string_view
: a non-owning reference to a string, revision 5References to strings are very common in C++ programs, but often the callee doesn't care about the exact type of the object that owns the data. 3 things generally happen in this case:
const std::string&
and insists
that callers copy the data if it was originally owned by another
type.char*
and
a length (or just char*
and assumes
0-termination)—and reduces the readability and safety of
calls and loses any helper functions the original type
provided.Google, LLVM, and Bloomberg have independently implemented a
string-reference type to encapsulate this kind of argument. string_view
is implicitly
constructible from const char*
and std::string
. It
provides the const
member operations from
std::string
to ease conversion. This paper follows Chromium
and Bloomberg
in extending string_view
to basic_string_view<charT>
, and
further extends it to include a traits
parameter to match
basic_string
. We provide typedefs to parallel the 4
basic_string
typedefs.
Both Google's and LLVM's string_view
types (but not
Bloomberg's) extend the interface from std::string
to provide
some helpful utility functions:
Versions of std::string
operations that take
string_view
instead also give the standard a way to provide
in-place operations on non-null-terminated byte/character sequences:
Google's StringPiece
provides as_string
and
ToString
methods to convert to std::string
. LLVM's
StringRef
provides both a str()
explicit
conversion and an implicit operator std::string()
. Since this
paper builds on top of C++11, we provide an explicit
conversion
constructor as well as a less verbose to_string
function.
None of the existing classes have constexpr
methods.
We found rough consensus
around renaming this class to string_view
. Other options
included:
The interface of string_view
is similar to, but not exactly
the same as the interface of std::string
. In general, we want
to minimize differences between std::string
and
string_view
so that users can go back and forth between the two
often. This section justifies the differences whose utility we think
overcomes that general rule.
remove_prefix()
and
remove_suffix()
make
it easy to parse strings using string_view
. They could both
be implemented as non-member functions (e.g. str.remove_prefix(n)
=== str = str.substr(n)
), but it seems useful to
provide the simplest mutators as member functions. Note that other
traversal primitives need to be non-members so that they're
extensible, which may argue for pulling these out too.I haven't taken every suggestion to change string_view
. This
section explains the rationales.
Many people have asked why we aren't removing all of the
find*
methods, since they're widely considered a
wart on std::string
. First, we'd like to make it as easy as
possible to convert code to use string_view
, so it's useful to
keep the interface as similar as reasonable to std::string
.
Second, replacing these these methods with uses of the standard algorithms
library requires switching from indices to iterators, writing
somewhat-complicated conversion code, and/or passing custom lambdas to
find_if
. Let's look at the replacement code for each of the
remaining methods:
haystack.find(needle)
auto iter = std::search(haystack.begin(), haystack.end(),
needle.begin(), needle.end());
return iter == haystack.end() ? std::string::npos : iter - haystack.begin();
haystack.rfind(needle)
auto iter = std::find_end(haystack.begin(), haystack.end(),
needle.begin(), needle.end());
return iter == haystack.end() ? std::string::npos : iter - haystack.begin();
haystack.find_first_of(needles)
auto iter = std::find_first_of(haystack.begin(), haystack.end(),
needles.begin(), needles.end());
return iter == haystack.end() ? std::string::npos : iter - haystack.begin();
haystack.find_last_of(needles)
auto iter = std::find_first_of(haystack.rbegin(), haystack.rend(),
needles.begin(), needles.end());
return iter == haystack.rend() ? std::string::npos : iter.base() - 1 - haystack.begin();
haystack.find_first_not_of(straw)
auto iter = std::find_if(haystack.begin(), haystack.end(), [&](char c) {
return std::find(straw.begin(), straw.end(), c) == straw.end();
});
return iter == haystack.end() ? std::string::npos : iter - haystack.begin();
haystack.find_last_not_of(straw)
auto iter = std::find_if(haystack.rbegin(), haystack.rend(), [&](char c) {
return std::find(straw.begin(), straw.end(), c) == straw.end();
});
return iter == haystack.rend() ? std::string::npos : iter.base() - 1 - haystack.begin();
find
, rfind
, and find_first_of
are straightforward, although the conversion from indices to iterators
would prevent many users from switching even to them.
find_last_of
, find_first_not_of
, and
find_last_not_of
get progressively worse to handle even in an
iterator-based function.
Discussion in Bristol concluded that string_view
should
include all of the const signatures from string
.
SF | WF | N | WA | SA |
5 | 4 | 1 | 2 | 0 |
SF | WF | N | WA | SA |
4 | 2 | 2 | 3 | 2 |
basic_string_view<char>
mutable… and use basic_string_view<const char>
for the constant
case. The constant case is enough more common than the mutable case that
it needs to be the default. Making the mutable case the default would
prevent passing string literals into string_view
parameters,
which would defeat a significant use case for string_view
. In
a somewhat analogous sitation, LLVM defined an ArrayRef
class in Feb 2011, and didn't find a need for the matching
MutableArrayRef
until Jan 2012. They still haven't needed a
mutable version of StringRef
.
One possible reason for this is that most uses that need to modify a
string also need to be able to change its length, and that's impossible
through even a mutable version of string_view
.
We could use typedef basic_string_view<const char>
string_view
to make the immutable case the default while still
supporting the mutable case using the same template. I haven't gone this
way because it would complicate the template's definition without
significantly helping users.
explicit operator bool
This would be an abbreviation for !empty()
, usable for
initialization in if
statements. N3509
came to SG9 in Bristol and was not accepted.
SF | WF | WA | SA |
0 | 1 | 3 | 5 |
strlen("string literal")
With a constructor of the form:
template<size_t N>
basic_string_view(const charT (&str)[N]);
we could avoid a strlen()
call when a
basic_string_view
is constructed from a string literal.
Unfortunately, this constructor does completely the wrong thing when
called like:
char space[PATH_MAX];
snprintf(space, sizeof(space), "some string");
string_view str(space);
It would be possible to avoid that problem by defining a
basic_string_view(char* str)
that uses strlen()
again, but this adds complexity. Some people have suggested a
string_view::from_literal
method, but I consider that too
verbose.
Even the original worry is obsolete given modern optimizers: both gcc
and clang optimize strlen("Literal")
into a constant, making
the simple, safe code as efficient as the template. Other implementations
should provide the same optimization as a QoI issue.
begin
/end
instead of the elementsOperations on string_view
apply to the characters in the
string, and not the pointers that refer to the characters. This
introduces the possibility that the underlying characters might change
while a string_view
referring to them is in an associative
container, which would break the container, but we believe this risk is
worthwhile because it matches existing practice and matches user
intentions more often.
contiguous_range<charT>
contiguous_range<T>
along with an
is_contiguous<IteratorOrRange>
trait would be useful for
many purposes. However, a reference class that's specifically for strings
provides a couple extra benefits:
string_view
can have an implicit conversion from
const char*
, while it would be a surprising special case to
provide that on contiguous_range<const char*>
.basic_string
's interface to
ease transitions to and from ownership, while such methods would be very
strange on contiguous_range
.basic_string_view
takes a char_traits
argument allowing customization of comparison.
contiguous_range
likely wouldn't.string_view
s using the elements they
refer to. There's a stronger argument to compare a
contiguous_range
using the pointers inside it, meaning two
contiguous_range<char>
s of the same characters might
compare unequal.std::string
in
addition to std::vector<char>
. Users benefit from
saying which they mean in interfaces.string_view
null-terminatedDoing this naively makes substr
impossible to implement
without a copy. We could imagine inventing a more complex interface that
records whether the input string was null-terminated, giving the user the
option to use that string when trying to pass a string_view
to
a legacy or C function expecting a null-terminated const
char*
. This proposal doesn't include such an interface because it
would make string_view
bigger or more expensive, and because
there's no existing practice to guide us toward the right interface.
Another option would be to define a separate zstring_view
class to represent null-terminated strings and let it decay to
string_view
when necessary. That's plausible but not part of
this proposal.
In Kona
2012, I proposed a range<>
class with
pop_front
, etc. members that adjusted the bounds of the
range. Discussion there indicated that committee members were
uncomfortable using the same names for lightweight range operations as
container operations. Existing practice doesn't agree on a name for this
operation, so I've kept the name used by Google's
StringPiece
.
Beman
Dawes suggested defining std::string_view_{begin,end}
and
allowing users to add overloads within std
. Using ADL is a
slight variant. We could also allow conversion from any type with
.data()
and .size()
members returning the right
types.
Ultimately, I think we want to allow this conversion based on detecting contiguous ranges. Any constructor we add to work around that is going to look like a wart in a couple years. I think we'll be better off making users explicitly convert when they can't add an appropriate conversion operator, and then we can add the optimal constructor when contiguous iterators make it into the library.
SF | WF | N | WA | SA |
0 | 0 | 1 | 5 | 6 |
string_view
. I'll propose those changes in a
subsequent paper based on the part
of N3685 that isn't in this paper.string_view
, maybe ""sv
.This paper updates N3685 by removing other standard library updates so
that the core string_view
class can be accepted independently.
I've also:
pos
and n
parameters,copy()
back,swap()
since it's constant time,std::swap
and the range access functions are
available when <string_view>
is included, andnoexcept
s.N3685 updated N3609 with the results of the LEWG discussion in Bristol. Significant changes include:
<string_view>
header.pos
and n
parameters back to string_view
methods.starts_with
and ends_with
.N3609 was a minor update to N3512 that renamed the proposed class to
basic_string_view
and fixed some wording mistakes.
N3512 updated N3442 with wording for the draft C++14 standard. Note that we still aren't sure whether we're aiming for a TS or C++14.
N3442
was aimed at a TS and updated
N3334
by removing array_ref
.
The most recent version of this paper is maintained on GitHub.
The class template basic_string_view
describes objects that
can refer to a constant contiguous sequence of char-like ([strings.general]) objects
with the first element of
the sequence at position zero. In the rest of this Clause, the type of the
char-like objects held in a basic_string_view
object is designated by charT
.
[Note: The library provides implicit conversions from const
charT*
and std::basic_string<charT, ...>
to
std::basic_string_view<charT, ...>
so that user code can
accept just std::basic_string_view<charT>
as a non-templated
parameter wherever a sequence of characters is expected. User-defined types
should define their own implicit conversions to
std::basic_string_view
in
order to interoperate with these functions. — end note ]
The complexity of member functions is O(1) unless otherwise specified.
namespace std {
// [basic.string.view], basic_string_view:
template<class charT, class traits = char_traits<charT>>
class basic_string_view;
// [string.view.comparison], non-member basic_string_view comparison functions
template<class charT, class traits>
bool operator==(basic_string_view<charT, traits> x, basic_string_view<charT, traits> y) noexcept;
template<class charT, class traits>
bool operator!=(basic_string_view<charT, traits> x, basic_string_view<charT, traits> y) noexcept;
template<class charT, class traits>
bool operator< (basic_string_view<charT, traits> x, basic_string_view<charT, traits> y) noexcept;
template<class charT, class traits>
bool operator> (basic_string_view<charT, traits> x, basic_string_view<charT, traits> y) noexcept;
template<class charT, class traits>
bool operator<=(basic_string_view<charT, traits> x, basic_string_view<charT, traits> y) noexcept;
template<class charT, class traits>
bool operator>=(basic_string_view<charT, traits> x, basic_string_view<charT, traits> y) noexcept;
// [string.view.comparison], sufficient additional overloads of comparison functions
// [string.view.nonmem], other non-member basic_string_view functions
template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
basic_string<charT, traits, Allocator> to_string(
basic_string_view<charT, traits>,
const Allocator& a = Allocator());
template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
basic_string_view<charT,traits> str);
// basic_string_view typedef names
typedef basic_string_view<char> string_view;
typedef basic_string_view<char16_t> u16string_view;
typedef basic_string_view<char32_t> u32string_view;
typedef basic_string_view<wchar_t> wstring_view;
// [string.view.hash], hash support:
template <class T> struct hash;
template <> struct hash<string_view>;
template <> struct hash<u16string_view>;
template <> struct hash<u32string_view>;
template <> struct hash<wstring_view>;
}
The function templates defined in [utility.swap] and [iterator.range] are
available when <string_view>
is included.
Normally I would update the list in [iterator.range], but we're not yet sure how to do that in a TS, so I picked the more self-contained option.
namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_string_view {
public:
// types
typedef traits traits_type;
typedef charT value_type;
typedef const charT* pointer;
typedef const charT* const_pointer;
typedef const charT& reference;
typedef const charT& const_reference;
typedef implementation-defined const_iterator; // See [string.view.iterators]
typedef const_iterator iterator; // [Footnote: Because basic_string_view refers to a constant sequence, iterator and const_iterator are the same type. --end footnote]
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef const_reverse_iterator reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
static constexpr size_type npos = size_type(-1);
// [string.view.cons], construct/copy
constexpr basic_string_view() noexcept;
constexpr basic_string_view(const basic_string_view&) noexcept = default;
basic_string_view& operator=(const basic_string_view&) noexcept = default;
template<class Allocator>
basic_string_view(const basic_string<charT, traits, Allocator>& str) noexcept;
basic_string_view(const charT* str);
Not constexpr because that would rely on potentially-controversial changes to char_traits::length().
constexpr basic_string_view(const charT* str, size_type len);
No initializer_list constructor because [dcl.init.list]p6 says it would likely store a dangling reference into the basic_string_view
.
// [string.view.iterators], iterators
constexpr const_iterator begin() const noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
reverse_iterator methods aren’t constexpr because reverse_iterator isn’t a literal type. See LWG Issue 2208.
const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator rend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;
// [string.view.capacity], capacity
constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr bool empty() const noexcept;
// [string.view.access], element access
constexpr const charT& operator[](size_type pos) const;
constexpr const charT& at(size_type pos) const;
constexpr const charT& front() const;
constexpr const charT& back() const;
constexpr const charT* data() const noexcept;
// [string.view.modifiers], modifiers:
void clear() noexcept;
void remove_prefix(size_type n);
void remove_suffix(size_type n);
void swap(basic_string_view& s) noexcept;
// [string.view.ops], string operations:
template<class Allocator>
explicit operator basic_string<charT, traits, Allocator>() const;
size_type copy(charT* s, size_type n, size_type pos = 0) const;
constexpr basic_string_view substr(size_type pos=0, size_type n=npos) const;
int compare(basic_string_view s) const noexcept;
int compare(size_type pos1, size_type n1, basic_string_view s) const;
int compare(size_type pos1, size_type n1,
basic_string_view s, size_type pos2, size_type n2) const;
int compare(const charT* s) const;
int compare(size_type pos1, size_type n1, const charT* s) const;
int compare(size_type pos1, size_type n1,
const charT* s, size_type n2) const;
size_type find(basic_string_view s, size_type pos=0) const noexcept;
size_type find(charT c, size_type pos=0) const noexcept;
size_type find(const charT* s, size_type pos, size_type n) const;
size_type find(const charT* s, size_type pos=0) const;
size_type rfind(basic_string_view s, size_type pos=npos) const noexcept;
size_type rfind(charT c, size_type pos=npos) const noexcept;
size_type rfind(const charT* s, size_type pos, size_type n) const;
size_type rfind(const charT* s, size_type pos=npos) const;
size_type find_first_of(basic_string_view s, size_type pos=0) const noexcept;
size_type find_first_of(charT c, size_type pos=0) const noexcept;
size_type find_first_of(const charT* s, size_type pos, size_type n) const;
size_type find_first_of(const charT* s, size_type pos=0) const;
size_type find_last_of(basic_string_view s, size_type pos=npos) const noexcept;
size_type find_last_of(charT c, size_type pos=npos) const noexcept;
size_type find_last_of(const charT* s, size_type pos, size_type n) const;
size_type find_last_of(const charT* s, size_type pos=npos) const;
size_type find_first_not_of(basic_string_view s, size_type pos=0) const noexcept;
size_type find_first_not_of(charT c, size_type pos=0) const noexcept;
size_type find_first_not_of(const charT* s, size_type pos, size_type n) const;
size_type find_first_not_of(const charT* s, size_type pos=0) const;
size_type find_last_not_of(basic_string_view s, size_type pos=npos) const noexcept;
size_type find_last_not_of(charT c, size_type pos=npos) const noexcept;
size_type find_last_not_of(const charT* s, size_type pos, size_type n) const;
size_type find_last_not_of(const charT* s, size_type pos=npos) const;
};
}
In every specialization basic_string_view<charT, traits>
,
the type traits
shall satisfy the character traits
requirements ([char.traits]), and the type traits::char_type
shall name the same type as charT
.
Each member function of the form
rt fx1(const charT* s[, size_type pos[, size_type n]]); // find() variants
is equivalent to return fx1(basic_string_view(s[, n])[, pos])
.
Each member function of the form
rt fx2(charT c, size_type pos); // find() variants
is equivalent to return fx2(basic_string_view(&c, 1), pos)
.
constexpr basic_string_view() noexcept;
Effects: Constructs an empty basic_string_view.
Postcondition: empty() == true and [data(),data()) is a valid range.
template<class Allocator>
basic_string_view(const basic_string<charT, traits, Allocator>& str) noexcept;
Effects: Constructs a basic_string_view, with the postconditions in Table [tab:string.view.ctr.1]
Remarks: The program shall not alter any of the values stored in the character array. [Footnote: This is the same requirement as on str.data()
-- end footnote]
Element | Value |
---|---|
data() | str.data() |
size() | str.size() |
basic_string_view(const charT* str);
Requires: [str,str + traits::length(str)) is a valid range.
Effects: Constructs a basic_string_view referring to the same string as str, with the postconditions in Table [tab:string.view.ctr.2]
Element | Value |
---|---|
data() | str |
size() | traits::length(str) |
Complexity: O(size())
constexpr basic_string_view(const charT* str, size_type len);
Requires: str is not a null pointer and [str,str + len) is a valid range.
Effects: Constructs a basic_string_view, with the postconditions in Table [tab:string.view.ctr.3]
Element | Value |
---|---|
data() | str |
size() | len |
typedef implementation-defined const_iterator;
A constant random-access iterator type such that, for a const_iterator it
,
if &*(it+N)
is valid, then it is equal to (&*it)+N
.
For a basic_string_view str, any operation that invalidates a pointer in the range [str.data(), str.data()+str.size()) invalidates pointers and iterators returned from str’s methods.
All requirements on container iterators ([container.requirements])
apply to basic_string_view::const_iterator
as well.
constexpr const_iterator begin() const noexcept;
constexpr const_iterator cbegin() const noexcept;
Returns: An iterator referring to the first character in the string.
constexpr const_iterator end() const noexcept;
constexpr const_iterator cend() const noexcept;
Returns: An iterator which is the past-the-end value.
const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator crbegin() const noexcept;
Returns: An iterator which is semantically equivalent to reverse_iterator(end()).
const_reverse_iterator rend() const noexcept;
const_reverse_iterator crend() const noexcept;
Returns: An iterator which is semantically equivalent to reverse_iterator(begin()).
constexpr size_type size() const noexcept;
Returns: A count of the number of char-like objects referred to by the basic_string_view
.
constexpr size_type length() const noexcept;
Returns: size().
constexpr size_type max_size() const noexcept;
Returns: The size of the largest possible basic_string_view
.
constexpr bool empty() const noexcept;
Returns: size() == 0.
constexpr const_reference operator[](size_type pos) const;
Requires: pos < size().
Returns: *(begin() + pos)
Throws: Nothing.
[ Note: Unlike basic_string::operator[], basic_string_view::operator[](size()) has undefined behavior instead of returning charT(). — end note ]
constexpr const_reference at(size_type pos) const;
Throws: out_of_range if pos >= size().
Returns: operator[](pos).
constexpr const charT& front() const;
Requires: !empty()
Effects: Equivalent to return operator[](0)
.
constexpr const charT& back() const;
Requires: !empty()
Effects: Equivalent to return operator[](size() - 1)
.
constexpr const charT* data() const noexcept;
Returns: A non-null pointer p such that p + i == &operator[](i) for each i in [0,size()).
[ Note: Unlike std::string::data() and string literals, data() may return a pointer to a buffer that is not null-terminated. Therefore it is typically a mistake to pass data() to a routine that takes just a const charT* and expects a null-terminated string. — end note ]
void clear() noexcept;
Effects: Equivalent to *this = basic_string_view()
void remove_prefix(size_type n);
Requires: n <= size()
Effects: Equivalent to *this = substr(n, npos)
void remove_suffix(size_type n);
Requires: n <= size()
Effects: Equivalent to *this = substr(0, size() - n)
void swap(basic_string_view& s) noexcept
Effects: Exchanges the values of *this
and s
.
template<class Allocator>
explicit // Footnote: This conversion is explicit to avoid accidental O(N) operations on type mismatches. --end footnote
operator basic_string<charT, traits, Allocator>() const;
Effects: Equivalent to return basic_string<charT, traits, Allocator>(str.begin(), str.end()).
[ Note: Users who want to control the allocator instance should call basic_string(str.begin(), str.end(), allocator)
directly. -- end note ]
size_type copy(charT* s, size_type n, size_type pos = 0) const;
Throws: out_of_range
if pos > size()
.
Remarks: Let rlen
be the smaller of n
and size() - pos
.
Requires: [s
, s+rlen
) is a valid range.
Effects: Equivalent to std::copy_n(begin() + pos, rlen, s).
Returns: rlen
.
constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;
Throws: out_of_range if pos > size().
Effects: Determines the effective length rlen of the string to reference as the smaller of n and size() - pos.
Returns: basic_string_view(data()+pos, rlen).
int compare(basic_string_view str) const noexcept;
Effects: Determines the effective length rlen of the strings to compare as the smallest of size() and str.size(). The function then compares the two strings by calling traits::compare(data(), str.data(), rlen).
Complexity: O(rlen)
Returns: The nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as indicated in Table [tab:string.view.compare].
Condition | Return Value |
---|---|
size() < str.size() | < 0 |
size() == str.size() | 0 |
size() > str.size() | > 0 |
int compare(size_type pos1, size_type n1, basic_string_view str) const;
Effects: Equivalent to return substr(pos1, n1).compare(str)
.
int compare(size_type pos1, size_type n1, basic_string_view str,
size_type pos2, size_type n2) const;
Effects: Equivalent to return substr(pos1, n1).compare(str.substr(pos2, n2))
.
int compare(const charT* s) const;
Effects: Equivalent to return compare(basic_string_view(s))
.
int compare(size_type pos1, size_type n1, const charT* s) const;
Effects: Equivalent to return substr(pos1, n1).compare(basic_string_view(s))
.
int compare(size_type pos1, size_type n1,
const charT* s, size_type n2) const;
Effects: Equivalent to return substr(pos1, n1).compare(basic_string_view(s, n2))
.
Member functions in this section have complexity O(size() * argument.size()) at worst, although implementations are encouraged to do better.
size_type find(basic_string_view str, size_type pos=0) const noexcept;
Effects: Determines the lowest position xpos, if possible, such that the following conditions obtain:
Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
Remarks: Uses traits::eq().
size_type rfind(basic_string_view str, size_type pos=npos) const noexcept;
Effects: Determines the highest position xpos, if possible, such that the following conditions obtain:
Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
Remarks: Uses traits::eq().
size_type find_first_of(basic_string_view str, size_type pos=0) const noexcept;
Effects: Determines the lowest position xpos, if possible, such that the following conditions obtain:
Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
Remarks: Uses traits::eq().
size_type find_last_of(basic_string_view str, size_type pos=npos) const noexcept;
Effects: Determines the highest position xpos, if possible, such that the following conditions obtain:
Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
Remarks: Uses traits::eq().
size_type find_first_not_of(basic_string_view str, size_type pos=0) const noexcept;
Effects: Determines the lowest position xpos, if possible, such that the following conditions obtain:
Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
Remarks: Uses traits::eq().
size_type find_last_not_of(basic_string_view str, size_type pos=npos) const noexcept;
Effects: Determines the highest position xpos, if possible, such that the following conditions obtain:
Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
Remarks: Uses traits::eq().
Implementations shall provide sufficient additional overloads so that an
object t
with an implicit conversion to
basic_string_view<charT, traits>
can be compared according to
Table [tab:string.view.comparison.overloads], where
sp
is an instance of
basic_string_view<charT, traits>
.
Expression | Equivalent to |
---|---|
t == sp | basic_string_view<charT, traits>(t) == sp |
sp == t | sp == basic_string_view<charT, traits>(t) |
t != sp | basic_string_view<charT, traits>(t) != sp |
sp != t | sp != basic_string_view<charT, traits>(t) |
t < sp | basic_string_view<charT, traits>(t) < sp |
sp < t | sp < basic_string_view<charT, traits>(t) |
t > sp | basic_string_view<charT, traits>(t) > sp |
sp > t | sp > basic_string_view<charT, traits>(t) |
t <= sp | basic_string_view<charT, traits>(t) <= sp |
sp <= t | sp <= basic_string_view<charT, traits>(t) |
t >= sp | basic_string_view<charT, traits>(t) >= sp |
sp >= t | sp >= basic_string_view<charT, traits>(t) |
[ Example: A sample conforming implementation for operator== would be:
template<class T> struct __identity { typedef T type; };
template<class charT, class traits>
bool operator==(basic_string_view<charT, traits> lhs,
basic_string_view<charT, traits> rhs) noexcept {
return lhs.compare(rhs) == 0;
}
template<class charT, class traits>
bool operator==(basic_string_view<charT, traits> lhs,
typename __identity<basic_string_view<charT, traits>>::type rhs) noexcept {
return lhs.compare(rhs) == 0;
}
template<class charT, class traits>
bool operator==(typename __identity<basic_string_view<charT, traits>>::type lhs,
basic_string_view<charT, traits> rhs) noexcept {
return lhs.compare(rhs) == 0;
}
— end example ]
template<class charT, class traits>
bool operator==(basic_string_view<charT,traits> lhs,
basic_string_view<charT,traits> rhs) noexcept;
Returns: lhs.compare(rhs) == 0.
template<class charT, class traits>
bool operator!=(basic_string_view<charT,traits> lhs,
basic_string_view<charT,traits> rhs) noexcept;
Returns: !(lhs == rhs).
template<class charT, class traits>
bool operator< (basic_string_view<charT,traits> lhs,
basic_string_view<charT,traits> rhs) noexcept;
Returns: lhs.compare(rhs) < 0.
template<class charT, class traits>
bool operator> (basic_string_view<charT,traits> lhs,
basic_string_view<charT,traits> rhs) noexcept;
Returns: lhs.compare(rhs) > 0.
template<class charT, class traits>
bool operator<=(basic_string_view<charT,traits> lhs,
basic_string_view<charT,traits> rhs) noexcept;
Returns: lhs.compare(rhs) <= 0.
template<class charT, class traits>
bool operator>=(basic_string_view<charT,traits> lhs,
basic_string_view<charT,traits> rhs) noexcept;
Returns: lhs.compare(rhs) >= 0.
template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
basic_string<charT, traits, Allocator> to_string(
basic_string_view<charT, traits> str,
const Allocator& a = Allocator());
Complexity: O(str.size())
Returns: basic_string<charT, traits, Allocator>(str.begin(), str.end(), a).
template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
basic_string_view<charT,traits> str);
Effects: Behaves as a formatted output function
([ostream.formatted.reqmts]) of os
. Forms a character
sequence seq
, initially consisting of the elements defined by
the range [str.begin(), str.end())
. Determines padding for
seq
as described in [ostream.formatted.reqmts]. Then inserts
seq
as if by calling os.rdbuf()->sputn(seq, n)
,
where n
is the larger of os.width()
and
str.size()
; then calls os.width(0)
.
Returns: os
template <> struct hash<string_view>;
template <> struct hash<u16string_view>;
template <> struct hash<u32string_view>;
template <> struct hash<wstring_view>;
Requires: the template specializations shall meet the requirements of class template hash ([unord.hash]).
I'd like to thank Marshall Clow, Olaf van der Spek, the Boost and std-proposals mailing lists, Chandler Carruth, Beman Dawes, Alisdair Meredith, and especially Daniel Krügler for help, advice, and wording in this paper.