ISO/IEC JTC1 SC22 WG21 N4087 - 2014-07-01
Reply-to:
Łukasz Mendakiewicz <lukaszme@microsoft.com>
Herb Sutter <hsutter@microsoft.com>
Revision 3 incorporates the feedback received in Rapperswil from LEWG and some other minor fixes:
initializer_list
constructors in index
and bounds
— the size of the initializer_list
cannot always be verified at the compile-time, so the check must be expressed as "Requires" instead of SFINAE.initializer_list
constructor, as the former might reject the wrong number of arguments in the compile time. We have found that while we can almost fully emulate the behavior of e.g. index<2>{1,2}
implemented as "initializer_list
with constrained size", the solution comes with the cost of high complexity in specifying the intended behavior — basically duplicating the language rules in the library. It would probably also be fragile if any of the language rules change. Ultimately we have decided that the added diagnosability benefit is not worth the cost.operator-
and operator-=
in index
and bounds
to avoid negating rhs
.(const_)iterator
type aliases in bounds
.array_view(bounds_type bounds, pointer ptr)
specification.bounds_iterator::operator++
specification.Made array_view(Viewable&&)
and array_view(ArrayType&)
constructors not "explicit".array_view(bounds_type bounds, pointer ptr)
constructor not to be "noexcept".index
and bounds
arithmetic operators from accepting any ArithmeticType
to only value_type
/ptrdiff_t
.array_view
constructors so that all conversions between related array_view
s can be noexcept
.Thanks to Stephan T. Lavavej and the members of LEWG for the suggested improvements. Thanks to the interlocutors at ISO C++ Standard - Future Proposals forum for the valuable feedback. Thanks to all correspondents expressing feedback in private emails.
The proposed wording changes are relative to the contents of N3936.
Edit within paragraph 2 as follows.
The C++ standard library provides
5355 C++ library headers, as shown in Table 14.
Add the following items to table 14.
<array_view>
<coordinate>
Add a row to table 44 as follows.
Table 44: General utilities library summary Subclause Header(s) 20.2 Utility components <utility>
20.3 Pairs <utility>
20.4 Tuples <tuple>
20.5 Compile-time integer sequences <utility>
20.6 Multidimensional coordinates <coordinate>
20. 67 Fixed-size sequences of bits<bitset>
<memory>20. 78 Memory<cstdlib>
<cstring>20. 89 Smart pointers<memory>
20. 910 Function objects<functional>
20. 1011 Type traits<type_traits>
20. 1112 Compile-time rational arithmetic<ratio>
20. 1213 Time utilities<chrono>
<ctime>20. 1314 Scoped allocators<scoped_allocator>
20. 1415 Type indexes<typeindex>
Add a new section after the intseq
section.
Add a new section:
This subclause describes the multidimensional coordinates library. It provides a class template
index
which represents a mathematical vector in an N-dimensional discrete space, a class templatebounds
which represents axis-aligned rectangular bounds in such a space, and a class templatebounds_iterator
which allows iteration over such a space.
Add a new synopsis:
Header
<coordinate>
synopsis#include <initializer_list> namespace std { // [coord.index], class template index template <int Rank> class index; // [coord.index.arith], index arithmetic template <int Rank> constexpr index<Rank> operator*(ptrdiff_t v, const index<Rank>& rhs); // [coord.bounds], class template bounds template <int Rank> class bounds; // [coord.bounds.arith], bounds arithmetic template <int Rank> constexpr bounds<Rank> operator+(const index<Rank>& lhs, const bounds<Rank>& rhs); template <int Rank> constexpr bounds<Rank> operator*(ptrdiff_t v, const bounds<Rank>& rhs); // [coord.bounds.iterator], class template bounds_iterator template <int Rank> class bounds_iterator; template <int Rank> bounds_iterator<Rank> operator+(typename bounds_iterator<Rank>::difference_type n, const bounds_iterator<Rank>& rhs); }
index
[coord.index]Add a new section:
namespace std { template <int Rank> class index { public: // constants and types static constexpr int rank = Rank; using reference = ptrdiff_t&; using const_reference = const ptrdiff_t&; using size_type = size_t; using value_type = ptrdiff_t; // [coord.index.cnstr], index construction constexpr index() noexcept; constexpr index(value_type v) noexcept; constexpr index(initializer_list<value_type> il); // [coord.index.eq], index equality constexpr bool operator==(const index& rhs) const noexcept; constexpr bool operator!=(const index& rhs) const noexcept; // [coord.index.cmpt], index component access constexpr reference operator[](size_type n); constexpr const_reference operator[](size_type n) const; // [coord.index.arith], index arithmetic constexpr index operator+(const index& rhs) const; constexpr index operator-(const index& rhs) const; constexpr index& operator+=(const index& rhs); constexpr index& operator-=(const index& rhs); constexpr index& operator++(); constexpr index operator++(int); constexpr index& operator--(); constexpr index operator--(int); constexpr index operator+() const noexcept; constexpr index operator-() const; constexpr index operator*(value_type v) const; constexpr index operator/(value_type v) const; constexpr index& operator*=(value_type v); constexpr index& operator/=(value_type v); }; }
Add a new section:
If
Rank
is less than 1 the program is ill-formed.
Add a new section:
constexpr index() noexcept;
Effects: Zero-initializes each component.
constexpr index(value_type v) noexcept;
Effects: Initializes the 0th component of
*this
withv
.Remarks: This constructor shall not participate in overload resolution unless
Rank
is 1.
constexpr index(initializer_list<value_type> il);
Requires:
il.size() == Rank
.Effects: For all i in the range
[0, Rank)
, initializes the ith component of*this
with*(il.begin() + i)
.
Add a new section:
constexpr bool operator==(const index& rhs) const noexcept;
Returns:
true
if(*this)[i] == rhs[i]
for alli
in the range[0, Rank)
, otherwisefalse
.
constexpr bool operator!=(const index& rhs) const noexcept;
Returns:
!(*this == rhs)
.
Add a new section:
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
Requires:
n < Rank
.Returns: A reference to the
n
th component of*this
.
Add a new section:
constexpr index operator+(const index& rhs) const;
Returns:
index<Rank>{*this} += rhs
.
constexpr index operator-(const index& rhs) const;
Returns:
index<Rank>{*this} -= rhs
.
constexpr index& operator+=(const index& rhs);
Effects: For all i in the range
[0, Rank)
, adds the ith component ofrhs
to the ith component of*this
and stores the sum in the ith component of*this
.Returns:
*this
.
constexpr index& operator-=(const index& rhs);
Effects: For all i in the range
[0, Rank)
, subtracts the ith component ofrhs
from the ith component of*this
and stores the difference in the ith component of*this
.Returns:
*this
.
constexpr index& operator++();
Requires:
Rank == 1
.Effects:
++(*this)[0]
.Returns:
*this
.
constexpr index operator++(int);
Requires:
Rank == 1
.Returns:
index<Rank>{(*this)[0]++}
.
constexpr index& operator--();
Requires:
Rank == 1
.Effects:
--(*this)[0]
.Returns:
*this
.
constexpr index operator--(int);
Requires:
Rank == 1
.Returns:
index<Rank>{(*this)[0]--}
.
constexpr index operator+() const noexcept;
Returns:
*this
.
constexpr index operator-() const;
Returns: A copy of
*this
with each component negated.
constexpr index operator*(value_type v) const;
Returns:
index<Rank>{*this} *= v
.
constexpr index operator/(value_type v) const;
Returns:
index<Rank>{*this} /= v
.
constexpr index& operator*=(value_type v);
Effects: For all i in the range
[0, Rank)
, multiplies the ith component of*this
byv
and stores the product in the ith component of*this
.Returns:
*this
.
constexpr index& operator/=(value_type v);
Effects: For all i in the range
[0, Rank)
, divides the ith component of*this
byv
and stores the quotient in the ith component of*this
.Returns:
*this
.
template <int Rank> constexpr index<Rank> operator*(ptrdiff_t v, const index<Rank>& rhs);
Returns:
index<Rank>{rhs} *= v
.
bounds
[coord.bounds]Add a new section:
namespace std { template <int Rank> class bounds { public: // constants and types static constexpr int rank = Rank; using reference = ptrdiff_t&; using const_reference = const ptrdiff_t&; using iterator = bounds_iterator<Rank>; using const_iterator = bounds_iterator<Rank>; using size_type = size_t; using value_type = ptrdiff_t; // [coord.bounds.cnstr], bounds construction constexpr bounds() noexcept; constexpr bounds(value_type v); constexpr bounds(initializer_list<value_type> il); // [coord.bounds.eq], bounds equality constexpr bool operator==(const bounds& rhs) const noexcept; constexpr bool operator!=(const bounds& rhs) const noexcept; // [coord.bounds.obs], bounds observers constexpr size_type size() const noexcept; constexpr bool contains(const index<Rank>& idx) const noexcept; // [coord.bounds.iter], bounds iterators const_iterator begin() const noexcept; const_iterator end() const noexcept; // [coord.bounds.cmpt], bounds component access constexpr reference operator[](size_type n); constexpr const_reference operator[](size_type n) const; // [coord.bounds.arith], bounds arithmetic constexpr bounds operator+(const index<Rank>& rhs) const; constexpr bounds operator-(const index<Rank>& rhs) const; constexpr bounds& operator+=(const index<Rank>& rhs); constexpr bounds& operator-=(const index<Rank>& rhs); constexpr bounds operator*(value_type v) const; constexpr bounds operator/(value_type v) const; constexpr bounds& operator*=(value_type v); constexpr bounds& operator/=(value_type v); }; }
Add a new section:
If
Rank
is less than 1 the program is ill-formed.Every mutating operation on an object
b
of typebounds
shall leave the object in a state that satisfies the following constraints:
b[i] >= 0
for alli
in the range[0, Rank)
.- The product of
b[i]
for alli
in the range[0, Rank)
is less than or equal tonumeric_limits<ptrdiff_t>::max()
.Otherwise, the behavior is undefined.
Add a new section:
constexpr bounds() noexcept;
Effects: Zero-initializes each component.
constexpr bounds(value_type v);
Effects: Initializes the 0th component of
*this
withv
.Remarks: This constructor shall not participate in overload resolution unless
Rank
is 1.
constexpr bounds(initializer_list<value_type> il);
Requires:
il.size() == Rank
.Effects: For all i in the range
[0, Rank)
, initializes the ith component of*this
with*(il.begin() + i)
.
Add a new section:
constexpr bool operator==(const bounds& rhs) const noexcept;
Returns:
true
if(*this)[i] == rhs[i]
for alli
in the range[0, Rank)
, otherwisefalse
.
constexpr bool operator!=(const bounds& rhs) const noexcept;
Returns:
!(*this == rhs)
.
Add a new section:
constexpr size_type size() const noexcept;
Returns: The product of all components of
*this
.
constexpr bool contains(const index<Rank>& idx) const noexcept;
Returns:
true
if0 <= idx[i]
andidx[i] < (*this)[i]
for alli
in the range[0, Rank)
, otherwisefalse
.
Add a new section:
bounds_iterator<Rank> begin() const noexcept;
Returns: A
bounds_iterator
referring to the first element of the space defined by*this
such that*begin() == index<Rank>{}
ifsize() != 0
,begin() == end()
otherwise.
bounds_iterator<Rank> end() const noexcept;
Returns: A
bounds_iterator
which is the past-the-end iterator for the space defined by*this
.
Add a new section:
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
Requires:
n < Rank
.Returns: A reference to the
n
th component of*this
.
Add a new section:
constexpr bounds operator+(const index<Rank>& rhs) const;
Returns:
bounds<Rank>{*this} += rhs
.
constexpr bounds operator-(const index<Rank>& rhs) const;
Returns:
bounds<Rank>{*this} -= rhs
.
constexpr bounds& operator+=(const index<Rank>& rhs);
Effects: For all i in the range
[0, Rank)
, adds the ith component ofrhs
to the ith component of*this
and stores the sum in the ith component of*this
.Returns:
*this
.
constexpr bounds& operator-=(const index<Rank>& rhs);
Effects: For all i in the range
[0, Rank)
, subtracts the ith component ofrhs
from the ith component of*this
and stores the difference in the ith component of*this
.Returns:
*this
.
constexpr bounds operator*(value_type v) const;
Returns:
bounds<Rank>{*this} *= v
.
constexpr bounds operator/(value_type v) const;
Returns:
bounds<Rank>{*this} /= v
.
constexpr bounds& operator*=(value_type v);
Effects: For all i in the range
[0, Rank)
, multiplies the ith component of*this
byv
and stores the product in the ith component of*this
.Returns:
*this
.
constexpr bounds& operator/=(value_type v);
Effects: For all i in the range
[0, Rank)
, divides the ith component of*this
byv
and stores the quotient in the ith component of*this
.Returns:
*this
.
template <int Rank> constexpr bounds<Rank> operator+(const index<Rank>& lhs, const bounds<Rank>& rhs);
Returns:
bounds<Rank>{rhs} += lhs
.
template <int Rank> constexpr bounds<Rank> operator*(ptrdiff_t v, const bounds<Rank>& rhs);
Returns:
bounds<Rank>{rhs} *= v
.
bounds_iterator
[coord.bounds.iterator]Add a new section:
namespace std { template <int Rank> class bounds_iterator { public: using iterator_category = random_access_iterator_tag; using value_type = index<Rank>; using difference_type = ptrdiff_t; using pointer = unspecified; // See [coord.bounds.iterator.require] using reference = const index<Rank>; bool operator==(const bounds_iterator& rhs) const; bool operator!=(const bounds_iterator& rhs) const; bool operator<(const bounds_iterator& rhs) const; bool operator<=(const bounds_iterator& rhs) const; bool operator>(const bounds_iterator& rhs) const; bool operator>=(const bounds_iterator& rhs) const; bounds_iterator& operator++(); bounds_iterator operator++(int); bounds_iterator& operator--(); bounds_iterator operator--(int); bounds_iterator operator+(difference_type n) const; bounds_iterator& operator+=(difference_type n); bounds_iterator operator-(difference_type n) const; bounds_iterator& operator-=(difference_type n); difference_type operator-(const bounds_iterator& rhs) const; reference operator*() const; pointer operator->() const; reference operator[](difference_type n) const; private: bounds<Rank> bnd_; // exposition only index<Rank> idx_; // exposition only }; }
Add a new section:
If
Rank
is less than 1 the program is ill-formed.
pointer
shall be an unspecified type such that for abounds_iterator it
the expressionit->E
is equivalent to(*it).E
and that for an objectp
of typepointer
the expressionp->E
yields the same result irrespective of whether the state of thebounds_iterator
object has changed or its lifetime has ended.
Add a new section:
Unless otherwise specified below, the member functions of
bounds_iterator
adhere to the operational semantics in Tables 107, 109, 110, and 111.
bool operator==(const bounds_iterator& rhs) const;
Requires:
*this
andrhs
are iterators over the samebounds
object.Returns:
idx_ == rhs.idx_
.
bounds_iterator& operator++();
Requires:
*this
is not the past-the-end iterator.Effects: Equivalent to:
for(auto i = Rank - 1; i >= 0; --i) { if(++idx_[i] < bnd_[i]) return; idx_[i] = 0; } idx_ = unspecified past-the-end value;
Returns:
*this
.[Note: The effective iteration order is congruent with iterating over a multidimensional array starting with the least significant dimension. —end note]
bounds_iterator& operator--();
Requires: There exists a
bounds_iterator<Rank> it
such that*this == ++it
.Effects:
*this = it
.Returns:
*this
.
reference operator*() const;
Returns:
idx_
.
Edit within paragraph 2 as follows.
The following subclauses describe container requirements,
andcomponents for sequence containers and associative containers, and views, as summarized in Table 95.
Add a row to table 95 as follows.
Table 95: Containers library summary Subclause Header(s) 23.2 Requirements 23.3 Sequence containers <array>
<deque>
<forward_list>
<list>
<vector>23.4 Associative containers <map>
<set>23.5 Unordered associative containers <unordered_map>
<unordered_set>23.6 Container adaptors <queue>
<stack>23.7 Views <array_view>
Add a new section after the container.adaptors
section.
Add a new section:
The header
<array_view>
defines the viewsarray_view
andstrided_array_view
.The objects in any valid range [ptr, ptr + size) are uniformly strided for a specific N-dimensional logical representation V parameterized by an N-dimensional vector stride if for every element in V the mapping between the location in V expressed as an N-dimensional vector idx and the address of the corresponding object in [ptr, ptr + size) can be computed as: ptr + idx · stride.
An
array_view
is a potentially multidimensional view on a sequence of uniformly strided objects of a uniform type, contiguous in the least significant dimension.A
strided_array_view
is a potentially multidimensional view on a sequence of uniformly strided objects of a uniform type.
Add a new synopsis:
Header
<array_view>
synopsisnamespace std { // [arrayview], class template array_view template <class T, int Rank> class array_view; // [stridedarrayview], class template strided_array_view template <class T, int Rank> class strided_array_view; }
Add a new section:
T
shall be an object type. [Note: The type can be cv-qualified, resulting in semantics similar to the semantics of a pointer to cv-qualified type. —end note]If
Rank
is less than 1 the program is ill-formed.Any operation that invalidates a pointer in the range on which a view was created invalidates pointers and references returned from the view's functions.
Define
VIEW_ACCESS(data, idx, stride, rank)
as*(data + offset)
where [Editorial note: The following expression should be formatted as LaTeX code —end note]offset = \sum_{i=0}^{rank - 1} idx_i \times stride_i
, idxi =idx[
i]
, and stridei =stride[
i]
.
array_view
[arrayview]Add a new section:
namespace std { template <class T, int Rank = 1> class array_view { public: // constants and types static constexpr int rank = Rank; using index_type = index<Rank>; using bounds_type = bounds<Rank>; using size_type = size_t; using value_type = T; using pointer = T*; using reference = T&; // [arrayview.cons], array_view constructors, copy, and assignment constexpr array_view() noexcept; template <class Viewable> constexpr array_view(Viewable&& vw); template <class U, int AnyRank> constexpr array_view(const array_view<U, AnyRank>& rhs) noexcept; template <class ArrayType> constexpr array_view(ArrayType& arr) noexcept; template <class U> constexpr array_view(const array_view<U, Rank>& rhs) noexcept; template <class Viewable> constexpr array_view(bounds_type bounds, Viewable&& vw); constexpr array_view(bounds_type bounds, pointer ptr); template <class U> constexpr array_view& operator=(const array_view<U, Rank>& rhs) noexcept; // [arrayview.obs], array_view observers constexpr bounds_type bounds() const noexcept; constexpr size_type size() const noexcept; constexpr index_type stride() const noexcept; constexpr pointer data() const noexcept; // [arrayview.elem], array_view element access constexpr reference operator[](const index_type& idx) const; // [arrayview.subview], array_view slicing and sectioning constexpr array_view<T, Rank - 1> operator[](ptrdiff_t slice) const; // only if Rank > 1 constexpr strided_array_view<T, Rank> section(const index_type& origin, const bounds_type& section_bnd) const; constexpr strided_array_view<T, Rank> section(const index_type& origin) const; }; }
array_view
constructors, copy, and assignment [arrayview.cons]Add a new section:
For the purpose of this subclause,
Viewable
onU
is a type satisfying the requirements set out in Table 104. In these definitions, letv
denote an expression ofViewable
onU
type.
Table 104: Viewable
onU
requirementsExpression Return type Operational semantics v.size()
Convertible to ptrdiff_t
v.data()
Type T*
such thatT*
is implicitly convertible toU*
, andis_same<remove_cv_t<T>, remove_cv_t<U>>::value
istrue
.static_cast<U*>(v.data())
points to a contiguous sequence of at leastv.size()
objects of (possibly cv-qualified) typeremove_cv_t<U>
.[Example: The type
vector<int>
([vector]) meets the requirements of all of the following:Viewable
onint
,Viewable
onconst int
,Viewable
onvolatile int
, andViewable
onconst volatile int
. —end example]
constexpr array_view() noexcept;
Postconditions:
bounds().size() == 0
anddata() == nullptr
.
template <class Viewable> constexpr array_view(Viewable&& vw);
Requires:
vw
shall satisfy the requirements ofViewable
onvalue_type
.Postconditions:
bounds().size() == vw.size()
anddata() == vw.data()
.Remarks: This constructor shall not participate in overload resolution unless
Rank
is 1,Viewable
satisfies the syntactic requirements set in Table 104 forViewable
onvalue_type
, anddecay_t<Viewable>
is notarray_view<U, N>
for anyU
andN
[Footnote: This provision ensures that either the following or the implicit copy constructor — both of which arenoexcept(true)
— will be selected by overload resolution instead. —end footnote].
template <class U, int AnyRank> constexpr array_view(const array_view<U, AnyRank>& rhs) noexcept;
Postconditions:
bounds().size() == rhs.size()
anddata() == rhs.data()
.Remarks: This constructor shall not participate in overload resolution unless
Rank
is 1,is_convertible<add_pointer_t<U>, pointer>::value
istrue
, andis_same<remove_cv_t<U>, remove_cv_t<value_type>>::value
istrue
.
template <class ArrayType> constexpr array_view(ArrayType& arr) noexcept;
Postconditions:
bounds()[i] == extent<ArrayType, i>::value
for alli
in the range[0, Rank)
, anddata()
is equal to the address of the initial element inarr
.Remarks: This constructor shall not participate in overload resolution unless
is_convertible<add_pointer_t<remove_all_extents_t<ArrayType>>, pointer>::value
istrue
,is_same<remove_cv_t<remove_all_extents_t<ArrayType>>, remove_cv_t<value_type>>::value
istrue
, andrank<ArrayType>::value == Rank
.[Example:
char a[3][1][4] {{{'H', 'i'}}}; auto av = array_view<char, 3>{a}; // the following assertions hold: assert((av.bounds() == bounds<3>{3, 1, 4})); assert((av[{0, 0, 0}] == 'H'));
—end example]
template <class U> constexpr array_view(const array_view<U, Rank>& rhs) noexcept;
Postconditions:
bounds() == rhs.bounds()
anddata() == rhs.data()
.Remarks: This constructor shall not participate in overload resolution unless
is_convertible<add_pointer_t<U>, pointer>::value
istrue
andis_same<remove_cv_t<U>, remove_cv_t<value_type>>::value
istrue
.
template <class Viewable> constexpr array_view(bounds_type bounds, Viewable&& vw);
Requires:
bounds.size() <= vw.size()
.Postconditions:
bounds() == bounds
anddata() == vw.data()
.Remarks: This constructor shall not participate in overload resolution unless
Viewable
satisfies the syntactic requirements set in Table 104 forViewable
onvalue_type
.[Note: This constructor may be used to create an
array_view
with a different rank and/or bounds than the originalarray_view
, i.e. reshape the view. —end note]
constexpr array_view(bounds_type bounds, pointer ptr);
Requires:
[ptr, ptr + bounds.size())
is a valid range.Postconditions:
bounds() == bounds
anddata() == ptr
.
template <class U> constexpr array_view& operator=(const array_view<U, Rank>& rhs) noexcept;
Postconditions:
bounds() == rhs.bounds
anddata() == rhs.data()
.Returns:
*this
.Remarks: This function shall not participate in overload resolution unless
is_convertible<add_pointer_t<U>, pointer>::value
istrue
andis_same<remove_cv_t<U>, remove_cv_t<value_type>>::value
istrue
.
array_view
observers [arrayview.obs]Add a new section:
constexpr bounds_type bounds() const noexcept;
Returns: The bounds of the view.
constexpr size_type size() const noexcept;
Returns:
bounds().size()
.
constexpr index_type stride() const noexcept;
Returns: An
index_type
such that:
stride()[i] == 1
, wherei == Rank - 1
.stride()[i] == stride()[i + 1] * bounds()[i + 1]
, where0 <= i
andi < Rank - 1
.
constexpr pointer data() const noexcept;
Returns: A pointer to the contiguous sequence on which the view was created.
array_view
element access [arrayview.elem]Add a new section:
constexpr reference operator[](const index_type& idx) const;
Requires:
bounds().contains(idx) == true
.Returns:
VIEW_ACCESS(data(), idx, stride(), Rank)
.
array_view
slicing and sectioning [arrayview.subview]Add a new section:
constexpr array_view<T, Rank - 1> operator[](ptrdiff_t slice) const;
Requires:
slice < bounds()[0]
.Returns: A view such that the initial element is
(*this)[{slice, 0, 0, …, 0}]
, and the bounds are{bounds1, bounds2, …, boundsRank - 1}
, whereboundsi = bounds()[i]
.Remarks: This function shall not participate in overload resolution unless
Rank > 1
.
constexpr strided_array_view<T, Rank> section(const index_type& origin, const bounds_type& section_bnd) const;
Requires:
bounds().contains(origin + idx) == true
for anyindex<Rank> idx
such thatsection_bnd.contains(idx) == true
.Returns: A strided view such that the initial element is
(*this)[origin]
, the stride isstride()
, and the bounds aresection_bnd
.
constexpr strided_array_view<T, Rank> section(const index_type& origin) const;
Requires:
bounds().contains(origin + idx) == true
for anyindex<Rank> idx
such that(bounds() - origin).contains(idx) == true
.Returns: A strided view such that the initial element is
(*this)[origin]
, the stride isstride()
, and the bounds are(bounds() - origin)
.
strided_array_view
[stridedarrayview]Add a new section:
namespace std { template <class T, int Rank = 1> class strided_array_view { public: // constants and types static constexpr int rank = Rank; using index_type = index<Rank>; using bounds_type = bounds<Rank>; using size_type = size_t; using value_type = T; using pointer = T*; using reference = T&; // [stridedarrayview.cons], strided_array_view constructors, copy, and assignment constexpr strided_array_view() noexcept; template <class U> constexpr strided_array_view(const array_view<U, Rank>& rhs) noexcept; template <class U> constexpr strided_array_view(const strided_array_view<U, Rank>& rhs) noexcept; constexpr strided_array_view(bounds_type bounds, index_type stride, pointer ptr); template <class U> constexpr strided_array_view& operator=(const strided_array_view<U, Rank>& rhs) noexcept; // [stridedarrayview.obs], strided_array_view observers constexpr bounds_type bounds() const noexcept; constexpr size_type size() const noexcept; constexpr index_type stride() const noexcept; // [stridedarrayview.elem], strided_array_view element access constexpr reference operator[](const index_type& idx) const; // [stridedarrayview.subview], strided_array_view slicing and sectioning constexpr strided_array_view<T, Rank - 1> operator[](ptrdiff_t slice) const; // only if Rank > 1 constexpr strided_array_view<T, Rank> section(const index_type& origin, const bounds_type& section_bnd) const; constexpr strided_array_view<T, Rank> section(const index_type& origin) const; private: pointer data_; // exposition only }; }
strided_array_view
constructors, copy, and assignment [stridedarrayview.cons]Add a new section:
constexpr strided_array_view() noexcept;
Postconditions:
bounds().size() == 0
,stride() == index_type{}
, anddata_ == nullptr
.
template <class U> constexpr strided_array_view(const array_view<U, Rank>& rhs) noexcept; template <class U> constexpr strided_array_view(const strided_array_view<U, Rank>& rhs) noexcept;
Postconditions:
bounds() == rhs.bounds()
,stride() == rhs.stride()
, and correspondingly:data_ == rhs.data()
,data_ == rhs.data_
.Remarks: These constructors shall not participate in overload resolution unless
is_convertible<add_pointer_t<U>, pointer>::value
istrue
andis_same<remove_cv_t<U>, remove_cv_t<value_type>>::value
istrue
.
constexpr strided_array_view(bounds_type bounds, index_type stride, pointer ptr);
Requires: For any
index<Rank> idx
such thatbounds.contains(idx)
:
- The expression
idx[i] * stride[i]
shall be well formed and shall have well defined behavior [Note: It follows that the result does not overflow typeptrdiff_t
. —end note] for all i in the range[0, Rank)
.- The expression
VIEW_ACCESS(ptr, idx, stride, Rank)
shall be well formed and shall have well defined behavior.Postconditions:
bounds() == bounds
,stride() == stride
, anddata_ == ptr
.
template <class U> constexpr strided_array_view& operator=(const strided_array_view<U, Rank>& rhs) noexcept;
Postconditions:
bounds() == rhs.bounds()
,stride() == rhs.stride()
, anddata_ == rhs.data_
.Returns:
*this
.Remarks: This function shall not participate in overload resolution unless
is_convertible<add_pointer_t<U>, pointer>::value
istrue
andis_same<remove_cv_t<U>, remove_cv_t<value_type>>::value
istrue
.
strided_array_view
observers [stridedarrayview.obs]Add a new section:
constexpr bounds_type bounds() const noexcept;
Returns: The bounds of the view.
constexpr size_type size() const noexcept;
Returns:
bounds().size()
.
constexpr index_type stride() const noexcept;
Returns: The stride of the view.
strided_array_view
element access [stridedarrayview.elem]Add a new section:
constexpr reference operator[](const index_type& idx) const;
Requires:
bounds().contains(idx) == true
.Returns:
VIEW_ACCESS(data_, idx, stride(), Rank)
.
strided_array_view
slicing and sectioning [stridedarrayview.subview]Add a new section:
constexpr strided_array_view<T, Rank - 1> operator[](ptrdiff_t slice) const;
Requires:
slice < bounds()[0]
.Returns: A strided view such that the initial element is
(*this)[{slice, 0, 0, …, 0}]
, the bounds are{bounds1, bounds2, …, boundsRank - 1}
, and the stride is{stride1, stride2, …, strideRank - 1}
; whereboundsi = bounds()[i]
, andstridei = stride()[i]
.Remarks: This function shall not participate in overload resolution unless
Rank > 1
.
constexpr strided_array_view<T, Rank> section(const index_type& origin, const bounds_type& section_bnd) const;
Requires:
bounds().contains(origin + idx) == true
for anyindex<Rank> idx
such thatsection_bnd.contains(idx) == true
.Returns: A strided view such that the initial element is
(*this)[origin]
, the stride isstride()
, and the bounds aresection_bnd
.
constexpr strided_array_view<T, Rank> section(const index_type& origin) const;
Requires:
bounds().contains(origin + idx) == true
for anyindex<Rank> idx
such that(bounds() - origin).contains(idx) == true
.Returns: A strided view such that the initial element is
(*this)[origin]
, the stride isstride()
, and the bounds are(bounds() - origin)
.
Edit within paragraph 1 as follows.
In addition to being available via inclusion of the
<iterator>
header, the function templates in 24.7 are available when any of the following headers are included:<array>
,<coordinate>
,<deque>
,<forward_list>
,<list>
,<map>
,<regex>
,<set>
,<string>
,<unordered_map>
,<unordered_set>
, and<vector>
.