v.valid()).

Visibility of the Invalid State

Accessing an invalid variant's value is undefined behavior, whatever alternative is accessed.

The variant's invalid state needs to be visible: accessing its contents or visiting it will violate preconditions; users must be able to verify that a variant is not in this state.

When in the invalid state, index() returns variant_npos; variant provides valid() as a usability feature.

This usually does not need to be checked given how rare the invalid case is. It (generally) keeps a variant with N alternatives as an N-state type.

Empty state and default construction

Default construction of a variant should be allowed, to increase usability for instance in containers. LEWG opted against a variant default-initialized into its invalid state, to make invalid variants really rare.

Instead, the variant can be initialized with the first alternative (similar to the behavior of initialization of a union) only if that is default constructible. For cases where this behavior should be explicit, and for cases where no such default constructible alternative exists, there is a separate type monostate that can be used as first alternative, to explicitly enable default construction.

Feature Test

No header called variant exists; testing for this header's existence is thus sufficient.

Proposed wording

The insertions and deletions in this section describe the changes to the C++ Working Paper. Grayish background indicates proposed wording. Blue markup indicates changes to the previous revision, with insertions and deletions signaled in an obvious way.

Header <experimental/tuple>

Insertions and deletions mark the parts to be inserted into / deleted from existing wording.
3.2.1 Header <experimental/tuple> synopsis

#include <tuple>

namespace std {
namespace experimental {
inline namespace fundamentals_vXXXX {

  // See C++14 §20.4.2.5, tuple helper classes
  template <class T> constexpr size_t tuple_size_v
    = tuple_size<T>::value;


  // 3.2.2, tuple_find
  static constexpr size_t tuple_not_found = -1;


} // namespace fundamentals_vXXXX
} // namespace experimental
} // namespace std
The definition of tuple_not_found shall belong to [tuple.helper]; it shall not get a new section name.

Variant Objects

Insert a new element in Table 1, C++ library headers of [general.namespaces], named <experimental/variant>.

Insert a new section:

? Variants [variant]

?.1 In general [variant.general]

A variant object holds and manages the lifetime of a value. If the variant holds a value, that value's type has to be one of the template argument types given to variant. These template arguments are called alternatives.

?.2 Header <experimental/variant> synopsis [variant.synopsis]


namespace std {
namespace experimental {
inline namespace fundamentals_vXXXX {
  // ?.3, variant of value types
  template <class... Types> class variant;

  // ?.4, In-place construction
  template <class T> struct in_place_type_t{ explicit in_place_type_t() = default; };
  template <class T> constexpr in_place_type_t<T> in_place_type{};

  template <size_t I> struct in_place_index_t{ explicit in_place_index_t() = default; };
  template <size_t I> constexpr in_place_index_t<I> in_place_index{};

  // ?.5, Value access
  template <class T, class... Types>
    constexpr bool holds_alternative(const variant<Types...>&) noexcept;

  template <size_t I, class... Types>
    constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>>&
    get(variant<Types...>&);
  template <size_t I, class... Types>
    constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>>&&
    get(variant<Types...>&&);
  template <size_t I, class... Types>
    constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>> const&
    get(const variant<Types...>&);
  template <size_t I, class... Types>
    constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>> const&&
    get(const variant<Types...>&&);

  template <class T, class... Types>
    constexpr T& get(variant<Types...>&);
  template <class T, class... Types>
    constexpr T&& get(variant<Types...>&&);
  template <class T, class... Types>
    constexpr const T& get(const variant<Types...>&);
  template <class T, class... Types>
    constexpr const T&& get(const variant<Types...>&&);

  template <size_t I, class... Types>
    constexpr add_pointer_t<tuple_element_tvariant_alternative_t<I, variant<Types...>>>
    get_if(variant<Types...>*) noexcept;
  template <size_t I, class... Types>
    constexpr add_pointer_t<const tuple_element_tvariant_alternative_t<I, variant<Types...>>>
    get_if(const variant<Types...>*) noexcept;

  template <class T, class... Types>
    constexpr add_pointer_t<T> get_if(variant<Types...>*) noexcept;
  template <class T, class... Types>
    constexpr add_pointer_t<const T> get_if(const variant<Types...>*) noexcept;

  // ?.6, Relational operators
  template <class... Types>
    constexpr bool operator==(const variant<Types...>&,
                              const variant<Types...>&);
  template <class... Types>
    constexpr bool operator!=(const variant<Types...>&,
                              const variant<Types...>&);
  template <class... Types>
    constexpr bool operator<(const variant<Types...>&,
                             const variant<Types...>&);
  template <class... Types>
    constexpr bool operator>(const variant<Types...>&,
                             const variant<Types...>&);
  template <class... Types>
    constexpr bool operator<=(const variant<Types...>&,
                              const variant<Types...>&);
  template <class... Types>
    constexpr bool operator>=(const variant<Types...>&,
                              const variant<Types...>&);

  // ?.7, Visitation
  template <class Visitor, class... Variants>
  constexpr see below visit(Visitor&&, Variants&&...);

  // ?.8, Class monostate
  struct monostate;

  // ?.9, monostate relational operators
  constexpr bool operator<(monostate, monostate) noexcept;
  constexpr bool operator>(monostate, monostate) noexcept;
  constexpr bool operator<=(monostate, monostate) noexcept;
  constexpr bool operator>=(monostate, monostate) noexcept;
  constexpr bool operator==(monostate, monostate) noexcept;
  constexpr bool operator!=(monostate, monostate) noexcept;

  // ?.10, Specialized algorithms
  template <class... Types>
  void swap(variant<Types...>&, variant<Types...>&) noexcept(see below);

  // ?.11, class bad_variant_access
  class bad_variant_access;
  
} // namespace fundamentals_vXXXX
} // namespace experimental

  // ?.12, tuple interfacevariant helper classes
  template <class T> struct variant_size; // undefined
  template <class T> struct variant_size<const T>;
  template <class T> struct variant_size<volatile T>;
  template <class T> struct variant_size<const volatile T>;
  template <class T> constexpr size_t variant_size_v
    = variant_size<T>::value;

  template <class... Types>
    struct tuple_sizevariant_size<variant<Types...>>;

  template <size_t I, class T> struct variant_alternative; // undefined
  template <size_t I, class T> struct variant_alternative<I, const T>;
  template <size_t I, class T> struct variant_alternative<I, volatile T>;
  template <size_t I, class T> struct variant_alternative<I, const volatile T>;
  template <size_t I, class T>
    using variant_alternative_t = typename variant_alternative<I, T>::type;

  template <size_t I, class... Types>
    struct tuple_elementvariant_alternative<I, variant<Types...>>;

  static constexpr size_t variant_npos = -1;

  // ?.13, Hash support
  template <class T> struct hash;
  template <class... Types> struct hash<experimental::variant<Types...>>;
  template <> struct hash<experimental::monostate>;

  // ?.14, Allocator-related traits
  template <class T, class Alloc> struct uses_allocator;
  template <class... Types, class Alloc>
  struct uses_allocator<experimental::variant<Types...>, Alloc>;
} // namespace std

Including this header also makes the following declarations from [tuple.helper] available:


template <class T> class tuple_size<const T>;
template <class T> class tuple_size<volatile T>;
template <class T> class tuple_size<const volatile T>;

template <size_t I, class T> class tuple_element<I, const T>;
template <size_t I, class T> class tuple_element<I, volatile T>;
template <size_t I, class T> class tuple_element<I, const volatile T>;

static constexpr size_t tuple_not_found = -1;

?.3 variant of value types [variant.variant]


namespace std {
namespace experimental {
inline namespace fundamentals_vXXXX {
  template <class... Types>
  class variant {
  public:

    // ?.3.1 Constructors
    constexpr variant() noexcept(see below);
    variant(const variant&) noexcept(see below);
    variant(variant&&) noexcept(see below);

    template <class T> constexpr variant(T&&) noexcept(see below);

    template <class T, class... Args>
      constexpr explicit variant(in_place_type_t<T>, Args&&...);
    template <class T, class U, class... Args>
      constexpr explicit variant(in_place_type_t<T>, initializer_list<U>, Args&&...);

    template <size_t I, class... Args>
      constexpr explicit variant(in_place_index_t<I>, Args&&...);
    template <size_t I, class U, class... Args>
      constexpr explicit variant(in_place_index_t<I>, initializer_list<U>, Args&&...);

    // allocator-extended constructors
    template <class Alloc>
      variant(allocator_arg_t, const Alloc&);
    template <class Alloc>
      variant(allocator_arg_t, const Alloc& a, const variant&);
    template <class Alloc>
      variant(allocator_arg_t, const Alloc& a, variant&&);
    template <class Alloc, class T>
      variant(allocator_arg_t, const Alloc&, T&&);
    template <class Alloc, class T, class... Args>
      variant(allocator_arg_t, const Alloc&, in_place_type_t<T>, Args&&...);
    template <class Alloc, class T, class U, class... Args>
      variant(allocator_arg_t, const Alloc&, in_place_type_t<T>, initializer_list<U>, Args&&...);
    template <class Alloc, size_t I, class... Args>
      variant(allocator_arg_t, const Alloc&, in_place_index_t<I>, Args&&...);
    template <class Alloc, size_t I, class U, class... Args>
      variant(allocator_arg_t, const Alloc&, in_place_index_t<I>, initializer_list<U>, Args&&...);

    // ?.3.2, Destructor
    ~variant();

    // ?.3.3, Assignment
    variant& operator=(const variant&);
    variant& operator=(variant&&) noexcept(see below);

    template <class T> variant& operator=(T&&) noexcept(see below);

    // ?.3.4, Modifiers
    template <class T, class... Args> void emplace(Args&&...);
    template <class T, class U, class... Args>
      void emplace(initializer_list<U>, Args&&...);
    template <size_t I, class... Args> void emplace(Args&&...);
    template <size_t I, class U, class... Args>
      void emplace(initializer_list<U>, Args&&...);

    // ?.3.5, Value status
    constexpr bool valueless_by_exception() const noexcept;
    constexpr size_t index() const noexcept;

    // ?.3.6, Swap
    void swap(variant&) noexcept(see below);

  private:
    aligned_storage<Unspecified>::type storage; // exposition only
    size_t value_type_index; // exposition only

  };
} // namespace fundamentals_vXXXX
} // namespace experimental
} // namespace std

Any instance of variant at any given time either holds a value of one of its alternative types, or it holds no value. When an instance of variant holds a value of alternative type T, it means that a value of type T, referred to as the variant object's contained value, is allocated within the storage of the variant object. Implementations are not permitted to use additional storage, such as dynamic memory, to allocate the contained value. The contained value shall be allocated in a region of the variant storage suitably aligned for all types in Types.... It is implementation defined whether over-aligned types are supported.

All types in Types... shall be (possibly cv-qualified) object types, (possibly cv-qualified) void, or references. [Note: Implementations could decide to store references in a reference_ wrapper. — end note]

?.3.1 Constructors [variant.ctor]

In the descriptions that follow, let i be in the range [0,sizeof...(Types)), and T_i be the ith type in Types....

constexpr variant() noexcept(see below);

Effects:
Constructs a variant holding a value-initialized value of type T_0.
Postconditions:
valueless_by_exception() is false and index() is 0.
Throws:
Any exception thrown by the value initialization of T_0.
Remarks:
This function shall be constexpr if and only if the value initialization of the alternative type T_0 would satisfy the requirements for a constexpr function. The expression inside noexcept is equivalent to is_nothrow_default_constructible_v<T_0>. This function shall not participate in overload resolution unless is_default_constructible_v<T_0> is true. [Note: see also class monostate. — end note]

variant(const variant& w);

Effects:
If w holds a value, initializes the variant to hold the same alternative as w and direct-initializes the contained value from the value contained in wwith get<j>(w), where j is w.index(). Otherwise, initializes the variant to not hold a value.
Throws:
Any exception thrown by direct-initializing any T_i for all i.
Remarks:
This function shall not participate in overload resolution unless is_copy_constructible_v<T_i> is true for all i.

variant(variant&& w) noexcept(see below);

Effects:
If w holds a value, initializes the variant to hold the same alternative as w and direct-initializes the contained value with std::forward<T_j>(get<j>(w))get<j>(std::move(w)), where j is w.index(). Otherwise, initializes the variant to not hold a value.
Throws:
Any exception thrown by move-constructing any T_i for all i.
Remarks:
The expression inside noexcept is equivalent to the logical AND of is_nothrow_move_constructible_v<T_i> for all i. This function shall not participate in overload resolution unless is_move_constructible_v<T_i> is true for all i.

template <class T> constexpr variant(T&& t) noexcept(see below);

Let T_j be a type that is determined as follows: build an imaginary function FUN(T_i) for each alternative type T_i. The overload FUN(T_j) selected by regular overload resolution for the expression FUN(std::forward<T>(t)) defines the alternative T_j which is the type of the contained value after construction.
Requires:
Builds an imaginary function FUN(T_i) for each alternative type T_i. The expression FUN(std::forward<T>(t)) must be valid according to regular overload resolution, otherwise the program is ill-formed. The selected function FUN(T_j) defines the alternative T_j that will be activated by the call to this constructorwhich is the type of the contained value after construction. [Note:

variant<string, string> v("abc");

is ill-formed, as both alternative types have an equally viable constructor for the argument. — end note]
Effects:
Initializes *this to hold the alternative type T_j as selected by the imaginary function overload resolution described above, and direct-initializes the contained value as if direct-non-list-initializing it with std::forward<T>(t).
Postconditions:
holds_alternative<T_j>(*this) is true, with T_j selected by the imaginary function overload resolution described above.
Throws:
Any exception thrown by the initialization of the selected alternative T_j.
Remarks:
This function shall not participate in overload resolution unless is_same_v<decay_t<T>, variant> is false, unless is_constructible_v<T_j, T&&> is true, and unless the expression FUN(std::forward<T>(t)) (with FUN being the above-mentioned set of imaginary functions) is valid according to regular overload resolutionwell formed. [Note:

variant<string, string> v("abc");

is ill-formed, as both alternative types have an equally viable constructor for the argument. — end note] The expression inside noexcept is equivalent to is_nothrow_constructible_v<T_j, T&&>.
If T_j's selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

template <class T, class... Args> constexpr explicit variant(in_place_type_t<T>, Args&&... args);

Effects:
Initializes the contained value as if constructing an object of type T with the arguments std::forward<Args>(args)....
Postcondition:
holds_alternative<T>(*this) is true.
Throws:
Any exception thrown by calling the selected constructor of T.
Remarks:
This function shall not participate in overload resolution unless there is exactly one occurrence of T in Types... and is_constructible_v<T, Args&&...> is true. If T's selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

template <class T, class U, class... Args> constexpr explicit variant(in_place_type_t<T>, initializer_list<U> il, Args&&... args);

Effects:
Initializes the contained value as if constructing an object of type T with the arguments il, std::forward<Args>(args)....
Postcondition:
holds_alternative<T>(*this) is true.
Throws:
Any exception thrown by calling the selected constructor of T.
Remarks:
This function shall not participate in overload resolution unless there is exactly one occurrences of T in Types... and is_constructible_v<T, initializer_list<U>&, Args&&...> is true. If T's selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

template <size_t I, class... Args> constexpr explicit variant(in_place_index_t<I>, Args&&... args);

Effects:
Initializes the contained value as if constructing an object of type T_I with the arguments std::forward<Args>(args)....
Postcondition:
index() is I.
Throws:
Any exception thrown by calling the selected constructor of T_I.
Remarks:
This function shall not participate in overload resolution unless I is less than sizeof...(Types) and is_constructible_v<T_I, Args&&...> is true. If T_I's selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

template <size_t I, class U, class... Args> constexpr explicit variant(in_place_index_t<I>, initializer_list<U> il, Args&&... args);

Effects:
Initializes the contained value as if constructing an object of type T_I with the arguments il, std::forward<Args>(args)....
Postcondition:
index() is I.
Remarks:
This function shall not participate in overload resolution unless I is less than sizeof...(Types) and is_constructible_v<T_I, initializer_list<U>&, Args&&...> is true. If T_I's selected constructor is a constexpr constructor, this constructor shall be a constexpr constructor.

// allocator-extended constructors
template <class Alloc>
  variant(allocator_arg_t, const Alloc& a);
template <class Alloc>
  variant(allocator_arg_t, const Alloc& a, const variant& v);
template <class Alloc>
  variant(allocator_arg_t, const Alloc& a, variant&& v);
template <class Alloc, class T>
  variant(allocator_arg_t, const Alloc& a, T&& t);
template <class Alloc, class T, class... Args>
  variant(allocator_arg_t, const Alloc& a, in_place_type_t<T>, Args&&... args);
template <class Alloc, class T, class U, class... Args>
  variant(allocator_arg_t, const Alloc& a, in_place_type_t<T>, initializer_list<U> il, Args&&... args);
template <class Alloc, size_t I, class... Args>
  variant(allocator_arg_t, const Alloc& a, in_place_index_t<I>, Args&&... args);
template <class Alloc, size_t I, class U, class... Args>
  variant(allocator_arg_t, const Alloc& a, in_place_index_t<I>, initializer_list<U> il, Args&&... args);

Requires:
Alloc shall meet the requirements for an Allocator (17.6.3.5).
Effects:
Equivalent to the preceding constructors except that the contained value is constructed with uses-allocator construction (20.7.7.2).

?.3.2 Destructor [variant.dtor]

~variant();

Effects:
If valueless_by_exception() is false, destroys the currently contained value.
Remarks:
If is_trivially_destructible_v<T_i> == true for all T_i then this destructor shall be a trivial destructor.

?.3.3 Assignment [variant.assign]

variant& operator=(const variant& rhs);

Effects:

  • If neither *this nor rhs holds a value, there is no effect. Otherwise
  • if *this holds a value but rhs does not, destroys the value contained in *this and sets *this to not hold a value. Otherwise,
  • if index() == rhs.index(), assigns the value contained in rhs to the value contained in *this. Otherwise,
  • copies the value contained in rhs to a temporary, then destroys any value contained in *this. Sets *this to hold the same alternative index as rhs and initializes the value contained in *this as if direct-non-list-initializing an object of type T_j with std::forward<T_j>(TMP), with TMP being the temporary and j being rhs.index().

  • If an exception is thrown during the call to T_j's copy assignment, the state of the contained value is as defined by the exception safety guarantee of T_j's copy assignment; index() will be j.
  • If an exception is thrown during the call to T_j's copy constructor (with j being rhs.index()), *this will remain unchanged.
  • If an exception is thrown during the call to T_j's move constructor, the variant will hold no value.
Returns:
*this.
Postconditions:
index() == rhs.index()
Remarks:
This function shall not participate in overload resolution unless is_copy_constructible_v<T_i> && is_move_constructible_v<T_i> && is_copy_assignable_v<T_i> is true for all i.
  • If an exception is thrown during the call to T_j's copy assignment, the state of the contained value is as defined by the exception safety guarantee of T_j's copy assignment; index() will be j.
  • If an exception is thrown during the call to T_j's copy construction (with j being rhs.index()), *this will remain unchanged.
  • If an exception is thrown during the call to T_j's move construction, the variant will hold no value.

variant& operator=(variant&& rhs) noexcept(see below);

Effects:

  • If neither *this nor rhs holds a value, there is no effect. Otherwise
  • if *this holds a value but rhs does not, destroys the value contained in *this and sets *this to not hold a value. Otherwise,
  • if index() == rhs.index(), assigns std::forward<T_j>(get<j>(rhs))get<j>(std::move(rhs)) to the value contained in *this, with j being index(). Otherwise,
  • destroys any value contained in *this. Sets *this to hold the same alternative index as rhs and initializes the value contained in *this as if direct-non-list-initializing an object of type T_j with std::forward<T_j>(get<j>(rhs))get<j>(rhs) with j being rhs.index().

If an exception is thrown during the call to T_j's move constructorion (with j being rhs.index()), the variant will hold no value. If an exception is thrown during the call to T_j's move assignment, the state of the contained value is as defined by the exception safety guarantee of T_j's move assignment; index() will be j.
Returns:
*this.
Remarks:
This function shall not participate in overload resolution unless is_move_constructible_v<T_i> && is_move_assignable_v<T_i> is true for all i. The expression inside noexcept is equivalent to: is_nothrow_move_constructible_v<T_i> && is_nothrow_move_assignable_v<T_i> for all i. If an exception is thrown during the call to T_j's move constructorion (with j being rhs.index()), the variant will hold no value. If an exception is thrown during the call to T_j's move assignment, the state of the contained value is as defined by the exception safety guarantee of T_j's move assignment; index() will be j.

template <class T> variant& operator=(T&& t) noexcept(see below);

Let T_j be a type that is determined as follows: build an imaginary function FUN(T_i) for each alternative type T_i. The overload FUN(T_j) selected by regular overload resolution for the expression FUN(std::forward<T>(t)) defines the alternative T_j which is the type of the contained value after assignment.
Requires:
Builds an imaginary function FUN(T_i) for each alternative type T_i. The expression FUN(std::forward<T>(t)) must be valid according to regular overload resolution, otherwise the program is ill-formed. The selected function FUN(T_j) defines the alternative T_j that will be activated by the assignmentwhich is the type of the contained value after assignment. [Note:

variant<string, string> v;
v = "abc";

is ill-formed, as both alternative types have an equally viable constructor for the argument. — end note]
Effects:
No effect if decay_t<T>(t) is void. If *this holds a T_j, assigns std::forward<T>(t) to the value contained in *this. Otherwise, destroys any value contained in *this, sets *this to hold the alternative type T_j as selected by the imaginary function overload resolution described above, and direct-initializes the contained value as if direct-non-list-initializing it with std::forward<T>(t).
If an exception is thrown during the assignment of std::forward<T>(t) to the value contained in *this, the state of the contained value and t are as defined by the exception safety guarantee of the assignment expression; valueless_by_exception() will be false. If an exception is thrown during the initialization of the contained value, the variant object willmight not hold a value.
Postcondition:
holds_alternative<T_j>(*this) is true, with T_j selected by the imaginary function overload resolution described above.
Returns:
*this.
Remarks:
This function shall not participate in overload resolution unless is_same_v<decay_t<T>, variant> is false, unless is_assignable_v<T_j&, T&&> && is_constructible_v<T_j, T&&> is true, and unless the expression FUN(std::forward<T>(t)) (with FUN being the above-mentioned set of imaginary functions) is valid according to regular overload resolutionwell formed. [Note:

variant<string, string> v;
v = "abc";

is ill-formed, as both alternative types have an equally viable constructor for the argument. — end note]
The expression inside noexcept is equivalent to: is_nothrow_assignable_v<T_ij&, T&&> && is_nothrow_constructible_v<T_ij, T&&> for all i. If an exception is thrown during the assignment of std::forward<T>(t) to the value contained in *this, the state of the contained value and t are as defined by the exception safety guarantee of the assignment expression; valueless_by_exception() will be false. If an exception is thrown during the initialization of the contained value, the variant object willmight not hold a value.

?.3.4 Modifiers [variant.mod]

template <class T, class... Args> void emplace(Args&&... args);

Effects:
Destroys the currently contained value if valueless_by_exception() is false. Then direct-initializes the contained value as if constructing a value of type T with the arguments std::forward<Args>(args).... Equivalent to emplace<I>(std::forward<Args>(args)...) where I is the zero-based index of T in Types.... If an exception is thrown during the initialization of the contained value, the variant willmight not hold a value.
Postcondition:
holds_alternative<T>(*this) is true.
Throws:
Any exception thrown during the initialization of the contained value.
Remarks:
This function shall not participate in overload resolution unless is_constructible_v<T, Args&&...> is true, and T occurs exactly once in Types....

template <class T, class U, class... Args> void emplace(initializer_list<U> il, Args&&... args);

Effects:
Destroys the currently contained value if valueless_by_exception() is false. Then direct-initializes the contained value as if constructing an object of type T with the arguments il, std::forward<Args>(args).... Equivalent to emplace<I>(il, std::forward<Args>(args)...) where I is the zero-based index of T in Types.... If an exception is thrown during the initialization of the contained value, the variant willmight not hold a value.
Postcondition:
holds_alternative<T>(*this) is true.
Throws:
Any exception thrown during the initialization of the contained value.
Remarks:
This function shall not participate in overload resolution unless is_constructible_v<T, initializer_list<U>&, Args&&...> is true, and T occurs exactly once in Types....

template <size_t I, class... Args> void emplace(Args&&... args);

Requires:
I < sizeof...(Types)
Effects:
Destroys the currently contained value if valueless_by_exception() is false. Then direct-initializes the contained value as if constructing a value of type T_I with the arguments std::forward<Args>(args).... If an exception is thrown during the initialization of the contained value, the variant willmight not hold a value.
Postcondition:
index() is I.
Throws:
Any exception thrown during the initialization of the contained value.
Remarks:
This function shall not participate in overload resolution unless is_constructible_v<T_I, Args&&...> is true. If an exception is thrown during the initialization of the contained value, the variant willmight not hold a value.

template <size_t I, class U, class... Args> void emplace(initializer_list<U> il, Args&&... args);

Requires:
I < sizeof...(Types)
Effects:
Destroys the currently contained value if valueless_by_exception() is false. Then direct-initializes the contained value as if constructing an object of type T_I with the arguments il, std::forward<Args>(args).... If an exception is thrown during the initialization of the contained value, the variant willmight not hold a value.
Postcondition:
index() is I.
Throws:
Any exception thrown during the initialization of the contained value.
Remarks:
This function shall not participate in overload resolution unless is_constructible_v<T_I, initializer_list<U>&, Args&&...> is true. If an exception is thrown during the initialization of the contained value, the variant willmight not hold a value.

?.3.5 Value status [variant.status]

constexpr bool valueless_by_exception() const noexcept;

Effects:
Returns false if and only if the variant holds a value whether the variant holds a value (returns false). [Note: A variant willmight not hold a value if an exception is thrown during a type-changing assignment or emplacement. The latter means that even a variant<float,int> can become valueless_by_exception(), for instance by

struct S { operator int() { throw 42; }};
variant<float, int> v{12.f};
v.emplace<1>(S());
— end note]

constexpr size_t index() const noexcept;

Effects:
If valueless_by_exception() is true, returns variant_npos. Otherwise, returns the zero-based index of the currently active alternative of the contained value.

?.3.6 Swap [variant.swap]

void swap(variant& rhs) noexcept(see below);

Effects:

  • if valueless_by_exception() && rhs.valueless_by_exception() no effect. Otherwise,
  • if index() == rhs.index(), calls swap(get<i>(*this), get<i>(rhs)) where i is index(). Otherwise,
  • exchanges values of rhs and *this.

If an exception is thrown during the call to function swap(get<i>(*this), get<i>(rhs)), the states of the contained values of *this and of rhs are determined by the exception safety guarantee of swap for lvalues of T_i with i being index(). If an exception is thrown during the exchange of the values of *this and rhs, the states of the values of *this and of rhs are determined by the exception safety guarantee of variant's move constructor and move assignment operator.
Throws:
Any exception thrown by swap(get<i>(*this), get<i>(rhs)) with i being index() or variant's move constructor and move assignment operator.
Remarks:
This function shall not participate in overload resolution unless is_swappable_v<T_i> is true for all iall alternative types satisfy the Swappable requirements (17.6.3.2) with the corresponding alternative in rhs. If an exception is thrown during the call to function swap(get<i>(*this), get<i>(rhs)), the states of the contained values of *this and of rhs are determined by the exception safety guarantee of swap for lvalues of T_i with i being index(). If an exception is thrown during the exchange of the values of *this and rhs, the states of the values of *this and of rhs are determined by the exception safety guarantee of variant's move constructor and move assignment operator.

?.4 In-place construction [variant.in_place]

template <class T> struct in_place_type_t{ explicit in_place_type_t() = default; };
template <class T> constexpr in_place_type_t<T> in_place_type{};
template <size_t I> struct in_place_index_t{ explicit in_place_index_t() = default; };
template <size_t I> constexpr in_place_index_t<I> in_place_index{};

Template specializations of in_place_type_t are empty structure types used as unique types to disambiguate constructor overloading. They signal (through the template parameter) the alternative to be constructed. Specifically, variant has a constructor with in_place_type_t<T> as the first argument followed by an argument pack; this indicates that T should be constructed in-place (as if by a call to a placement new expression) with the forwarded argument pack as parameters. If a variant's Types... has multiple occurrences of T, in_place_index_t must be used.

Template specializations of in_place_index_t are empty structure types used as unique types to disambiguate constructor overloading, and signaling (through the template parameter) the alternative to be constructed. Specifically, variant has a constructor with in_place_index_t<I> as the first argument followed by an argument pack; this indicates that T_I should be constructed in-place (as if by a call to a placement new expression) with the forwarded argument pack as parameters.

?.5 Value access [variant.get]

template <class T, class... Types> constexpr bool holds_alternative(const variant<Types...>& v) noexcept;

Requires:
The type T occurs exactly once in Types.... Otherwise, the program is ill-formed.
Returns:
true if index() is equal to the zero-based index of T in Types....

template <size_t I, class... Types>
  constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>>& get(variant<Types...>& v);
template <size_t I, class... Types>
  constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>>&& get(variant<Types...>&& v); // Note A
template <size_t I, class... Types>
  constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>> const& get(const variant<Types...>& v); // Note B
template <size_t I, class... Types>
  constexpr tuple_element_tvariant_alternative_t<I, variant<Types...>> const&& get(const variant<Types...>&& v); // Notes A and B

Requires:
I < sizeof...(Types), and T_I is not (possibly cv-qualified) void. Otherwise the program is ill-formed.
Effects:
If v.index() is I, returns a reference to the object stored in the variant. Otherwise, throws an exception of type bad_variant_access.
[Note A:
if T_I is some reference type X&, the return type is X&, not X&&. However, if the element type is a non-reference type T, the return type is T&&. — end note]
[Note B:
Constness is shallow. If T_I is some reference type X&, the return type is X&, not const X&. However, if the element type is non-reference type T, the return type is const T&. This is consistent with how constness is defined to work for member variables of reference type. — end note]

template <class T, class... Types> constexpr T& get(variant<Types...>& v);
template <class T, class... Types> constexpr T&& get(variant<Types...>&& v);
template <class T, class... Types> constexpr const T& get(const variant<Types...>& v);
template <class T, class... Types> constexpr const T&& get(const variant<Types...>&& v);

Requires:
The type T occurs exactly once in Types..., and T is not (possibly cv-qualified) void. Otherwise, the program is ill-formed.
Effects:
If v holds a value of type T, returns a reference to that value. Otherwise, throws an exception of type bad_variant_access.

template <size_t I, class... Types>
  constexpr add_pointer_t<tuple_element_tvariant_alternative_t<I, variant<Types...>>> get_if(variant<Types...>* v) noexcept;
template <size_t I, class... Types>
  constexpr add_pointer_t<const tuple_element_tvariant_alternative_t<I, variant<Types...>>> get_if(const variant<Types...>* v) noexcept;

Requires:
I < sizeof...(Types) and T_I is not (possibly cv-qualified) void; otherwise the program is ill-formed.
Returns:
A pointer to the value stored in the variant, if v != nullptr and v->index() == I. Otherwise, returns nullptr.

template <class T, class... Types>
  constexpr add_pointer_t<T> get_if(variant<Types...>* v) noexcept;
template <class T, class... Types>
  constexpr add_pointer_t<const T> get_if(const variant<Types...>* v) noexcept;

Requires:
The type T occurs exactly once in Types..., and T is not (possibly cv-qualified) void. Otherwise, the program is ill-formed.
Effects:
Equivalent to return get_if<i>(v) with i being the zero-based index of T in Types....

?.6 Relational operators [variant.relops]

template <class... Types> constexpr bool operator==(const variant<Types...>& v, const variant<Types...>& w);

Requires:
get<i>(v) == get<i>(w) is a valid expression returning a type that is convertible to bool, for all i.
Effects:
Equivalent to return (v.valueless_by_exception() && w.valueless_by_exception()) || (v.index() == w.index() && get<i>(v) == get<i>(w)) with i being v.index(), otherwise false.

template <class... Types> constexpr bool operator!=(const variant<Types...>& v, const variant<Types...>& w);

ReturnsEffects:
Equivalent to return !(v == w).

template <class... Types> constexpr bool operator<(const variant<Types...>& v, const variant<Types...>& w);

Requires:
get<i>(v) < get<i>(w) is a valid expression returning a type that is convertible to bool, for all i.
Effects:
Equivalent to return (v.index() < w.index()) || (v.index() == w.index() && !v.valueless_by_exception() && get<i>(v) < get<i>(w)) with i being v.index(), otherwise false.

template <class... Types> constexpr bool operator>(const variant<Types...>& v, const variant<Types...>& w);

ReturnsEffects:
Equivalent to return w < v.

template <class... Types> constexpr bool operator<=(const variant<Types...>& v, const variant<Types...>& w);

ReturnsEffects:
Equivalent to return !(v > w).

template <class... Types> constexpr bool operator>=(const variant<Types...>& v, const variant<Types...>& w);

ReturnsEffects:
Equivalent to return !(v < w).

?.7 Visitation [variant.visit]

template <class Visitor, class... Variants>
  constexpr see below visit(Visitor&& vis, Variants&&... vars);

Requires:
The expression in the Effects element must be a valid expression of the same type and value category, for all combinations of alternative types of all variants. Otherwise, the program is ill-formed.
Effects:
Let is... be vars.index().... Returns INVOKE(forward<Visitor>(vis), get<is>(forward<Variants>(vars))...);.
Remarks:
The return type is the common_typecommon type of all possible INVOKE expressions of the Effects element.
Throws:
bad_variant_access if any variant in vars is valueless_by_exception().
Complexity:
For sizeof...(Variants) <= 1, the invocation of the callable object must be implemented in constant time, i.e. it must not depend on sizeof...(Types). For sizeof...(Variants) > 1, the invocation of the callable object has no complexity requirements.

?.8 Class monostate [variant.monostate]


struct monostate{};

The class monostate can serve as a first alternative type for a variant to make the variant type default constructible.

?.9 monostate relational operators [variant.monostate.relops]

constexpr bool operator<(monostate, monostate) noexcept { return false; }
constexpr bool operator>(monostate, monostate) noexcept { return false; }
constexpr bool operator<=(monostate, monostate) noexcept { return true; }
constexpr bool operator>=(monostate, monostate) noexcept { return true; }
constexpr bool operator==(monostate, monostate) noexcept { return true; }
constexpr bool operator!=(monostate, monostate) noexcept { return false; }

[Note:
monostate object have only a single state; they thus always compare equal.— end note]

?.10 Specialized algorithms [variant.specalg]

template <class... Types> void swap(variant<Types...>& v, variant<Types...>& w) noexcept(see below);

Effects:
CallsEquivalent to v.swap(w).
Remarks:
The expression inside noexcept is equivalent to noexcept(v.swap(w)).

?.11 Class bad_variant_access [variant.bad_variant_access]


class bad_variant_access : public exception {
public:
  bad_variant_access() noexcept;
  virtual const char* what() const noexcept;
};

Objects of type bad_variant_access are thrown to report invalid accesses to the value of a variant object.

bad_variant_access() noexcept;

Effects:
Constructs a bad_variant_access object.
Postconditions:
what() returns an implementation-defined NTBS.

const char* what() const noexcept override;

Returns:
an implementation-defined NTBS.

?.12 tuple interface to class template variantvariant helper classes [variant.tuple][variant.helper]

template <class T> struct variant_size;

Remarks:
All specializations of variant_size<T> shall meet the UnaryTypeTrait requirements (20.10.1) with a BaseCharacteristic of integral_constant<size_t, N> for some N.

template <class T> class variant_size<const T>;
template <class T> class variant_size<volatile T>;
template <class T> class variant_size<const volatile T>;

Let VS denote variant_size<T> of the cv-unqualified type T. Then each of the three templates shall meet the UnaryTypeTrait requirements (20.10.1) with a BaseCharacteristic of integral_constant<size_t, VS::value>.

template <class... Types>
struct tuple_sizevariant_size<variant<Types...>>
  : integral_constant<size_t, sizeof...(Types)> { };

template <size_t I, class T> class variant_alternative<I, const T>;
template <size_t I, class T> class variant_alternative<I, volatile T>;
template <size_t I, class T> class variant_alternative<I, const volatile T>;

Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then each of the three templates shall meet the TransformationTrait requirements (20.10.1) with a member typedef type that names the following type:
  • for the first specialization, add_const_t<VA::type>,
  • for the second specialization, add_volatile_t<VA::type>, and
  • for the third specialization, add_cv_t<VA::type>.

tuple_elementvariant_alternative<I, variant<Types...>>::type

Requires:
I < sizeof...(Types)
Value:
The type T_I.

?.13 Hash support [variant.hash]

template <class... Types> struct hash<experimental::variant<Types...>>;

The template specialization hash<T> shall meet the requirements of class template hash (C++14 §20.9.13) for all T in Types.... The template specialization hash<experimental::variant<Types...>> shall meet the requirements of class template hash.

template <> struct hash<experimental::monostate>;

The template specialization hash<experimental::monostate> shall meet the requirements of class template hash.

?.14 Allocator-related traits [variant.traits]

template <class... Types, class Alloc>
  struct uses_allocator<experimental::variant<Types...>, Alloc> : true_type { };

Requires:
Alloc shall be an Allocator (17.6.3.5).
[Note:
Specialization of this trait informs other library components that variant can be constructed with an allocator, even though it does not have a nested allocator_type. — end note]

Conclusion

A variant has proven to be a useful tool. This paper proposes the necessary ingredients.

Acknowledgments

Thank you, Nevin ":-)" Liber, for bringing sanity to this proposal. Agustín K-ballo Bergé and Antony Polukhin provided very valuable feedback, criticism and suggestions. Thanks also to Vincenzo Innocente and Philippe Canal for their comments.

References

1. Working Draft, Technical Specification on C++ Extensions for Library Fundamentals. N4335

2. Improving pair and tuple, revision 2. N4064