
Proposal for C

Array Notation for Vectorization
Javier A. Múgica

October 10th, 2025

1

TABLE OF CONTENTS

1 INTRODUCTION
Intent of the feature
This paper
Prior art
Empty selections
Intent of the proposal
Terminology

2 SELECTIONS [B:L], [B:L:S] AND [:]
Semantics of range selection
Continuous subarray selection
The type after lvalue conversion
Broken arrays
The type of A[B:L] for nonconstant L
Stepped selections
Definition of broken array
The kind of expressions allowed for B, L and s
Range operation
Restrictions on the values of B, L and s
Array subscripting applied to an array with

selection
Pointer to one of its elements; valid offsets

3 RELATIONAL OPERATORS AND EMPTY SELEC-
TIONS

0-dimensional selection
Equality operators
Relational operators
The equivalence of matrix without or with

0-dim. selection

4 RESTRICTIONS ON ARRAYS WITH SELECTION
Inconvertibility to pointer
Restrictions for broken arrays before lvalue

conversion
Other Restrictions

5 CASTS
Changing the singleton type
Array cast

6 ASSIGNMENTS
Assigning an array
Overlapping in assignment

7 GENERAL RULES FOR OPERATING ARRAYS
WITH SELECTION

The general rules
Application to multiplications of matrices

8 OTHER
The decaying of plain arrays to pointers
Literal 0 promoted to pointer
Mixing arrays with selection and arrays

which decay to pointers
On modifiable lvalues

9 FUNCTIONS
Functions acting as range operators

10 SELECTIONS OF LENGTH ZERO
Motivation
Relation to a value of B out of bounds
Its type
Fitting it into the type system
Literal zero for the length
Final set of restrictions
Negative value for L

11 IMPLEMENTATION OF RANGE OPERATIONS
What would be mandatory
How range selections might be translated
Sequence points

12 INDEXED AND DIRECT SELECTIONS
The different kinds of array selections
Comma-separated list

13 FURTHER EXTENSIONS
A[B:-L]
A[B:L][B’:L’] when the elements of A[B:L] are

pointers
Functions returning arrays
Functions taking arrays

14 FURTHER EDITORIAL FIXES
6.5.16 Conditional operator
6.5.17 Assignment operators

WORDING
6.2.5 Types
6.2.6 Representation of types
6.3.3.1 Lvalues, arrays, and function designa-

tors
6.5 Expressions
6.7.3.6 typeof specifiers
6.7.7.3 Array declarators
6.7.10 Type inference
6.10.10.4 Conditional feature macros

2

1 INTRODUCTION

Intent of the feature
The idea of the proposed extension is to be able to write code like

A[0:5] += 2;
A[:] = B[:]*C[0][:];
A[b:n] = -B[0:n];
A[0:5:2] = 1/A[0:5:2]; // Operate on the elements 0, 2, 4, 6, 8
q[0:n] = sqrt(p[0:n]);

On the one hand, this makes code more synthetic and easier to read than “for” loops.
On the other, it helps the compiler in taking advantage of vector instructions present in the
processor and, more generally, deciding which is the best way to transform that construc-
tion into machine code.

It also opens up the door for functions taking and returning arrays. This is possible be-
cause we have chosen arrays with selected elements not to decay to pointers. This is ex-
plored in “Further extensions”.

This paper
This is a second version of Array notation for vectorizarion, N3716 (ANFV, for short). In
some aspects it has been simplified, while in others it has been expanded. The main
changes from the previous paper are the following:

The greatest simplification comes in the discussion, where choices that were finally not
taken are not discussed at length, as they are there. In addition, range function calls are
treated more naturally, in line with other range operations. The approach taken in the first
version for function calls was a consequence of the evolution in the choices for the se-
mantics of range selections and was not the right choice in the end. These range function
calls are now included in the main proposal.

The possibility that zero-step selections are not supported by the implementation,
already discarded in that proposal, has been completely removed from the wording. By
contrast, we allow selections of length zero when the length is not given by an integer con-
stant expression. We have also removed the [::] selection because it conflicts with the se-
mantics given for this by OpenMP. Removed, too, are array casts. Functions returning ar-
rays were considered for addition, simply by lifting the constraint forbidding them in func-
tion declarators, but in the end we did not.

We note in the wording that the type of something like p[0:6]+q[0:n] is a fixed-size
array. We have added the “unqualified, non-atomic version” for the case the array that the
range selection applies to is not an lvalue.

We give a suggestion for harmonising new sequence points (e.g., assignmnet operat-
ors) with range operations.

Some parts include wording that makes use of the “discarded” concept. These are con-
straints that take effect only when the expression is not discarded. Likewise, the condition
“whenever it is evaluated” has been added to several “shalls” in “semantics” sections. Fi-
nally, expressions that referred to an array length as “given by an integer constant expres-
sion” have been replaced by “fixed constant”.

3

Prior art
The specification of a range in the index or a comma-separated list of values is common in
many languages. Most notably, in Fortran. Some languages specify begin and end. This is
the case, for instance, of Rust slices. But Rust slices only admit compile-time constants, so
in practice it would not be different from beginning and length. In C, it need be beginning
and length, because the types of A[0:5] and A[n:5], where n is of integer type, should be
the same, namely typeoftypeoftypeof(A[0])[5]. This is not possible if the latter is written A[n:n+5].

Vectorization with notation and semantics essentially as proposed in this document are
already present in OpenMP extensions for C.

A proposal along these lines was already presented: N2081 Array sections for C, by
Clark Nelson. It seems that the reason this was not pursued was the lack of any volunteer
to do the work. Compared to that proposal, this one is much more detailed. That proposal
introduces the term rank, corresponding to our depth. It also appears to include what we
call indexed selections (that we leave out of the wording), though no example is provided.
Finally, that proposal included two ad-hoc utilities: reduction operators and __sec_impli-
cit_index. While they may be useful, they seem too specific to justify enlarging the lan-
guage for their sake, and at any rate not before the main proposal is already implemented
and being used.

Empty selections
When considering multidimensional selections, empty, zero-dimensional selections come
out naturally. They are needed in particular for the equality (comparison) operators. They
provide a natural way of making an array un-decay-able to pointer, thereby allowing as-
signment of arrays and functions returning an array, as in B = A[] and returnreturnreturn A[]. This
feature is by itself useful and may be implemented independent of array selections proper.

Intent of the proposal
We believe this should become a technical specification or any other form conveying a com-
mitment from the committee. Inclusion in the standard is not possible at this point; imple-
mentation experience is obviously needed. But implementations are reluctant to include
new features; once a feature is included it can never be removed (except for compilers tar-
geting a very specific market). Another reason is that the way an extension is provided by
the implementation may be different to the way it is finally adopted in the language. This
makes implementations especially reluctant in regard to extensions that are likely to be in-
corporated to the standard. A technical specification can act as a guide for implementa-
tions, so that they can embark in the task of implementing it with confidence that they are
implementing the design that may eventually be adopted by the standard. In doing this
they may detect issues with the proposed wording that need adjustment, and help evolve
the wording towards its final form.

A gradual specification of the feature, where a first proposal just addresses the simplest
cases ignoring any possible extension, may lead to wrong decisions in the design, that re-
veal themselves wrong only when the feature is extended, and by then it will be too late to
change.

Terminology
singleton: An object or value which is not of array type.

https://www.open-std.org/JTC1/SC22/WG14/www/docs/n2081.htm

4

Note that this excludes the type voidvoidvoid.

array’s singletons: The elements, not of array type, that compose an array: If the element
type of the array is not an array type, the elements of the array are its singletons. If the
element type is an array type, the singletons of the array are those of its elements.

(array) length: The number of elements of an array.

known constant length: Said of an array where the length is given by an integer constant
expression.

top-level variable length array: Not of known constant length

known constant total length =
known constant size: Said of an array where all the lengths are given by integer constant

expressions (i.e., its length, the length of its elements if they are of array type, etc.).

There do not exist singletons of variable size, wherefore both terms coincide in prac-
tice. What is really intended when either of these terms could be used is the constant
size. Therefore, we always use the second one. Furthermore, the term “total length” is
never needed.

variable length array: Not of known constant size.

2 SELECTIONS [B:L], [B:L:S] AND [:]

Semantics of range selection
Consider the code

A[0:5] += 2;
A[:] = B[:]*C[0][:];
A[:][0:6] += A[:][6:6];

If A is an array or a pointer A[B:L] denotes, or selects, the subarray of L elements A[B] ...
A[B + L-1] and A[:] (possible only if A in an array) selects the whole array. Each of the se-
lected elements is operated. In the second example A, B and C[0] have the same number of
elements. In the third, for each A[i], to its first six elements the next six are added:
A[i][j]+=A[i][j+6], for all i and for 0 ≤ j ≤ 5.

In expressions where one of the operands is not an array with selection, that operand
should be evaluated only once. Thus, in

intintint i=2;
A[0:5] = i++;

All five elements in A[0:5] are assigned the value 2 and after the expression is evaluated i
equals 3.

The semantics for arrays with selections in just one dimension is for the most part easy
with a unique obvious choice. Multidimensional selections, however, give rise to many situ-
ations which need careful decisions and wording. One of these is the combination of selec-
tions with the array subscripting operator, [k].

5

Continuous subarray selection
If A is an array we’d like A[B:L] to denote the subarray of L elements A[B] ... A[B + L-1].
It seems this should be an array of L elements; that is, it should have that type. Also, A[:]
should denote the whole array, i. e., the same object as A.

This poses a problem for multidimensional arrays: we’d like, e. g., A[0:4][0:3] to de-
note a bidimensional array, not the first three elements within A[0:4]. But if A[0:4] is to
be an array just like A, differing only possibly in the number of elements, how can that be
achieved? It is necessary that A[0:4], in addition to its type, carries some property with it
that can distinguish it from an array of four elements of the same type. We will say that
A[B:L] or A[:] have elements selected, or that they are arrays with selection, or that they
carry a selection, which a “plain” array does not.

Thus, after a declaration of the type

intintint A[10];

A[0:3] has type “array of three int”. In addition, it has its three elements selected.
This makes possible to select the next dimension if there is one:

intintint A[4][5];
intintint B[10][5];
A[0:3];
B[0:4][0:3];

Here both A and B[0:4] have type “array of four array of five int”, but A does not carry a
selection of elements while B[0:4] does. For this reason

A[0:3]

denotes an array of three elements of type “array of five int”, which makes 15 elements,
while

B[0:4][0:3]

denotes an array of four elements, of type “array of three int” (we will justify later that the
type shall be array of three int and not array of five int). Each of those four arrays has its
three elements selected.

The rule is that, in an expression of the form

A[B:L] or A[:],

if A does not carry a selection the operand selects elements from the first (outermost) di-
mension of A, of type that of A[0], while if it does already have selected elements it selects
elements from each of the already selected elements: in the expression A[B:L], for each s
selected in A, the elements s[B:L] are selected.

So, if A is an array of n dimensions, its selection, if any, will have the form of an m-di-
mensional array of l-dimensional arrays, and m+l = n. The number of, necessarily consec-
utive, dimensions carrying selection might be called the depth of the selection.

We do not allow further selections applied to an array carrying a selection whose ele-
ments are pointers. See “Further extension” for a discussion.

6

The type after lvalue conversion
When working with arrays with selections it is soon realised that what matters for an op-
eration between two of them to be possible is just the number of elements selected from
each dimension, not which particular elements are selected not even how many elements
the full array has. For example:

intintint A[24][8][3], B[6][8][10];
A[0:6:2][0:4][:] + B[:][2:4][7:3];

But then we can completely discard the non-selected elements and make the type of the ar-
rays with selections in this example be intintint[6][4][3]. There is no concern here about the
memory layout of the array after lvalue conversion, since the result of such a conversion is
just a value, not an object.

This is not possible for lvalues:

intintint A[18][8][3], B[6][8][10];
A[0:6:2][0:4][:] = B[:][2:4][7:3];

Here it is precisely the elements A[0:0:0], ... A[10][3][2] which need have their values
updated.

Broken arrays
We said above that A[:] or A[B:L] are arrays like A, differing possibly in the second case
in the number of elements. Let us consider the case A[B:L] when A is itself of the form
C[:] or C[B:L], as in the following example:

intintint A[10][5];
A[2:4][0:3];

The layout of A[2:4][0:3] is as follows, where s denotes an element that has been selec-
ted and will be operated and i an element which will be ignored:

s, s, s, i, i, s, s, s, i, i, s, s, s, i, i, s, s, s, i, i

The twelve elements which constitute the selection, the ones which will be operated (e.g.
as A[2:4][0:3]*=2), are not stored consecutively. We will call one such selection, which
is like an array with padding, a broken array. We may assign to A[2:4][0:3] type
intintint[4][3], or intintint[4][5]. Both options have advantages and drawbacks. The former
choice will be called the short interpretation, while the latter will be called the long inter-
pretation. There is also the possibility of assigning it a new type.

Our long experience in the elaboration of this proposal showed beyond doubt that the
right choice is the short interpretation.

Ignored elements are not padding

In the long interpretation, ignored (not selected) elements seemingly act as padding when
the array is operated:

floatfloatfloat A[10];
A[0:4:3]=2;
{s, i, i, s, i, i, s, i, i, s}

7

Only selected elements are operated, ignored elements are not.
But there is a difference: padding bytes need not be copied onto; ignored elements

must not be copied onto. In doing so, elements from the full array would be modified which
cannot be modified. Thus, those ignored elements act as bytes outside the operated object,
whose modification would change some other object: The array A[0:4:3] consists only of
the four s elements. It is an array of four elements stored sparsely.

Selection from an array of pointers

As in

intintint *B[10];
B[2:4]; //Array of four pointers
B[2:4][0:3]; //[a,b,c] [a’,b’,c’] [a’’,b’’,c’’] [a’’’,b’’’,c’’’]

The last object is impossible to accommodate in the long interpretation; it cannot be given
a type. The extension needed to give a type to that expression is precisely the short inter-
pretation: it is an array of four elements, even though they may be stored apart from one
another in memory.

The broken pseudo-qualifier

We cannot just say that A[2:4][0:3] above has type intintint[4][3], since the memory
layout of the object is not that of an intintint[4][3]. The solution to this is to attach a qualifier
to the type. Thus, A[2:4][0:3] is not a “plain” intintint[4][3] but a broken intintint[4][3].
Brokenness is a qualification the array carries, as could be its being const. The register
storage class achieves a similar effect: the memory layout may be different from that of an
object without that storage class. Contrary to a type declared with a qualifier, a storage
class specifier does not change the type of the object.

Do we want broken arrays to be const-like (qualifier) or register-like (storage-class)?
When a storage-class specifier is attached to an identifier, wherefore it applies to the ob-
ject the identifier refers to, the specifier could have been omitted from the declaration (it
may be necessary for the consistency of the whole program, but the declaration itself does
not need it). This is not the situation for broken arrays: A[2:4] ​[0:3] cannot be not-
broken: it is broken. Storage-class specifiers refer to where the translator places (or looks
for) the object and, related to it, its linkage. typedeftypedeftypedef is placed among them only for syn-
tactic convenience and autoautoauto by accident (since C23). A broken array is a subobject of the
original array, and this will be placed and have linkage according to its storage-class spe-
cifiers; selecting a subobject from it does not change this.

For this reason we prefer to make brokenness a qualification.
The type of the arrays considered above is now

intintint A[10][5];
A[2:4]; //intintint[4][5]
A[2:4][:]; //intintint[4][5]
A[2:4][0:3]; //intintint[broken 4][3]
A[2:4][0:3:2]; //intintint[4][broken 3]

The word broken is not a keyword proposed, just a symbolic way of representing the type
of broken arrays. Brokenness propagates upwards: if an array is broken, so are arrays con-
taining that array as element. In the example above, A[2:4][0:3:2] is a broken array,
and we could also have represented its type as intintint[broken 4] ​[broken 3].

As already noted, the elements of the original array that were not selected do not form

8

part of the array after selection: they are not padding, they just are not.

Broken vs. potentially broken

Having chosen the short interpretation, broken arrays must be given a different type than
plain arrays, since the memory layout is different, and, e.g., memcpy will not copy one onto
the other. That difference is taken into account by a qualifier: broken. That qualifier is not
introduced in the type system: no identifier can be declared with that type, no pointer to
an object of that type can be formed and broken objects, i.e., expressions having as type a
broken array (which are necessarily lvalues) are not allowed in typeoftypeoftypeof. Since, further,
qualifiers are discarded upon lvalue conversion, omitting the mention that these arrays are
broken would not change nothing in the semantics of any expression. The qualification is
introduced so that properties of unqualified arrays do not change by the introduction of
broken arrays.

Now, should any array with selection, or any one with a >1-dimensional selection or a
[B:L:s] selection where s is not an ICE with value 1 be called “broken”, or only those ac-
tually broken? Consider the expressions

A[0:8:s];
A[:][0:l];

These expressions are broken arrays or not according to the runtime value of s and l re-
spectively. Attaching the qualifier only to those actually broken means that the type of an
expression cannot be determined during translation. But the qualifier has not been intro-
duced in the type system, as explained above, and an implementation can ignore it com-
pletely, as if it didn’t exist. A translator need only keep track of the selection carried by an
array, irrespective of how the standard chooses to call it. The only place it could be notice-
able is as operand to typeoftypeoftypeof, and there arrays with nonempty selections are not allowed,
whether broken or not. For these reasons we prefer to phrase the text in a way that only
actually broken arrays, where the memory layout is not the same as that of a plain array,
are deemed broken. If the qualifier were introduced in the type system and the address to
broken array taken, brokenbrokenbroken T* should mean pointer to potentially broken array, just as
constconstconst T* means pointer to potentially const object. Our choice leaves this possibility open
for the future.

Consequences for implementations

Impelementers can ignore the broken qualifier altogether. The type of a broken array can-
not escape from the expression designating the array itself. To say that this type is quali-
fied is needed for the consistency of the type system and the standard in various parts, but
the only thing that an implementation needs to care about is the memory layout; i.e.,
where is each of the selected elements, in order to retrieve them for the range operation of
which it is part, in case it is part of such an operation.

Changes need to the wording in “Types”

And in “Representations of types”. Some change is needed, since broken arrays do not con-
form to the descriptions given there: Unlike ordinary arrays, they are not a contiguously al-
located set of objects and they cannot be copied in an object of its size with memcpy. We
can think that the paragraph containing the remark on memcpy can be valid for broken ar-
rays if we interpret the use of memcpy as an example that need not apply to all types. Ar-
rays carrying a selection with step zero pose a problem, since they are not represented “us-
ing n (bytes), where n is the size of an object of that type”. A detailed reading of that para-
graph in connection with the second one, which says that “Except for bit-fields, objects are

9

composed of contiguous sequences of one or more bytes”, reveals that the paragraph with
the remark on memcpy is taking for granted that the object bytes are consecutive; memcpy
is mentioned as an example amongst other ways to copy the object bytes into an array of
unsigned charunsigned charunsigned char, and is not intended to mean a method that can be applied on some type of
objects and on others no.

As we noted in the previous paragraphs, brokenness is present in the wording solely
because it is formally needed. So, the least intrusive the changes in the wording, the better.
Therefore, we just make broken arrays also an exception in those subclauses, note that
their elements are not stored consecutively as in a plain array, and refer to the section on
range selections for the description of how exactly they are laid in memory (in the abstract
model).

The type of A[B:L] for nonconstant L

A variable length array

The type of A[B:L] is always typeoftypeoftypeof(A[0])[L], possibly broken. Consider

A[0:n] /= 2;

It seems that an implementation should support this even if it does not support variable
length arrays. A closer thinking reveals that the equivalent to A[0:n] is not an object de-
clared as a variable length array but a “for” loop. The translator need not handle any
memory allocation.
C23 does not require support for VLA of automatic storage duration. We also have from

the standard that An lvalue is an expression (with an object type other than voidvoidvoid) that po-
tentially designates an object; So, A[0:n] is an lvalue and designates an object which may
have (and will typically have) automatic storage duration and is a VLA. We want support
for these mandatory.

The wording for making these mandatory should be in the text explaining the meaning
of the ______STDC_NO_STDC_NO_STDC_NO_VLA__VLA__VLA__ macro, which states what is not mandatory. Then, the wording
for the latter can take an include approach or an exclude approach. On the one hand, it
may state precisely which VLAs are not mandatory. These would henceforth be the objects
with automatic storage duration declared as VLA. On the other it may rule out which ones
are not mandatory.

First approach:

______STDC_NO_STDC_NO_STDC_NO_VLA__ VLA__ VLA__ The integer constant 1, intended to indicate that the implementation
does not support the declaration of variable length arrays with automatic storage duration.

Second approach:

______STDC_NO_STDC_NO_STDC_NO_VLA__ VLA__ VLA__ The integer constant 1, intended to indicate that the implementation
does not support variable length arrays with automatic storage duration which are not part
of an object of known constant size.

The second approach is more conceptual, focusing on the reason why those which arise
from a range selection should be mandatory, not mentioning specifically range selections.
If there were other instances in the language of those, they should be mandatory. There is
one corner case:

unionunionunion{intintint a[100]; intintint b[n];} u;

10

Here, b is part of the larger (or equal) object u. This should not be made mandatory. There-
fore, we took the first approach.

Stepped selections

We want also to allow “stepped” selections: A[0:5:2], which selects the elements A[0],
A[2], A[4], A[6], A[8]. Or A[0:n:2], which would select A[0], ... A[2(n-1)]. The third
integer in the selection is the step, which can be positive, negative, or zero with some re-
strictions, and need not be an integer constant expression.

All we have discussed applies to stepped selections, with one exception: a stepped se-
lection as the first, outermost one. This creates from the outset an array with its first di-
mension broken, but this poses no problem.

Needless to say, if s is negative it is the highest element which is operated first:

A[2:3:-1]= B[0:3]; // A[2]=B[0], A[1]=B[1], A[0]=B[2]

A[8:3:-3]
lvalue conv.

 {A[8],A[5],A[2]}

s equal to zero

s might evaluate to zero. If the array with selection undergoes lvalue conversion, L copies
of the element A[B] will fill the array. Before lvalue conversion the array has L elements,
even if they will share the same location in memory. s cannot be zero if the array is the left
operand of an assignment:

A[n:10:0]+=1; // Not allowed

In the proposed wording, instead of saying “if s evaluates to zero the array shall not be
the left operand of an assignment operator” we write “an array which carries a stepped se-
lection where the step is zero shall not be the left operand of an assignment operator”.
This is to make unambiguous that the following is valid:

A[6:10:0][2]= 2.0; // Equivalent to A[6]= 2.0.

It also makes valid, according to the precise definition of stepped selection that will be
given, an s equal to zero provided L is one (or zero, see below “Selections of length zero”):

A[6:1:0]= 2.0; // Valid. Equivalent to A[6]= 2.0.

The array A[B:L:0] has l elements. If l is ≠1, its layout is very different from a plain
intintint[l]; its l elements share the same space in memory. For this reason its type has to be
qualified somehow. We could say that it is collapsed, but we prefer to reuse the broken
qualification for this.

Definition of broken array
Broken does not necessarily mean spread out, but having a layout different from the unqual-
ified array; An array is broken if any of these happens:

— It’s elements are broken.

— It’s elements are not stored consecutively, with the 0th first, the 1st second, etc.

11

The kind of expressions allowed for B, L and s
We believe it should not be more than conditional expression. As regards side effects, our
opinion alternated between prohibiting them and allowing them. Side effects would com-
plicate the translation and be a source of bugs, as in A[n:n++]=0 or A[0:b[0]=3] +
b[0:3]. On the other side, these constructions have parallells in what can currently be
done:

n= n++; (b[0]=3) + b[0]

As for the complication in the translation, side effects within the brackets are unsequenced
with respect to the range operation. This actually makes translation easier, for the trans-
lator can choose the point at which side effects take place, though not useful, since the res-
ult is not well defined. This also has parallells in current code: A[A[0]++] may evaluate to
A[A[0]] or to A[A[0]+1] or, in theory, to A[i] for any i, if the value of A[0] is being up-
dated while being read as the subscript for the outermost A, or to any value whatsoever if
the the outermost A wants to read A[0]. Finally, there are use cases that seem natural, as

A[0:n++]= x; A[k:3] = B[f(k):3];

So in the end we allow them. We will say more about the order of evaluation in “sequence
points” below.

Conditional expressions cause no ambiguity in the interpretation of :. Parentheses can
ease readability: A[(b ? 0:n) : n].

Range operation
Whenever an expression is of the form A[R]... op B[R’]... , where op is an operand that op-
erates the element to its left with the element to its right and [R] and [R’] are range se-
lections, the number of selected elements in [R] and [R’] have to be the same, call it n,
and the expression is equivalent to

A[si]... op B[si]..., 0 ≤ i < n

A[si] and B[si] run through the selected elements. Similarly if the operation is of the form
A[R]... op s, where s is a singleton. We will call this a range operation, say that op acts as a
range operator and that A[R] and B[R’] are treated as a range of objects.

If the elements that are operated are A[] op B[]; this is, two matrices that do not de-
cay to pointers, either because they appear us such in the code or because they are each of
the operations into which a range operation decomposes, the elements are usually oper-
ated one by one, as thought it were A[:] op B[:], and we still call this a range operation.

Restrictions on the values of B, L and s
In general, the restrictions pursue that the indices b+i*s, with 0 ≤ i < l, fall within bounds.
But there are exceptions: If the expressions are integer constant expressions, the restric-
tions applies only when the range selection is not discarded. If they are not constant, they
apply only if (and each time that) the expression is evaluated; this cannot be otherwise, for
it doesn’t make sense to impose any requirement on the value of an expression that is not
evaluated. The ICE case goes to “constraints” sections, while the other case is treated in
“semantics” sections.

This dichotomy of ICE and not ICE causes some duplication of conditions, placed as a

12

constraint for ICE and repeated in the “semantics” section for non-ICE. Not all of them are
duplicated, however. Some “absurd” values that are forbidden if given by an ICE are al-
lowed if the expression is not an ICE, provided it will not cause an out-of-bounds access.
For example, a negative value for b is allowed provided l is zero, the latter in turn only al-
lowed if L is not an integer constant expression. Likewise, a step zero at the left hand side
of an assignment expression is outright forbidden only if given by an ICE.

Not all restrictions placed on ICE values are turned off in discarded contexts. When
two array lengths in the same expressions need be the same, this is enforced also in dis-
carded code, because otherwise the type of the expression would not be well defined:

sizeofsizeofsizeof(A[0:6]+B[n;7])

Array subscripting applied to an array with selection
Consider the following:

intintint A[9][6];
A[5:4][0];
A[5:4][1:2][0];

The following appealing interpretation, in which the [k] operand applies to each of the se-
lected elements:

A[5:4][0]; // {A[5][0], i, i, i, A[6][0], i, ... A[8][0]}
A[5:4][1:2][0]; //Wrong, there are not three dimensions

is at odds with the definition of the [k] operation as selecting the k-th element of the ob-
ject to its left. A[5:4][0] should be A[5]. This means that for the [k] operator the array
of selected objects should not be treated as a range of objects. The semantics of the above
examples should be:

A[5:4]; // {A[5][0], ... A[5][5], A[6][0], ... A[8][5]}
A[5:4][0]; // A[5] = {A[5][0], A[5][1], ... A[5][5]}
A[5:4][1:2][0] // {A[5][1], A[5][2]}

If the user wants to select the 0-th element from each selected array, he should write

A[5:4][0:1];

Stepped selections result in holes between the selected elements For example, the layout of
A[10:4:3] is

{s, i, i, s, i, i, s, i, i, s},

where i stands for “ignored” and s for “selected”.
Any array A[10:4:s], where s may not be an ICE, can be represented as {s, s, s, s},

where it is not understood that the elements are consecutive in memory. Its elements will
be denoted by [0] ... [3]. A[10] is the one denoted by [0], whether s be positive or negat-
ive. In general, in a selection A[B:L:s], the i-th element, A[B:L:s][i], is the one at A + b
+ (i-1)*s, and 0 ≤ i < l.

Note in passing, that if such a broken array is part of an array, saying for the enclosing
array that its elements are or not stored consecutively doesn’t make sense. For example,
consider intintint A[5][10] and intintint B[5][20], and the selections A[0:2:2][0:3:2] and

13

B[0:2][0:3:2], that have identical layouts. Can we say that the two elements of A are not
stored consecutively but those of B are?

All the above applies before lvalue conversion. After lvalue conversion there is nothing
to say about its memory layout, for it is, conceptually, just a value, an abstract array with
its singletons having values of a certain type.

Pointer to one of its elements; valid offsets
We forbid taking the address of an array with nonempty selection. But the address of one
of its elements may be taken and the user can make use of that pointer to access elements
from the array:

intintint A[10], B[6][6];
intintint *p= &A[0:4:3][0];
intintint *q= &B[:][0:3][0][0];

The arithmetic for these pointers is the same as that of any other pointer to intintint (it cannot
be otherwise). As with any other pointer to an array element, defined behavior is only en-
sured if the pointer is used to access elements from the array it was extracted from, not
from any larger array of which the former array is a subarray:

p[0]=0, p[3]=1; // Valid
p[1]=2; p[0]=p[4]; // Invalid (U.B.)
q[2]=q[1]=q[0]=4; // Valid
q[4]=0; // Invalid

This restriction allows the compiler to reason about elements not modified by the
pointer:

intintint A[6][3], B[6][6];
intintint *q= &B[:][0:3][0][0];
/* Operations using q */
A[:][:] = B[:][3:3];

In the code above the compiler can reason that no access through q modifies the upper
three elements of each B[i], and advance the reading of those elements, needed for the last
instruction (e.g., by placing the whole instruction before others using q in the generated
code). Here is another example:

intintint A[6], B[6];
intintint *q= &A[3:6:0][2]; // q is &A[3]
q[0]=5; // Modifies A[3]
q[1]=1; // Invalid

The element of which the address is taken can itself be an array, but not an array with
selection:

intintint A[6][6];
intintint (*p)[6]= &A[0:4:3][0];
p= &A[:][:][0]; // Invalid: address of an array with selection

14

3 RELATIONAL OPERATORS AND EMPTY SELECTIONS

0-dimensional selection
After the declaration intintint A[3][3] we have the following possibilities with respect to the
dimensions of the selection (its depth) and that of the selected elements, to which we add
now the last entry:

Selection Dim. of selection Dim. of selected elems.
A[:][:] 2 0
A[:] 1 1
A[] 0 2

The last option selects the matrix as a whole. It has one selected element, which is a
3×3 matrix. This is the formal explanation. In practice for the programmer it means that
the matrix is treated as a whole, for instance for the == and != operators, and that it does
not decay to a pointer, the latter formally because it carries a selection. An empty selection
is a selection of depth zero.

Once we have settled onto providing some way to perform a 0-dim. selection, a syntax
has to be chosen for it. We considered two options:

[A] A[]

None of them presents incompatibilities or ambiguities with the current uses of the []
operator. The first one, since for its use as array subscripting an expression must precede
it, while in the construction [A] here, an expression cannot precede it. For the second one,
an empty [] is only allowed in declarators, and even there only in some places.

The second one is in keeping with the syntax of the other range selections. On the other
hand, the semantics of a zero dimensional selection is essentially to avoid the matrix de-
caying to a pointer. It has no effect when applied to a matrix that already carries a selec-
tion:

A[0:5][][:] is equivalent to A[0:5][:]

and it wouldn’t be needed for the == operator if its operands did not decay to pointers.
With this view, the syntax [A] conveys the idea that the brackets protect the matrix; then
we could say that a protected matrix is never converted to a pointer. It also becomes
clearer that this matrix-protection operator has no effect on an array with selection, which
cannot already decay to a pointer:

[A[0:5]] is equivalent to A[0:5]

If the protection of a matrix is part of the replacement text of a macro, this may lead to
the occurrence of two consecutive [tokens: [[A]], which has the syntax of an attribute.
This can be solved by defining the macro as

#define#define#define protect(a) [(a)]

The other obvious choice, [a], is not possible because of the decision of C of interpreting
[[not as one token but as the succession of two tokens.

A more important reason strikes a death blow on this syntax: An array within brackets
may be needed, and will very likely be in some implementation providing the extension, for
specifying an arbitrary sequence of indices to be selected:

15

unsigned unsigned unsigned intintint I[3] = {0,4,3};
floatfloatfloat B[3], A[10];
B[:] += A[I];

Strictly speaking, this does not rule out the [A] syntax for a zero selection, since in one
case the operator must be preceded by an expression of array or pointer type and in the
other case it cannot. But using the same syntax for two different operations with the same
possible type for the operand is a very bad choice if it can be avoided.

Therefore, we chose the A[] syntax over the [A] alternative.

Equality operators
What should A[:] == B[:] yield? From the point of view of the == operator it should eval-
uate to true if all elements are equal. From the point of view of a range operation it should
yield an array of 0’s and 1’s. It will eventually become unavoidable to provide syntax for
the two options. If either or the other choice is taken for the equality operator, it seems
that another operator would be necessary for the other.

Let us analyse the range operator point of view:

intintint A[3][3], B[3][3], C[3][3], D[3], E;
C[:][:] = (A[:][:] == B[:][:]);
D[:] = (A[:] == B[:]);
E = (A[] == B[]);

Making == operate as any other operator on the range of selected values lets the pro-
grammer choose at what level the comparison is carried: At each singleton level, resulting,
in the example, in a 3×3 matrix; at the level of the next to last dimension, comparing vec-
tors, the result being true if all components are equal, yielding the value assigned to D in
the example, which is equivalent to

D[0] = A[0][0]==B[0][0] && A[0][1]==B[0][1] && A[0][2]==B[0][2];
D[1] = A[1][0]==B[1][0] && A[1][1]==B[1][1] && A[1][2]==B[1][2];
D[2] = A[2][0]==B[2][0] && A[2][1]==B[2][1] && A[2][2]==B[2][2];

Or comparing all the elements yielding a single value, assigned to E in the example. Thus
there is no need for two different operators, just syntax for a 0-dimensional selection.

Therefore, the right choice is to treat == and != as any other binary operator and oper-
ate on the selected elements.

We define A != B to be !(A == B). Here, the result of A == B is a matrix with all its
singletons selected, and ! negates each of them. For example, with A and B as above,

A[:] != B[:] is equivalent to !(A[:] == B[:])

A[:] == B[:] yields an array of three elements with all its elements selected, and the !
operator negates each of them. That is, the result is equivalent to

[0] = !(A[0][0]==B[0][0] && A[0][1]==B[0][1] && A[0][2]==B[0][2])
[1] = !(A[1][0]==B[1][0] && A[1][1]==B[1][1] && A[1][2]==B[1][2])
[2] = !(A[2][0]==B[2][0] && A[2][1]==B[2][1] && A[2][2]==B[2][2])

16

Relational operators
The relational operators are <, >, <= and >=. When a relational operator is applied to an ar-
ray with selection we mandate that the selected elements be singletons. This excludes the
analogous to A[:] == B[:] or A[] == B[] in the examples above. While it is clear that
two vectors or matrices should compare equal only if all elements compare equal, it is by
no means clear that A should be < B if all elements of A are less than all corresponding ele-
ments of B. Furthermore, this would make < and > not the opposite of >= and <= respect-
ively.

That semantics can be achieved with the current proposal, though an intermediate vari-
able is needed:

C[:][:] = (A[:][:] < B[:][:]);
(C[] == 1)

The equivalence of matrix without or with 0-dim. selection
We saw that an empty [] selection is sometimes needed for preventing the matrix to decay
to a pointer (we recall, we called this to protect the matrix). Both:

E[] = D[]; and E = D[];

are possible and have the same meaning.

E[] = D; and E = D;

are not possible, because D decays to a pointer (but they still have the same meaning).
For passing the matrix as argument to a function, in the event that function arguments

are extended to allow arrays, the 0-selection is the most natural syntax;

doubledoubledouble determinant3(doubledoubledouble A[:3][3]);
determinant3(Α[]);

It is also the most natural option when we want the type of a matrix to be that of an
identifier declared with inferred type:

autoautoauto a = Α[]; auto auto auto a = Α[:]; autoautoauto a = Α[::];

All three forms are equivalent, but it seems that the first one conveys meaning better, since
the selection is irrelevant.

In the three examples, the [] operator has no other function than to protect the mat-
rix. We’d like that to be the general case; that is, there should be no semantic difference
between a matrix which does not decay to a pointer and a matrix with a zero selection. If
we want to preserve this in the current proposal we may need to allow matrices with 0-di-
mensional selection in places where we will preclude matrices with selection. This will be
treated in the next section. It turns out there are only two such situations:

&A[] typeoftypeoftypeof(A[])

We forbid taking the address of an array with selection or placing it as the argument of
typeoftypeoftypeof because it can be problematic for broken arrays. There is no problem therefore in
allowing arrays with zero dimensional selections there. It should be noted that this does
not make a selection like A[B:L][] allowed as operand for those operators, which would

17

completely break our decision of not to allow arrays with selections in those places, be-
cause a [] selection applied to an array which already carries a selection has no effect:

intintint A[5][5];
&Α[]; &Α[0][]; //Allowed
&&&Α[0:1][]; //Not allowed. Α[0:1][] carries a nonempty selection.

4 RESTRICTIONS ON ARRAYS WITH SELECTION

Inconvertibility to pointer
As already noted and assumed in the previous sections, an array with selection is not con-
vertible to a pointer. Far from being a defect we see this as an advantage, for it opens the
door to arrays being used in many places it is currently impossible; some of these have
already arisen, others will come up later.

Restrictions for broken arrays before lvalue conversion
The type and layout of an array before lvalue conversion is needed in particular in these
contexts:

typeof operators sizeof & operator

sizeof

intintint B[10][10];
sizeofsizeofsizeof(B[2:3]); // sizeofsizeofsizeof(intintint[3][10])
sizeofsizeofsizeof(B[:][0:5]) // sizeofsizeofsizeof(intintint[10][5])
sizeofsizeofsizeof(B[2:3][0:5][0]) // sizeofsizeofsizeof(intintint[5])

The value “returned” by the sizeofsizeofsizeof operator is the same before and after lvalue con-
version. Therefore, we allow arrays with selection as operands to sizeofsizeofsizeof unconditionally.
The size of A[B:L] and A[B:L:s] is always l*sizeofsizeofsizeof(A[0]), where l is the value to which
L evaluates.

If s is zero, the size in memory is sizeofsizeofsizeof(A[0]), not l*sizeofsizeofsizeof(A[0]). We prefer to
keep the value which sizeofsizeofsizeof yields as l*sizeofsizeofsizeof(A[0]). This means that for these arrays
sizeofsizeofsizeof does no return the number of bytes the object takes in memory. But returning this
latter value would constitute an exception to the rule l*sizeofsizeofsizeof(A[0]), i.e., ___CountofCountofCountof(A) ​
*sizeofsizeofsizeof(A[0]), and this would bring in many problems: The value given by sizeofsizeofsizeof
would not be the size needed to store the array value in some other object; sizeofsizeofsizeof(​
A[B:L:s]) would no longer be an ICE whenever L is, but both s and L need be integer con-
stant expressions, sizeofsizeofsizeof would not return the same value for all objects of type T[l], and
sizeofsizeofsizeof would return different values before and after lvalue conversion of its argument.

& operator

A pointer to a broken array addresses an object with a different memory layout as a
pointer to a plain array. Therefore, it must carry the broken qualifier; i.e., it is a pointer to
a broken array. This is consistent with the way qualifiers work.

18

The pointer needs to remember the memory layout of the array it points to; i.e., the ex-
act way the array is broken. This information on the layout is copied with the value:

intintint B[10][8], C[6][4];
intintint (*p)[brokenbrokenbroken 5][2], (*q)[brokenbrokenbroken 5][2];
typeoftypeoftypeof(p) p2; typeoftypeoftypeof(q) q2;
p= &B[0:5][0:2];
q= &C[0:5][0:2];
&p[1][0] - &p[0][0]; // 8
&q[1][0] - &q[0][0]; // 4
p=q;
&p[1][0] - &p[0][0]; // 4

Thus, allowing the & operator on broken arrays would require the enlargement of the
type system and the emergence of fat pointers, and not of the simplest kind; brokenness
would no longer be an ephemeral property of some arrays with selection with no impact in
practice on the programmer or even on implementers. Consider for instance function para-
meters: A parameter declared as intintint (*p)[brokenbrokenbroken 2] does not determine the layout of *p.
The compiler would need at runtime the hidden data carried with a broken pointer in order
to compute the address of (*p)[1].

This is way more than the present proposal intends. Therefore, we disallow the & oper-
ator in arrays carrying a range (i.e., nonempty) selection.

typeof

Since we do not want to extend the type system we should not allow typeoftypeoftypeof on broken ar-
rays, or if allowed the broken pseudo-qualifier should be dropped. The latter option would
make typeoftypeoftypeof inconsistent in the event that brokenbrokenbroken is fully integrated into the type system,
allowing pointers to broken objects to be declared and constructed. We could still allow
typeoftypeoftypeof when applied to unbroken arrays that are known to be unbroken during the trans-
lation of the expression (i.e., the brokenness or not of which only depends on ICEs). But we
prefer the simpler specification that no array with nonempty selection is allowed as oper-
and to typeoftypeoftypeof.

Implementation experience will show whether implementations choose to allow arrays
with selection in typeof_typeof_typeof_unqualunqualunqual or are reluctant to it, informing the eventual standardiz-
ation. For the time being, we allow it.

Other Restrictions
An array with selection cannot be the argument of a function call. This is not something we
impose but a consequence of the fact that those arrays do not decay to pointers, and func-
tions cannot take arguments of array type.

In places where the object is needed for its type, an array with selection is strange: the
intent of range selections is to select several elements from the array, to be operated, not
to place the array inside typeoftypeoftypeof(), say. More generally, whenever the array with selection
would be placed in a position where the action would not be to operate individually on the
selected elements, i.e., where the operation would not be a range operation, its use is ques-
tionable. We have identified these places:

Argument to function

19

_Generic, controlling expression

auto, initializer for a type inferred declaration

_Countof

alignof

unary *

in addition to [k], typeof, sizeof, and & treated above, and casts treated below. Of these,
we have chosen to allow _Generic, auto, _Countof and alignof, though the latter case can-
not arise.

Argument to function

The selection causes the function to act as a range operator, being called several times,
each time taking one of the selected elements, as will be explained below. Therefore, an ar-
ray with a range selection can be written as part of the argument list of a function-call ex-
pression, but will never be the argument of an actual function call.

_Generic

The controlling type of a _Generic_Generic_Generic selection is taken from its controlling expression after
lvalue conversion, so there is no problem with respect to brokenness. Further, since arrays
with selection do not decay to pointers, they are a way of making the controlling type an
array type, which is not possible with arrays not carrying a selection.

There is no need to perform any change in the wording for this operator.

auto

The situation is similar as for _Generic_Generic_Generic: the type is taken from the initializer after lvalue
conversion. Here we are interested in allowing arrays with selection, for it makes sense
that it is the number of selected elements what we are interested in, and because it is the
only way of declaring an identifier with array inferred type:

intintint A[10][6];
autoautoauto p = A; // int(*)[6]
autoautoauto a = A[]; // int[10][6]
autoautoauto b = A[:]; // int[10][6]
autoautoauto c = A[0:5][3:3]; // int[5][3]

alignof

alignofalignofalignof can only be that of the corresponding full array, and in any case this operator
only takes a type name, not an expression.

unary *

This is impossible, since arrays with selection are no convertible to pointers.

20

5 CASTS

Casts apply to values, not to lvalues. This simplifies the design. At present the type name of
a cast cannot specify an array type. This is because it cannot possibly apply to an array,
which would be the only type that could be meaningfully cast to an array type. An array is al-
lowed as the operand, but it decays to a pointer. As we now have arrays that do not decay,
these should be allowed to be cast to arrays. The resulting value also carries a selection (and
cannot be converted to a pointer, but this already follows from it being a value, not an
lvaue). However, in the end with did not include these array casts in the proposed wording.

Changing the singleton type
For example:

A[:] = (floatfloatfloat)B[:];

A programmer writing this expresses the intent that he wants each value of B to be
converted to floatfloatfloat. This per-element conversion avoids the copy required by casting the
whole array. For this to be possible we have to make the cast operation a range operation.
At first this seemed strange, but considering use cases we realised that not only it is useful
but that it is going to be by far the most common use of array casts:

intintint *A;
unsigned unsigned unsigned intintint *s;
A[0:n] += (intintint)s[0:n];

for example.
By making a cast a range operation it gains in expressivity, just as we did for the == op-

erator. Unlike for this operator, we allow the array to which it applies to carry only the
two extreme kinds of selection: either its selected elements are singletons or it carries an
empty selection. The intermediate cases appear of very limited use. We refer to those two
casts as the range cast and the array cast. If the selected elements are singletons (range
cast), the type of the cast can be anyone that is allowed for the singleton.

The compiler need not store the resulting array in memory. For example, if B is of type
doubledoubledouble[4][4], the expression

(floatfloatfloat)B[:][:];

has type floatfloatfloat[4][4] and carries a selection of singletons. This result will be used in one
of the following ways: ignored; in a place where the value of the singletons is not needed
(e.g., in sizeofsizeofsizeof), or as an operand of a range operation, where each element will be oper-
ated at a time (or in groups of four to take advantage of vector instructions, say), and the
compiler knows it can convert the values one by one as they are being operated.

Array cast
(As noted, these were finally left out)

Other than to its own type, an array may be cast to a different array of the same
singleton type and less or equal total size:

floatfloatfloat A[4][4];

21

(floatfloatfloat[2][4])A[];

This allows a multidimensional array to be treated as a vector, as in the following example
for bidimensional arrays:

#define#define#define len2(x) ___CountofCountofCountof(x)*___CountofCountofCountof((x)[0])
#define #define #define VEC(x) ((typeoftypeoftypeof((x)[0][0])[len2(x)]) (x)[]);

floatfloatfloat A[n][3][k], (*B)[k];
#define#define#define Ã VEC(A)
forforfor(intintint i=0; i<3*n; i++) B[i][:]=i*Ã[i][:];

Note however that the reverse assignments are not possible: the result of a cast is not an
lvalue.

The casts of this type that make more sense are the ones collapsing several dimensions
into one, splitting one dimension into several ones or restricting the outermost length. But
we do not see why other combinations should be prohibited, as long as the size of the tar-
get type is ≤ the size of the operand. The compiler may warn upon conversions that break
the dimension layout:

intintint A[6][6];
(intintint[7][5])A[]; //Possible warning
(intintint[3][12])A[]; //Possible warning
(intintint[15])A[]; //Possible warning
(intintint[18])A[];
(intintint[2][3][6])A[];

Variants of the element type in the cast

In an array cast we allow (that is, if we included array casts in the wording) casts to an ar-
ray type with a compatible type for the singletons. We also allow any qualified or atomic
version of the type; as for any other cast; these qualifiers and being atomic are lost in the
cast.

6 ASSIGNMENTS

Assigning an array
We allow the following:

intintint A[3][4], B[4];
A[:] = B[]; //Equivalent to A[0][:]=B[:], A[1][:]=B[:], etc.

If the left operand carries a selection where the selected elements are arrays (or if it car-
ries no selection, for a left operand in an assignment does not decay to a pointer), the right
operand shall be an array with a selection matching the dimensions of those selected ele-
ments. Here follow some examples:

intintint C[2][3][4] A[3][4], B[4];

22

A[:] = B[]; //Allowed
A[:] = B[:]; //Not allowed
C[:] = A[]; //Allowed
A[] = C[0][]; //Allowed. Can also be written A = C[0][]
C[:] = A[:]; //Not allowed
C[:] = A[:][:]; //Not allowed
C[:][:] = A[0][]; //Allowed
C[:][:] = A[0][:]; //Not allowed
C[:][:] = A[0][:]+B[:]; //Not allowed
C[0][0][:] = A[0][:]+B[:]; //Allowed, singletons
C[:][:] = C[0][0][]; //Not allowed, for different reason

If we want to copy the result of A[0][:]+B[:] into each C[i][j] we need an interme-
diate variable:

intintint D[4];
D[:] = A[0][:]+B[:];
C[:][:] = D[];

The effect of the intermediate variable D is to forget the selection; the selection of A[0][:] ​
+B[:], which is a selection of singletons. Writing

C[:][:] = (A[0][:]+B[:])[];

does not solve the issue because (A[0][:]+B[:])[] carries the same selection as A[0][:] ​
+B[:]; namely, a selection of singletons.

Here are other examples, where the right array carries a range selection:

intintint A[3][4][5], C[3][5], D[3][5];
A[:][:] = C[:];
C[:] = D[:]; // C[0] = D[0], etc. Equivalent to C[:][:] = D[:][:];

That this is to be allowed follows from the general rule that A[:]... op B[:]... means
A[i]... op B[i]..., 0 ≤ i < ___CountofCountofCountof(A). Hence, in this example, A[0][:]=C[0], etc. (more
formally, A[0][:]=C[0][]; i.e., C[0] does not decay to a pointer).

The reason we do not allow the ones we do not allow is twofold: In the first place, code
using those expressions can be very confusing to read and understand. It is not clear
whether the right array is being assigned to each selected element (of array type) at the
left, as the not allowed A[:] = B[:] above, or whether it is a per-element assignment as in
C[:] = D[:] here, which is allowed. Secondly, allowing those would require breaking the
rule for A[:]... op B[:]... For example,

intintint A[3][4], B[4];
A[:] = B[:]; //Not allowed

should be, according to that rule,

A[0] = B[0], etc.

which is not possible.
For similar reasons, the gray assignments on the right column are not allowed. The left

column displays the right way to write them:

23

intintint A[3][3], B[3][3], C[3][3], D[3];

C[:][:] = A[:][:] - B[:][:]; C = A[:][:] - B[:][:];
D[:] = (A[:] == B[:]); D = (A[:] == B[:]);
D[] = A[0][]; D = A[0][];

Overlapping in assignment
We do not allow expressions like

A[0:8] = A[1:8];
A[0:5] = A[4:5:-1];
A[0:8] = A[0:8]*A[3];
A[0:5] = A[0:5] == A[5:5]; //Assignment of a single value into five places.

The text on assignment expressions already includes the following requisite:

If the value being stored in an object is read from another object that overlaps in any
way the storage of the first object, then the two objects shall occupy exactly the same stor-
age and shall have qualified or unqualified versions of a compatible type; otherwise, the be-
havior is undefined.

This makes undefined the first of the following assignments, but no the second:

unionunionunion {intintint i; shortshortshort j} a;
a.i = a.j;
a.i = a.j + 0;

In the second assignment, the value stored in a.i is not read from an object, but is the res-
ult of the expression a.j+0.

For range operations we need be stricter, in order to make possible for those opera-
tions to be translated into vector operations in machine code. For example,

A[0:8] = A[8:8]*B[0:8];
A[0:8] = A[1:8]*B[0:8];

In the second assignment, the vector instructions may not produce what is written.
For this reason we require that no element which is written to is read at the right of

the assignment operator, except for the computation of itself. Thus, the first two assign-
ments below are allowed but the next two are not:

A[0:8] = A[0:8]*A[0:8];
A[0:8] = A[0:8]*A[8:8];
A[0:8] = A[1:8]*A[1:8];
A[0:8] *= A[3];

The condition that an element not be read has to be understood in the abstract ma-
chine. For example, in

A[0:8] = B[0:8] + 0*A[1:8];

the implementation may choose not to read A[1:8], but in the abstract machine it is read
and the behavior is undefined.

24

Whether some “forbidden” element is read at the right might depend on input, or on
the code of a function unknown to the translator, as in

A[0:8] = f(A);

The wording of the condition needs no adjustment. If, during execution, no forbidden ele-
ment is read, the behavior is defined; otherwise, it is not. If, had the program been trans-
lated according to the abstract machine, some forbidden element would have been read,
but it is not according to how the program was actually translated, then the behaviour the
program exhibits is right under any possible interpretation. It may happen that the ele-
ments read depend on some input that in turn depends on how the program is exactly
translated, but that is already the case for constructions existing in the language:

p[3]++ + f(p)

Here f may end up reading some or other element from the array pointed to by p depend-
ing on some input.

Overlapping in the range

We could also make undefined any overlapping in the range expressions with the array be-
ing assigned to:

A[0:A[0]] = 6;

The translator must evaluate L and B (as in A[B:L]) before translating the assignment, so
the construction does not seem problematic. The situation gets more complicated if A[0] is
also used at the right:

A[0:A[0]] = A[0:4]*2;

For this instruction to have defined behavior A[0] has to be 4 before the assignment,
which means that it will be eight after the assignment, but there is again no ambiguity.

In the previous examples, the program will exhibit a different behaviour if the trans-
lator translates it as follows: First compute all values of B’s present in the instruction; then
compute and assign the first value in the range assignment (which does not depend on the
values of L or s); then evaluate the expressions L’s and s’s and compute the rest of the as-
signment.

We don’t think the previous is a desirable behaviour. We therefore would mandate
evaluation of B, L and s before the range selection and don’t restrict them as regards over-
lapping with the object being assigned to. Actually, there is no wording needed for this; the
standard already includes

The value computations of the operands of an operator are sequenced before the value
computation of the result of the operation.

The value of A[b] is part of the result of the operation A[B:L] or A[B:L:s]. Hence, the
translator is required to evaluate B, L and s, which are operands, before evaluating A[b].

There remains the unspecification of whether the left or the right operand is evaluated
first, and this may cause undefined behaviour because of side effects in the expressions in
the range, just as for any other assignment instruction.

There is no need to extend the restriction on read elements at the right also to written
elements. This will happen if the right hand operand produces the side effect of modifying
some element assigned to by the assignment:

25

A[0:4] = A[0:4]++;

Expressions like this one already have undefined behavior because of two unsequenced
modifications to the same object.

7 GENERAL RULES FOR OPERATING ARRAYS WITH SELECTION

The general rules
The following assignments are all allowed:

floatfloatfloat A[4][6], B[4][6], C[4], f;
A[:][:] *= f;
A[:][:] += B[:][:];
A[:][:] *= C[:];

In the first of the assignments above we have a matrix carrying a selection of singletons
operated with a singleton. In the second one, two matrices carrying corresponding selec-
tions of singletons. In the third one, two matrices carrying selections of singletons but not
matching.

In a range operation, when both operands are arrays carrying a nonempty selection,
each pair of corresponding selected elements is operated, taking care of the fact that if
these elements are arrays they cannot be converted to pointers, even if they carry no fur-
ther selection.

When one operand carries a nonempty selection and the other operand is a singleton,
each selected element is operated with the singleton.

When these rules are applied to the expression A[:][:] += B[:][:], this implies that
each A[i] is operated with each B[i], i.e., A[i][:] += B[i][:]. Since these A[i] and B[i]
still carry selections, the rule applies again and we get that each A[i][j] is operated with
each B[i][j].

When the rules are applied to the expression A[:][:] *= C[:], we get again that each
A[i] is operated with each C[i]. Now the first ones still carry a selection but the C[i] are
singletons, and A[i][:] *= C[i] means A[i][j] *= C[i]; that is, each row of the matrix A is
multiplied by the corresponding element in the vector C.

Application of the previous rules when the selections are of different depth eventually
leads to an expression a op b where one (and only one) of the following holds:

1. both elements are singletons.
2. either a or b is a singleton and the other one is an array with no selection (or an

empty one).
3.a. either a or b still carries a nonempty selection and the other one is a matrix car-

rying no selection or an empty one.
3.b. both a and b are matrices with no (or empty) selection.

The first case will be the most common one and needs no wording. It is the one arising
in the three compound assignments above. The second possibility is generally not allowed,
and no wording will be provided for it in general. In case 3a, a rule will be stated according
to which the innermost selected elements of the array that still carries a selection shall be
arrays matching the dimensions of the other operand, and each selected element will be op-

26

erated with that other operand, as if it were case 3b, and this operation is done singleton
per singleton. Thus, if a is the operand that still carries a selection in case 3a, and A repres-
ents each innermost selected element from a, or if we are in case 3b and A is a, A[::] op
b[::] is performed. Here [::] represents [:][:]... , as many as the number of dimensions
of the matrices.

Thus, expressions that eventually lead to cases 1 and 3 are treated in the same way:
each innermost selected element of one operand (it may be the whole matrix if the selection
is empty), or the operand itself if it carries no selection, is operated with the analogous ele-
ments of the other operand, and the dimensions of one and the other must match (single-
tons in 1, matrices in 3).

Assignment, equality and relational operators

With respect to the case 3a, simple assignments (but not compound assignments) are a par-
tial exception in that the array which remains with selection must be the left operand. Thus,

floatfloatfloat A[4][6], C[6];
A[:] = C[]; //Allowed
C[] = A[:]; //Not allowed

This will be taken into account when listing the possibilities for the left and right operands
of assignment operators, so that the general rule can be stated with no exception.

Equality operators constitute an exception for cases 3 in that the result is not as
defined by the general rule, but is a single element for each A op b, as we have seen.

Equality operators allow the second case: A op s where A is a matrix with no selection
(or an empty one) and s is a singleton We have seen what its semantics is.

For relational operators the third case is forbidden.

Application to multiplications of matrices
The rule for the third case makes possible the multiplication of a matrix by columns:

floatfloatfloat A[4][6], B[4], C[6];
A[:][:] *= B[:]; // Multiplication by rows
A[:] *= C[]; // Multiplication by columns

Multiplication of a row from a matrix by a column from another matrix doesn’t involve
case 1 nor 3, and the way to accomplish it is not trivial:

floatfloatfloat a=0, B[m][k], C[k][n];
a += B[3][:]*C[:][4:1];

In this example the general rule applies first to B[3] and C, yielding B[3][i]*C[i][4:1].
Here the general rule applies again (each B[3][i] is a singleton), the result being

B[3][i]*C[i][j], 0 ≤ i < k, 4 ≤ j < 5 ;
i.e., B[3][i]*C[i][4], 0 ≤ i < k

This is an array with a bidimensional selection. This should be operated with the single-
ton a, the general being applied twice and the sum of the values stored in a. However, in
an assignment instruction the singleton cannot be the left operand. Even if the rules for
equality operators allowed it, it would result in an unspecified value for a due to the differ-

27

ent individual assignments being unsequence.
In general, performing the scalar product of two vectors is not possible, for the afore-

said reason. Since there is just one obvious semantics for s += A[:], where s is a singleton
and A[:] represents an array carrying a selection of singletons, that could be easily defined
in the wording. A compound assignment of this sort would be specified as a sequence of in-
determinately sequenced, as opposed to unsequenced, singleton assignments. This is the
case for function calls, as will be seen. Range compound assignments and range function
calls share that each of the individual instructions may have side effects on the same object
(range ++ and -- decompose to individual instructions with side effects on different ob-
jects).

Multiplying element by element two vectors is the prototype example of range opera-
tion. However, performing such a multiplication between a row from a matrix and a
column from other matrix is not not easy. The following would not work:

floatfloatfloat A[k], B[m][k], C[k][n];
A[:] = B[3][:]*C[:][4];

Because C[:][4] is simply C[4]. We need an intermediate bidimensional array of dimen-
sions [k][1] or a pointer-cast hack:

floatfloatfloat A[k], B[m][k], C[k][n];
((floatfloatfloat()[k][1])&A)[:][:] = B[3][:]*C[:][4:1];

In the previous examples, the fact that B[3] is part of a matrix is irrelevant. The only
thing that matters is that it is a vector (a one-dimensional array).

If range selections serve to make the code neater, the pointer-cast hack instruction
above is a counter-example to it. Array selections is a tool that should be used, not abused.
Even if some mechanism for operating a matrix in transposed order were available, it
might be better to write the multiplication of a row vector and a matrix with the combina-
tion of a “for” loop and a range operation:

unsigned unsigned unsigned intintint k,n;
floatfloatfloat *A; // A[k]
const floatconst floatconst float *B, (*C)[n]; // B[k], C[k][n]

memset(A,0,sizeofsizeofsizeof(floatfloatfloat)*k);
forforfor(unsigned unsigned unsigned intintint i=0; i<k; i++) A[:] += B[i]*C[i][:];

Multiplication by a column vector is easier:

floatfloatfloat A[4], B[4][6], C[6];
A[:] = B[:]*C[];

8 OTHER

The decaying of plain arrays to pointers
The subsection of the standard on additive operators includes the following constraint:

For addition, either both operands shall have arithmetic type, or one operand
shall be a pointer to a complete object type and the other shall have integer type.

28

So, the operand cannot be an array, which we know it can. The text at 6.3.3.1 on conver-
sions of other operands says that

An expression that has type “array of type” is converted to an expression with
type “pointer to type” except when it is the operand of [...]. The resulting
pointer points to the initial element of the array object and is not an lvalue.

But it is dubious that this text combined with the restriction allows an array as the oper-
and of the additive operator. It depends on whether we consider the expression at the left
of the + operator (say) to be directly the operand of the + or whether the conversion first
applies, thence it is the resulting pointer which is “seen” by the + operator. The conversion
does not take place irrespective of the operator the array is an operand of; hence, the array
is an operand of the operator in question. Note that the semantics does make explicit that
if both operands have arithmetic type, the usual arithmetic conversions are performed on
them, hinting at the need of an explicit mention of arrays as a possible operands. The ad-
mitted reading is that it is not needed.

Whatever interpretation one chooses, with the introduction of arrays with selection,
which are not converted to pointers, the text at the operator subclause must be explicit.

This also prompted the redefinition of the [k] array subscripting operator, which is no
longer defined as equivalent to (*((E1)+(E2))). This redefinition was the subject of an-
other proposal already approved.

Non-lvalues cannot decay

The decaying of an array to a pointer to its first element is intrinsically impossible, in the
abstract machine, if the array is not an lvalue. Some compilers allow it, giving rise, usually,
to nonsense code. In the first place, it is difficult to create that situation if not doing it on
purpose. Now there is are places where arrays may be operated, their value, and a non-
lvalue array makes perfect sense there. It is as difficult as before to achieve this if not on
purpose. The standard way (the only one?) is to call a function that returns a structure con-
taining the array.

If functions are allowed to return arrays, avoiding the encapsulation-in-structure trick,
the use of non-lvalue arrays becomes likely:

static static static const const const intintint base[3]={1, 2, 3};
typedeftypedeftypedef intintint int3[3];
int3 func(void);

func() == base[];

Here the comparison is testing whether func returned the base array.
Having to write func()[] to prevent the matrix from decaying to a pointer is a super-

fluous complication, because a value can only be used for its value and its type, not for its
address because is does not have one. Therefore, we have changed the paragraph defining
when an array is converted to a pointer, replacing expression by lvalue. In implementations
defining meaningfully values as temporary objects with an address, the address of the ar-
ray, or of its first element, can be obtained using the & indirection operator.

Literal 0 promoted to pointer
In a conditional operation, a common type has to be defined for the second and third oper-
ands. For this to be possible the types of those operands need be compatible or some rules
have to be defined in case they are not. The latter happens for null pointer constants,

29

pointers in general and pointer to voidvoidvoid. All combinations are possible except an ICE with
the value 0 and the value nullptrnullptrnullptr. For arrays, we will require that the singletons of one
and the other operand could be the operands themselves and define the common type ac-
cordingly. We exclude the combinations that need the value of the operand, not just its
type; that is, we exclude singletons that are ICE with value 0 as possible match to a pointer
or other null pointer constant (except, of course, if they match as integers, not as null
pointer constants). The constant (voidvoidvoid*)0 need not be excluded because in any combina-
tion where it is allowed as null pointer constant (i.e., taking into account its value, not just
its type) it is also allowed for its voidvoidvoid* type.

The following are not allowed, amongst others:

constexpr constexpr constexpr intintint A[3] = {0,0,0};
constexpr voidconstexpr voidconstexpr void *B[3] = {NULL, NULL, NULL};
1 ? A[:] : B[:];
1 ? (intintint[3]){0,0,0}[:] : (voidvoidvoid*[3]){NULL, NULL, NULL}[:];

The reason for not allowing this is that the reason for allowing them for scalar values
is missing. They need be allowed for scalars because 0 is a common way of indicating a
null pointer, so that, e.g., the following should be allowed:

p == q ? p : 0;
p == q ? p : NULL;

In the second line NULL might have been defined as 0. But in the example above A is de-
clared as an array of integers, so the values 0 it contains cannot be pointers. Here is an ex-
ample of an allowed combination. Both arrays have elements of pointer type. NULL might
have been defined as 0.

floatfloatfloat *A[3], *C[3];
A[:] = (floatfloatfloat *[3]){&a, &b, &c};
C[:] = x > 0 ? A[:] : (floatfloatfloat *[3]){NULL, NULL, NULL}[:];

We also exclude those combinations for the assignment operator in case the right oper-
and is an array. Thus, the first assignment below is valid but the second one is not:

voidvoidvoid *A[3];
A[:] = 0;
A[:] = (intintint[3]){0,0,0}[:];

A similar criterion is followed for the equality operators: if both operands are arrays with
selection the restriction is the same as for the conditional operator. If one is an array with
selection and the other is a singleton the latter may be a null pointer constant of integer
type in case the array’s singletons have pointer type or type nullptr_tnullptr_tnullptr_t, but the opposite is
not allowed: if the singleton operand has pointer type or type nullptr_tnullptr_tnullptr_t, so must have the
singletons from the array. The latter is also required in assignments but needs no extra
wording because the combination of a left operand of integer type and right operand of
pointer type or type nullptr_tnullptr_tnullptr_t is already not allowed.

Mixing arrays with selection and arrays which decay to pointers
Contrary to ANFV, we allow operating a matrix with selection with a matrix that decays to
a pointer:

30

intintint *A[3], B[3], C[4][8];
A[:] - B; // {A[0]-B, A[1]-B, A[2]-B}, with B converted to &B[0]
A[:] = C[1]; // A[i]= &C[1]

This affects the operators +, -, <, >, <=, >=, ==, !=, =, += and -=. If the programmer wants
this, the code can also be written avoiding the decay:

&B[0] + B[:]; or (intintint*)B + B[:]
A[:] - &B[0]; or A[:] - (intintint*)B
A[:] = &B[0]; or A[:] = (intintint*)B
A[:] < &B[0]; or A[:] < (intintint*)B

When writing B[:] (or B[0:L:0] for some L) instead of B is possible (with different se-
mantics), allowing a B that decays to a pointer can make the code confusing. This situation
arises when both a type T and a type “pointer to T” are possible as the operand. This can
be the case for the operators of addition, equality and simpe assignment, though it is diffi-
cult to come up with a natural example; see the examples of this in the wording. The work-
around, as shown in the examples above, is straightforward. So, it could be forbidden.
However, conversion of arrays to a pointer to its first element takes place in C depending
only on the operator, not on the other operand, and we prefer to keep this consistent. We
recommended compilers to issue a warning in these cases.

On modifiable lvalues
The definition of modifiable lvalue excludes arrays from it. If we look for “modifiable
lvalue” in the standard we find the following instances, aside from the definition:

postfix/prefix increment and decrement
[...] arithmetic or pointer type, and shall be a modifiable lvalue.

An assignment operator shall have a modifiable lvalue as its left operand.

errno
which expands to a modifiable lvalue that has type int

Checked integer operation type-generic macros
result shall be a modifiable lvalue of any integer type other than ...

stderr, stdin, and stdout
are not required to be modifiable lvalues

Therefore, the only use of the term that needs arrays excluded from modifiable lvalues
is the one on the assignment operator. But that subclause lists the possible combinations
for the types of left and right operands, and an array can never be the left operand. So,

The exclusion of array from modifiable lvalues is not needed in the current standard

Hence, it would be more appropriate to say that an lvalue of array type cannot be modi-
fied because there is no production in the language that will do it, than to say that they are
not, intrinsically, modifiable.

Now we have arrays that can be the left operand of an assignment, because it is pos-
sible that an array which does not decay is the right one. The obvious adjustment to the
wording was to exclude from modifiable lvalues only arrays not carrying a selection. But

31

the preceding analysis shows that it is simpler to just drop the clause “does not have array
type” from the definition. A further change is needed: it has to be required, for an array to
be modifiable, that its singletons be modifiable lvalues.

This choice also accommodates arrays at the left of an assignment better, as in E =
B[], where E need not carry a selection.

9 FUNCTIONS

Functions acting as range operators
Suppose we want to compute the square root of all the elements on the main diagonal of a
matrix. The obvious way is to write

sqrt(N[0:n:n+1])

For this to work we need only treat a function call as any range operation. There may be
more than one argument with or without range selection:

atan2(Y[0:n],X[0:n])
atan2(A[1][0:n],2.5)

The result is an array with selection, unless the return type is void; that is, the expres-
sion has array type and carries a selection. The selection is of the form of that of the argu-
ments carrying the deepest selection; all subselections of the same depth must have the
same length (number of elements), as in any range operation. The type of the singletons of
the result is that of the return value of the function. This array can be used anywhere an
array with selection can:

Y[:] = log(tan(0.5*F[:]))
Σ[:] = sqrt(N[0:n:n+1])
p[0:n][:] = exp(Ω[0:n][:])

The ordering of the sequence of function evaluations is unspecified, but the outcome
shall match some order. E.g., in

voidvoidvoid inc(floatfloatfloat *p, const floatconst floatconst float x){
 *p += x;
}
floatfloatfloat *p, A[6];
inc(p,A[:]);

the value in *p shall be incremented by the sum of all the elements in A. The translator is
not allowed to parallelize the calls if it cannot ensure that.

This condition may be relaxed to, e.g., allow interleaved output. Implementation exper-
ience and user demands will tell.

If the innermost selected elements of some argument are matrices, these will be the
values passed to the function. In this respect function calls behave like the operator ==. A
constraint will be broken because functions cannot take arrays as arguments, but this has
nothing to do with the translation of a range call to individual calls.

If any of the function calls does not return, the behavior is undefined.

32

10 SELECTIONS OF LENGTH ZERO

Motivation
If we want to switch the sign of the odd positions of a vector of size n we would write

A[1;n/2;2] = -A[1;n/2;2];

If n is 1 this results in a selection of length zero.
This breaks the rule that an array must have a positive length; i.e., must be an actual

array. Should this be allowed or not? The answer follows from the observation already
pointed above that the equivalent to a range instruction where the length of the selection is
variable is not a VLA, but a “for” loop:

forforfor(intintint i=1; i<n; i+=2) A[i]=-A[i];

“For” loops where the controlling variable is set to an initial value that already falls out-
side of the range of values to handle, and therefore execute no interaction, abound. The
previous example is a typical one. Nobody would consider in the design of a language to
preclude those loops from the language.

It would be easier, in the implementation of vectorization notation as proposed in this
paper, to forbid zero-length selections. It would also be easier for the elaboration of the
wording: we just mandate that the length be ≥1, as everywhere in C for arrays. These two
arguments against zero lengths are a selfish, or lazy attitude on the part of the designers.
That is not the way to design a language and, we would say, to design any product whatso-
ever. A programming language has to be designed from the point of view of the program-
mers, and from this point of view there is no possible justification to a programmer why he
cannot write A[1;n/2;2] = -A[1;n/2;2] and must instead write

if(n/2>0){
A[1;n/2;2] = -A[1;n/2;2]

}

It may be argued that a similar reasoning would lead to allowing zero-length variable
length arrays, and they are not allowed and this is not widely felt as a missing feature. But
VLA of length zero are analogous to memory reservations of size zero, and these are much
less common than “for” loops that execute no interaction. Further, VLA are not widely used
(many compilers do not support it) and, most notably among compliers that support VLA,
gcc and Clang allow zero-length arrays. This may be why blessing of zero-length VLA by
the standard has not been asked for more strongly, and not because users of VLA don’t feel
that they need it.

Relation to a value of B out of bounds
Allowing a value of 0 for L seems to imply that a value outside of bounds for the base B
should also be allowed, even if given by an integer constant expressions, as is precisely the
case in the example above. This in turn implies removing the constraint that the value for B
shall fall within bounds when given by an ICE. This may seem dangerous, for a selection
like

A[2]; A[2:L:s]

33

were L is not an ICE can only be valid if L evaluates to zero (if L is an ICE, the translator
can detect it during translation). But this is already the case for “for” loops, and nobody
thinks this is particularly problematic. Therefore, removing the constraint for range selec-
tions is not dangerous in practice either (or not more that many other situations that may
result in out-of-bounds accesses).

But a third thought reveals that the situation analysed above is not subject to the con-
strain: The said constraint arises when the ICE B evaluates to a value b out of bounds and
the length of the array is fixed constant. Situations with a variable L evaluating to a value
of zero typically arise when the array has length n (variable) and the number of elements
to process is a monotone increasing function of n that is zero for small values of n. Further-
more, in most cases we will have a pointer in place of A, not an array.

Therefore, in the end we keep the constraint. Code like

floatfloatfloat A[1];
/* ... */
A[1;n/2;2] = -A[1;n/2;2];

that is subject to the constraint, may result from macro expansion. Fixing it is be very
easy, and having it diagnosed causes more good than harm.

Its type
The obvious choice for it is an array of the element type, of length zero. Arrays of length
zero do not exist in the language. Another option is to say that the expression evaluates to
a void expression, but this proves untenable in the long term. For example, and supposing
L evaluates to zero, the expression

sizeofsizeofsizeof(A[0:L][0])

is well defined and is the same as sizeofsizeofsizeof(A[0]), or as sizeofsizeofsizeof(A[2]) in

floatfloatfloat A[1];
sizeofsizeofsizeof(A[2]);

For another example, A[0:L]==B[0:L] evaluates to one (the condition is vacuously satis-
fied). All this is impossible if the expressions A[0:L] and B[0:L] have type voidvoidvoid.

Fitting it into the type system
Contrary to broken arrays, an array of size zero is not something that can be disguised be-
hind a qualification. Further, it does not disappear after lvalue conversion. Therefore,
these range selections will make C have zero-length arrays. We can make so that they can-
not escape the expressions where they arise, as we have done for broken arrays.

In the first place, let us review the restrictions present in the standard with respect to
an array length equal to zero:

6.2.5 Types: “An array type describes a contiguously allocated nonempty set of ob-
jects ... ”

6.7.7.3 Array declarators:

Fixed length arrays. Constraint: “If the expression is a constant expression, it
shall have a value greater than zero.”

34

Not fixed length arrays. Semantics: “otherwise, each time it is evaluated it shall
have a value greater than zero.”

6.7.8 Type names: “... a type name, which is syntactically a declaration for a function
or an object of that type that omits the identifier.”

Even though it is not mentioned explicitly, it is understood that all constraints and other
conditions imposed on declarations also apply to type names.

The “nonempty” restriction on array types has to be removed. The restrictions in array
declarators remain in place, so that arrays of length zero cannot result from a declaration.

There remains typeof_typeof_typeof_unqualunqualunqual and autoautoauto (arrays with range selection are precluded
from typeoftypeoftypeof). For the first one, it would be enough to forbid arrays of length zero as its
argument. The second requires a restriction on the type of the declared identifier:

No identifier shall be declared of an array type with zero elements, or a type de-
rived from it.
No type name shall specify an array type with zero elements, or a type derived
from it.

If this restriction is present, there is no need of another one to forbid arrays of length
zero in typeof. However, we will not formulate this restriction as presented here, because
it would overlap with the restriction for the value of array lengths. Instead, we will place
one under autoautoauto and another one in range selections.

The restriction on type names could be relaxed to allow such a type name when this
type, or a type derived from it, is the operand of a unary operator, thus allowing expres-
sions like

sizeofsizeofsizeof(typeof_typeof_typeof_unqualunqualunqual(A[0:n-n]))
sizeofsizeofsizeof(typeof(typeof(typeof(typeof_typeof_typeof_unqualunqualunqual(A[0:n-n]) *))
(typeof_typeof_typeof_unqualunqualunqual(A[0:n-n])[3])
alignofalignofalignof(typeof_typeof_typeof_unqualunqualunqual(A[0:n-n])(*)[3])

But we feel there is no need to complicate the wording for these constructs’ sake. Range se-
lection are not for placing them inside typeof.

Not allowing the above has the curious consequence that

sizeofsizeofsizeof(A[0:n-n]) is allowed but
sizeofsizeofsizeof(typeof_typeof_typeof_unqualunqualunqual(A[0:n-n])) is not

In practice this is completely irrelevant: programmers will not write range selection for
placing them inside typeof. Further, implementations are free to allow it. But the wording
could also restrict the first form; that is, for operators that accept a type name and an ex-
pression, require that the type of the expression not be an array of length zero. This is
what we will do in the end. In the first place, any code of the form sizeofsizeofsizeof(A[0:L]) is
written better as sizeofsizeofsizeof(floatfloatfloat[L]), say. If the programmer insists in having a possibly
zero L, the solution is to write sizeofsizeofsizeof(A[0])*(L).

Literal zero for the length
We will forbid an integer constant expression of value zero (typically, a literal 0) in place
of L. This is not akin to forbidding an ICE B out of bounds. The latter will result in an out-
of-bounds access unless l is zero, while an l equal to zero implies the opposite: there will

35

never be an out-of-bounds access (because no element will be accessed). We note, how-
ever, that an out-of-bounds access will take place if an array subscripting [] is applied to
the range expression.

Many a programmer would prefer to permit an ICE with value 0 in place of L, for co-
herence: if an expression in place of L may evaluate to zero, why cannot if that expression
is an ICE? They may be right, but coherence would imply allowing zero-length arrays es-
sentially everywhere. It is not the purpose of this proposal to spread zero-length arrays
in C. By forbidding them everywhere except in range operations with a non-ICE length
they are a mild intrusion in the language. Further, implementations are always free to al-
low them, defining the obvious behaviour for those undefined behaviours. From a more
practical point of view, a 0 in place of L can be protected with an L ? ... (where macro ex-
pansion will place a 0 in place of L), or can be forced by (intintint)(0.0+(L)), say.

Final set of restrictions
We will restrict arrays of size zero in places where type names are also possible, as noted
above. This way we achieve a more coherent specification of allowed and not allowed oper-
ands. If we write size zero instead of length zero, there is no need to add “or a type derived
from it” because an array with range selection cannot have the indirection operator ap-
plied to it; application of array subscripting [] creates either again an array or a singleton,
and functions returning a pointer to an array of size zero (or further derivations) are im-
possible to express. Further, generic selections ignore array sizes if they are not integer
constant expressions (and we are not allowing an ICE zero), so these arrays need not be
precluded from those places.

Therefore, the final set of restrictions is:

The initializer for an autoautoauto declaration shall not be an array of size zero.
(in range selections) An array of size zero shall not be the operand of a
sizeofsizeofsizeof, ___CountofCountofCountof or typeof operator that is evaluated.

An array of length zero cannot be an operand of an evaluated array subscripting, but
this follows from the fact that the subscript has to be within bounds.

We insist that implementations are free to allow zero-size arrays as operands to
sizeofsizeofsizeof and ___CountofCountofCountof.

The restriction to ___CountofCountofCountof could be relaxed to length zero instead of size zero. But,
even though the standard mandates that array lengths that do not change the value that
___CountofCountofCountof “returns” not be evaluated, compilers do evaluate those array lengths. Forbid-
ding size zero arrays aligns what is allowed for E in ___CountofCountofCountof(E) with what is allowed in
___CountofCountofCountof(typeof_typeof_typeof_unqualunqualunqual(E)). Finally, we note again that implementations are free to
allow it.

Negative value for L
A value of zero for l results in an empty instruction. Likewise would a negative value. How-
ever, while performing zero interactions is well defined, performing -2 iterations, say, is
nonsense. We won’t allow them. If a user has an expression for L that may evaluate to a
negative value, it can always be protected thus:

p[1:max(0,n-4)]

for some generic macro max.

36

Further, a negative value for L will conflict with a natural extension. See “Further ex-
tensions”.

11 IMPLEMENTATION OF RANGE OPERATIONS

What would be mandatory
As we noted in the introduction, small implementations are reluctant to adopt complex fea-
tures, but at the same time the committee should strive to avoid divergence between imple-
mentations, which requires standardising common extensions and, as the present case,
providing a proposal (technical specification) for an extension not yet common but for
which interest has been expressed, and eventually make it standard, enriched with imple-
mentation feedback. The only way to achieve both goals is to standardise the features and
at the same time allowing implementations not to implement them if they don’t want.

In the first place, we do not want to make range selections mandatory:

______STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__ Undefined or defined and expands to 0 if range selec-
tions are not supported; expands to 1 otherwise.

Note that we have written range selections. We intend to make empty selections mandat-
ory.

The established practice for feature test macros is to define the macro in negative
terms:

______STDC_STDC_STDC_N0_RANGE_SELECTIONS__N0_RANGE_SELECTIONS__N0_RANGE_SELECTIONS__ Defined to 0 if range selections are not supported.

This way, if in the future the feature is made mandatory, the macro can disappear. Actu-
ally, this can also be done if the macro is defined in positive terms. If so, programs will
need a test for the version under which they are being compiled if they want to test the
availability of the feature, since lack of the macro can mean very old or very new version.
But a definition in negative terms also requires a test for older versions. In one case the
version test is to distinguish before mandatory from after mandatory; in the other case, be-
fore existence from existence.

There may be a difference in the expression of intent; a negative definition seems to
convey that supporting the feature is the default. We choose the positive definition because
we will be using the macro also for another purpose, where absence of the macro cannot
possibly mean the new behaviour (see “Conflict with array subscripting” below).

Implementations defining ______STDC_STDC_STDC_​ARRAY_ARRAY_ARRAY_​SELECTIONS__SELECTIONS__SELECTIONS__ to 1 may still be allowed to
only accept a partial set of possible combinations. We propose the following optionality:

______STDC_STDC_STDC_ARRSEL_NESTED__ARRSEL_NESTED__ARRSEL_NESTED__ Expands to 0 if selections of the form [B:L] and [B:L:s]
can only be applied to expressions of pointer type and to arrays carrying no selec-
tion or an empty selection, and range operations are allowed only if the selected
elements from the matrices treated as a range of objects are singletons. Expands
to 1 otherwise.

______STDC_STDC_STDC_ARRSEL_STEPPED__ARRSEL_STEPPED__ARRSEL_STEPPED__ Expands to 0 if stepped selections are not supported; to 1
if they are supported.

If these two macros expand to 0 broken selections cannot arise. Furthermore, a value
of 0 in the first macro means that a maximal sequence, in the code, of adjacent array selec-

37

tions either results in a selection of singletons or is an empty selection (i.e., [][]... []), ex-
cept that a partial selection is allowed if it is used as the operand of some operator that
treats it as a whole, namely, sizeofsizeofsizeof or the typeof operands. Such an implementation
would allow comparisons of whole matrices as in A[] == B[] and assignments like E = B[],
but not assignments like E[:] = B[], which is a range operation on the elements E[:],
which are not singletons.

A value of 0 in the two macros constitutes a considerable simplification for the imple-
mentation with respect to the full set and yet it offers the programmer the most common
use cases of range selections. It becomes even more useful if combined to casts that redi-
mension the matrix:

intintint A[4][4][20];
((intintint[16][20])A[])[0:8];

thought this is of secondary importance.
More macros or more values for the proposed macros could be defined, but a fine

-grained possible support expressed via macros would be of no use if the programmer
knows what his implementation supports, or a burden for the programmer if he wants to
produce a strictly conforming program. In the latter case he may cut short and just test for
support in a specific form ignoring any other combination.

As regards a step zero, we gradually shifted our preferences from including it in
______STDC_STDC_STDC_​ARRSEL_ARRSEL_ARRSEL_​STEPPED__STEPPED__STEPPED__, which could then take values 0, 1 or 2, to require the support
for step zero whenever stepped selections are supported. This happened because of our
thinking of how an implementation may translate range operations.

Another reason for not allowing more complicated yet partial implementations of the
feature is that, if a translator finds a certain selection too complicated it can always trans-
late it into a “for” loop. Thus, either provide a simple set of features or provide the full set.

In addition, we have thought of another macro expressing partial support:

______STDC_STDC_STDC_ARRSEL_CONSTANT__ARRSEL_CONSTANT__ARRSEL_CONSTANT__ Expands to 0 if L and s need be integer constant expres-
sions as well as B if the selection applies to an array already carrying a selection.
Expands to 1 otherwise.

This macro ______STDC_STDC_STDC_ARRSEL_CONSTANT__ARRSEL_CONSTANT__ARRSEL_CONSTANT__ becomes more significant when direct selections
are included. If this happens and the macro is included, the values might be reversed with
respect to the proposal above, to make 0 mean the same as its absence.

How range selections might be translated
Take as example the following instructions:

floatfloatfloat A[6];
A[:] = B[0:6] * C[0:6:2];
A[0:4] = B[4:4] * s;

When the compiler sees the selection [:] from A it has parsed a selection of 6 elements.
Therefore, any arrays following in the instruction (and not broken by ,, ? &&, || or within
unary, not arithmetic operators), if they carry a nonempty selection they must carry a se-
lection of six elements. The compiler may parse all selections, check that they are of six
elements if given by ICE, ignore those that are not ICE (assuming its value is 6) except for
their side effects, and prepare to translate the instruction into vectorial processor instruc-
tions or a “for” loop. In this case,

38

for i = 1..6 A[i]=B[i]*C[2*i]

In the second statement, in addition to operands which are arrays carrying a selection
of a matching number of elements, four in this case, one of the operands is a singleton:

for i = 1..4 A[i]=B[i]*s

The same scheme can be applied when the selections have different depth:

floatfloatfloat A[6][9], C[6];
A[:][:] *= C[:];

Which gets translated to

for i = 1..6 A[i][:]*=C[i]

which in turn is translated to

for i = 1..6
 x=A[i]. y=C[i]
 for j = 1..9 x[j]*=y

The instruction may also include an array with an empty selection. This is treated like
a singleton, and when it appears in the “for” loop the operands it is operated with must be
matrices of the same dimensions and the operation is performed elementwise:

floatfloatfloat A[6][9], C[9];
A[:] *= C[];
for j = 1..6 A[i]*=C[] --→ for i = 1..6

 x=A[i]
 for j = 1..9 x[j]*=C[j]

except that C is evaluated only once.

floatfloatfloat A[6][9][3], C[9][3];
A[:] *= C[];
for j = 1..6 A[i]*=C[] --→ for i = 1..6

 x=A[i]
 for j = 1..27 x[0][j]*=C[0][j]

The previous analysis is a very cursory one. We can nonetheless already draw an im-
portant conclusion from it: the selections and different operands that constitute an instruc-
tion may get evaluated in many different orderings. In particular, the option to first evalu-
ate all range selections is one obvious one.

Sequence points
The chain of operands that must carry selections of the same length (if not empty) is
broken by the operators

, ? || &&

in addition to operators that enclose their argument (sizeofsizeofsizeof, etc., [] subscripting and

39

_Generic_Generic_Generic). Those four above are, not by accident, the ones that introduce sequence points.
The idea put forward elsewhere for fixing the order of evaluation in operations like A+B
has to consider carefully its implications for range operations. This may invalidate the
strategy of first evaluating all range selectors.

It would also break the commutativity of operators that are currently commutative. For
example, i++ * i would yield a different value than i * i++. An alternative that fixes the
order of evaluation of ++ and -- with respect to the operands and at the same time pre-
serves commutativity, consists in performing all postfix inc./dec. after the operation and
all prefix inc./dec. before. An example where this matters for range operations is

p[0:n]++ * p[0:n]; p[0:n] * p[0:n]++;

These two instructions would have defined behaviour and yield the same value.
The previous example is not specific to range operations, to the problem pointed above

that evaluation of all range selectors first would not be possible if * introduced a sequence
point and the left operand had to be evaluated before the right one. An example that does
exhibit this problem is

p[0:p[0]] * p[0:n]++; p[0:n]++ * p[0:p[0]];

Mandating here the evaluation of the left operand before the right one would preclude the
translation of range selections in the first place in the instruction at the right. It would also
imply that the first instruction is well-defined if p[0] equals n before the instruction,
while the second one is well-defined if p[0] equals n-1. Moving the increments to after the
multiplication gives both expressions the same, well-defined, semantics. Analogously,

p[0:p[0]] * ++p[0:n]; ++p[0:n] * p[0:p[0]];

have both a well-defined, equal, semantics, different from the previous ones.
A problem of a different kind is exemplified by the following instructions:

p[0:++n]*q[0:++n]; p[0:n++]*q[0:n++];

Here, moving the ++ increments to before the product, in the first case, and to after it in
the second case, implies moving them through the range selector (the [] brackets). We
think that a better choice is that these brackets, whether used for a range selection or for
array subscripting, introduce sequence points. Evaluation of the expressions within the
brackets would precede that of the selected elements from the matrix (currently, the value
computation is already mandated to take place before, but side effects are not) but would
be subsequent to the evaluation of the array expression (the postfix expression to the left
of []). This would make defined expressions like

A[A[0]++]; p[0:p[0]++]*=2;

The product instructions above would still remain undefined (the value read for l, the
range selection length, may be anything), but we think it is better to preserve commutativ-
ity, even if it means keeping some cases undefined.

For assignment operators the situation is similar:

A[0:n-1] = B[0:*p++];

Here, if the = sign introduces a sequence point (as would be the case for a * operator in
place of =), the compiler is not allowed to read first n-1 and *p (or rather, to compute n-1
and ignore *p); it would be forced to update first *p, since p could point to n.

40

The problem is not limited to artificial examples. “Normal” instructions like

A[n:5] = B[*p++:5];
pa[i:n] = pb[*q++:n]*pc[i:n];

cannot be parallelized easily if * and = introduce sequence points, because (taking the
second example) q could point to i, or within the ranges pc[i:n] or pa[i:n].

The intrusion into parallelization of the sequence point does not need the evaluation of
the expressions in the selectors:

A[0:n] = B[0:n]*C[0:n];

If the evaluation of B or C had side effects on A, the compiler would be forced to store
the whole n-element array in a temporary place. This is of course not the case in this ex-
ample, but it is easy to replace B or C by something that could have side effects on A. We
could make B or C equal to A itself and make it volatile, forcing the compiler to really read
all B, say, before starting storing in A. Or we can replace B by a range function call or a
function returning an array (or, as long as the latter is not possible, returning an array en-
capsulated in a structure):

A[0:n] = func(B[0:n])*C[0:n];
A[0:6] = func(x)*C[0:6]; //Suppose func returns an array of length 6.

There are many ways that func could modify A: B can hold pointers into A, etc.
If forcing a strict order of evaluation of the range selectors and the matrix themselves

can be a hurdle for the translator, having to store an intermediate array, possibly of vari-
able size and possibly large, is out of the question. We noted that variable length range se-
lections are analogous to “for” loops, not to memory allocations as is the case for VLA.
Making = and other operators into hard sequence points plays havoc on this.

The root of the problem is that parallelizing is the opposite to sequencing (harmony vs.
melody). The solution may be to make assignment operators introduce sequence points ex-
cept when the assignment operation is a range operation. If the assignment is of the type
array with range selection = singleton, the problem does not arise, so this case can be ex-
cepted (from the exception itself). Or to avoid those exceptions, that the operator is a se-
quence point except when the right operand is an array that does not decay to a pointer.

But there is a better solution. First, sequence points should not interfere at all with par-
allelization. Second, they can still apply to each individual singleton assignment. Thus, in
the example above

A[0:n] = func(B[0:n])*C[0:n];

in each singleton assignment A[i] = func(B[i])*C[i] the operator introduces a sequence
point, and the evaluation of the right operands is sequenced before the evaluation of the
left one. The evaluation of the different singleton assignments shall remain unsequenced
(though in this example including a range function call, the different calls to func are inde-
terminately sequence). This implies that if some call of func modifies some element of A
other than its corresponding one the behaviour is undefined. This is intrinsic to paralleliza-
tion. Trying to avoid this destroys the performance benefits of these range operations.
Still, side effect become well defined:

p[0:n] = p[0:n]++

Here, each p[i] = p[i]++ is well defined because of the sequence point and does not inter-

41

fere with the other assignments.
An exception is needed if the possibility of s. += arr. is added:

s += a[0:n]*b[0:n]

Here, because the left operand, a singleton, is evaluated only once, it is obviously im-
possible that it is evaluated after each of the singletons at the right, without making the +=
the hard sequence point to be avoided. Since, as we saw, this kind of compound assignment
should have sequencing properties like those of range function calls, the evaluation of its
operands and the individual singleton assignments should be sequenced like that of the ar-
guments and actual calls of a range function call, as though the left and right operands
were function arguments.

Finally, making : introduce a sequence point and mandating left to right evaluation
would probably pose no serious problem, thought we would prefer to wait for implementa-
tion feedback. It would interfere with the strategy of evaluating all range lengths in se-
quence, not evaluating anything in between. For example, if a range operation contains the
range selections [B:L], [B’:L’] in that order, and maybe others following, and L’ is an in-
teger constant expression, evaluation of B’ might modify the value computed for L’, and the
compiler is not allowed to evaluate L’ right after L. (If L’ is not an ICE nor has side effects,
the translator can in any case omit its evaluation, for its value should be equal to that
of L).

12 INDEXED AND DIRECT SELECTIONS

These are not proposed to be included in the specification. They may be provided by imple-
mentations as an extension and be eventually incorporated. See the document ANFV for
their analysis. We only note here the different kinds of selections proposed.

The different kinds of array selections

Terminology

Empty selector: []
Range selector: [B:L], [b...e], [B:L:s], [:], [::]
Indexed selector: [I] (I may or may not carry a selection)

Direct selector: [K’, K’’, ... ,K(l)], [{k(1), ... ,k(m)}’, {k(1), ... ,k(m)}’’, ...]

Here B, L, s, k stand for expressions of integer type, b, e for integer constant expres-
sions (hence, b...e is a constant range expression, CRE), I for an expression of array type
one- or two- dimensional and K for either an expression of integer type or a CRE.

Note that we have included a single CRE in range selectors.

The most general selection carried

As a result of the combination of all possible range selections, an array carrying a non-
empty selection will always carry a certain selection in each dimension, for a number m of
dimensions starting from the outermost one, which we have called the depth. In each di-
mension the kind of selection is one of *, ∅, b:l, b:l:s or irregular, where * means “all ele-
ments are selected”, ∅ means an empty (in length, nor in depth) selection and an irregular

42

selection is given by the index array or direct selection used for it, in which case the length
of the dimension of the array with selection it applies to is the product of the lengths of the
dimensions involved in the original array (see ANFV for more details).

Comma-separated list
A selection like A[0,2,n] selects elements in the obvious way:

float float float A[4][4];
A[0,2,n]; // {A[0], A[2], A[n]}

Side effects should not be allowed in the first place. If they prove useful, the restriction
can always be lifted; the reverse would be very difficult, and there are plenty of places in C
where we would like the language not to be as permissive as it is, but now it is too late.

Conflict with array subscripting

We have designed (in ANFV) the syntax of comma-separated lists as selectors as we would
like it to be. But there is an obvious problem: the expression in a subscript selection may
include the comma operator. That is, currently A[3, 0, 1, 5] is interpreted as A[5]. There
are several possible solution to this.

1. To add a pair of {} enclosing the list. This is the most obvious and straightforward
solution. However, this would conflict with uses of {} for >1-depth selections; e.g.,
A[{1,2}, ​{2,3}, ​{3,3}]. Here, three elements are selected. If we select only the first
one, it will look like A[{1,2}]. To avoid these, these selections would need an extra
{} too: A[{{1,2}, ​{2,3}, ​{3,3}}] and A[{{1,2}}]. See ANFV for more details.

Other than being cumbersome, this also goes against common practice every-
where that a comma-separated list enclosed in some brackets represents a list of se-
lected elements (the list is already enclosed by the [] brackets).

2. To let , inside the [] operator be interpreted like the comma operator or like the
comma of a direct selection list according to some pragma or other directive specify-
ing the version of the language, as has been proposed. For example

###STDC_featuresSTDC_featuresSTDC_features 35

If the value is < 35 the comma is interpreted as the comma operator and direct
selections are not allowed; otherwise, the expression k in [k] for the subscripting op-
erator is a conditional expression.

3. A directive specific for this situation. For example,

###STDC_featuresSTDC_featuresSTDC_features ARRAY_COMMA 0

4. Use the ______STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__ macro. If it is defined to 1, the comma stands
for list separator.

5. Let it be implementation defined but not tied to the ______STDC_RANGE_STDC_RANGE_STDC_RANGE_​SELECTIONS__SELECTIONS__SELECTIONS__
macro.

Since an implementation supporting direct selections must also support stepped selec-
tions, we could have taken the value of the macro ______STDC_STDC_STDC_ARRSEL_STEPPED__ARRSEL_STEPPED__ARRSEL_STEPPED__ in solu-
tion 4 as the watershed. But the purpose is not to push comma operators inside array sub-
scripting as far as possible when using array selections, but rather the opposite. That if

43

somebody wants to use array selectors he cannot place a comma operator inside an array
subscript seems a mild requisite and even desirable.

A comma operator only makes sense if the first operand has side effects, which are not
allowed in direct array selectors. Hence, in solution 4, compilation with ______STDC_RANGE-STDC_RANGE-STDC_RANGE-
_SELECTIONS___SELECTIONS___SELECTIONS__ defined to 1 will make those expressions trigger an error (and similarly
for solutions 2, 3 and 5). The safest path towards the elimination of those expressions is as
follows: first, the code is compiled with a new compiler, with array selections turned off
(whereby a comma stands for the comma operator), and asking the compiler to issue a
warning for array subscripts that are comma expressions (a warning likely to be provided
by compiler supporting array selections, when these are turned off). Those expression are
removed or parenthesised, e.g. [(p++,n)]. Then code is compiled with array selections on;
i.e., with ______STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__ defined to 1 and commas added henceforth within
[] are interpreted as list separators.

Furthermore, array subscripting including a comma operator is extremely unlikely to
appear in header files; there may be none at all.

As to code written with array selections and attempted to be compiled with an old com-
piler: 1st, new features are not supported by old compilers, this one is like any other. 2nd, a
silent, wrong compilation can be avoided by warning on expressions with no side effects;
in this case, the first operand of the comma operator, as the old compiler would interpret it.

13 FURTHER EXTENSIONS

A[B:-L]
One may expect implementations to allow a negative L in A[B:L], write it A[B:-L], as a
synonym of A[B:L:-1]. Maybe restricted to ICE.

A[B:L][B’:L’] when the elements of A[B:L] are pointers
As in

intintint *B[10];
B[2:4]; //Array of four pointers
B[2:4][0:3]; //[a,b,c] [a’,b’,c’] [a’’,b’’,c’’] [a’’’,b’’’,c’’’]

Allowing constructions like the latter might add a substantial burden to implementers.
It seems these would have few use cases. It may on the other hand seem useful. Actually,
both perceptions are not contradictory. We think it is better to have implementations first
implement multidimensional selections just on multidimensional arrays, then allow or not
this further extension based on their feedback.

This restriction is also in force in OpenMP.

Functions returning arrays
Now that there is a way of preventing a matrix to decay to a pointer, an array may be re-
turned: returnreturnreturn a[]. The syntax for the declaration is already part of the language:

typedef doubletypedef doubletypedef double dbl33[3][3];

44

dbl33 VdM3(doubledoubledouble a, doubledoubledouble b, doubledoubledouble c){
doubledoubledouble A[3][3], *p=&A[0][0];

 *p++=1; *p++=1; *p++=1;
 *p++=a; *p++=b; *p++=c;
 *p++=a*a; *p++=b*b; *p++=c*c;

returnreturnreturn A[];
}

The declaration can be written without the need of a typeoftypeoftypeof following the rule that a
declaration mimics the use:

doubledoubledouble VdM(doubledoubledouble a, doubledoubledouble b, doubledoubledouble c) [3][3];

There is a constraint forbidding an array as the return type. It need only be removed
for this extension to come into being. The declaration that does not make use of typeoftypeoftypeof
needs a further modification of the wording for array declarators. The return type should
still be restricted to be of fixed constant size: “A function declarator shall not specify a re-
turn type that is a function type or a variable length array type”.

Keeping the constraint seems unnatural; the more, since the return type may, cur-
rently, be a struct with an array as its single member. Hitherto this was virtually useless,
because an array that is not an lvalue cannot be operated with anything other than the sub-
scripting [] operator, or used only for its type (sizeofsizeofsizeof, etc.):

structstructstruct S{floatfloatfloat a[3];};
structstructstruct S func(floatfloatfloat);
floatfloatfloat f = func(1.0f).a[0];

But now it can be assigned to, added to another matrix... Having to encapsulate the re-
turned matrix in a structure is absurd:

p[0:3]= func(x).a;
func(x).a + func(y).a
etc.

Functions taking arrays
Likewise, arrays may be passed as arguments. There is still need to invent a syntax for
parameters of array type, as in the following example:

doubledoubledouble determinant3(doubledoubledouble A[:3][3]);
/* ... */
doubledoubledouble M[3][3];
determinant3(M[]);

The obvious choice for the parameter syntax and, we would say, the right choice, is
doubledoubledouble A[3][3], which we all know is not possible.

Here is an example that both takes and returns a matrix:

typedef doubletypedef doubletypedef double dbl33[3][3];

45

dbl33 invert3(doubledoubledouble A[:3][3]){
/* Compute A-1 and store it in A */
returnreturnreturn A[];

}

doubledoubledouble M[3][3], N[3][3];
N= invert3(M[]);

14 FURTHER EDITORIAL FIXES

6.5.16 Conditional operator

The paragraph on the determination of the common type when both operands are pointers
or nullptr_tnullptr_tnullptr_t or a null pointer constant (p. 6 currently, p. 9 in our proposal) is too convo-
luted as a result, we presume, of incremental editing. We have simplified it. No semantic
change is intended.

6.5.17 Assignment operators
The paragraph restricting the overlapping of the assignee with the read object had to be
modified to make it apply only to singletons, and this required some minor adjustments to
the sentence. We have modified it further so as no to speak of the type of an object, but of
the expression used to access it. There is a proviso near the beginning of the standard to
make “the type of an object” mean that of the identifier used to access it, but since here we
are referring to an object referred to by two identifiers (the one at the left of the assign-
ment and the one at the right), it seems that a direct mention of the type of the identifiers
is clearer:

If the left operand is not an array and the value being stored in it is read from an-
other object that overlaps in any way its storage, then the two objects shall occupy
exactly the same storage and the type of the expression used to access the object
read shall be a qualified or unqualified version of a type compatible to that of the
left operand; otherwise, the behavior is undefined.

That paragraph is placed under “simple assignments” (it is par. 3), while it applies to any
kind of assignment. It is true that compound assignments are described as equivalent to a
certain simple assignment, but we feel it would be clearer if the paragraph were “pro-
moted” to assignment operators in general.

Our proposal adjoins one paragraph and several examples to that paragraph 3, and
those should be moved together with it if it were moved. We have not done so.

46

WORDING

Here text is provided for empty and range selections. Indexed and direct selection are not
considered. The terms range operation and depth of selection were finally not introduced
because they did not seem necessary for the wording. The latter would simplify the word-
ing in just one place: the phrasing of a constraint for assignment operators.

Blue text is new text, green one is changed text, gray text is to be removed. Margin
notes are comments to the wording but not part of it. Within them, A[:] stands for an array
with nonempty selection; A[:]s for an array carrying a selection of singletons; A[] for an
array carrying an innermost selection of arrays, B for an array with no selection or empty
selection, and s for a singleton.

6.2.5 Types

25 Any number of derived types can be constructed from the object and function types, as fol-
lows:

— An array type describes a contiguously allocated nonempty possibly emptyxx) set of ob-
jects with a particular member object type, called the element type. If the array is not
broken the objects are allocated contiguously. The element type shall be complete when-
ever the array type is specified. Array types are characterized by their element type, and
by the number of elements in the array and, if the array is broken, by the relative mem-
ory position of its elements. [...]

NOTE The semantics of a program never depend on whether the type of an array is
broken or not. Thus, a translator may ignore this fact. In contexts where the qualified
type of an expression (“broken” is a qualification) is needed (e.g. for typeoftypeoftypeof), an ex-
pression that can potentially designate a broken array is not allowed. For practical pur-
poses for translators, the broken qualification could be omitted. Formally this is not pos-
sible: the type of broken arrays cannot be the same as that of ordinary arrays because
they have a different object representation.

27 An object or value which is not of array type is called a singleton. If the element type of an
array is not an array type, the elements of the array are its singletons. If the element type
is an array type, the singletons of the array are those of its elements.

6.2.6 Representation of types

6.2.6.1 General

2 Except for bit-fields and arrays of size zero, objects are composed of contiguous sequences
of one or more bytes, the number, order, and encoding of which are either explicitly speci-
fied or implementation-defined. If further the object is not a broken array, the bytes form a
contiguous sequence.

3 [...]

4 Values stored in non-bit-field objects of any other object type Except for bit-fields and bro-
ken arrays, values stored in an object of a type are represented using n × CHAR_BIT CHAR_BIT CHAR_BIT bits,
where n is the size of an object of that type, in bytes. An object that has the value can be
copied into an object of type unsigned charunsigned charunsigned char [n] (e.g. by memcpy); the resulting set of

xx)An empty array can only be created by a range selection of length zero. No identifier can be de-
clared with this type or a type derived from it.

47

bytes is called the object representation of the value. Broken arrays differ from ordinary
arrays in the relative position of its singletons, which is defined by the range selections
that give rise to it (6.5.4.3), not in the way the singletons are represented. Their size is
considered to be the same as that of the corresponding ordinary array, even if some single-
tons share the same memory location. Values stored in bit-fields [...]

6.3.3.1 Lvalues, arrays, and function designators

1 An lvalue is an expression (with and object type other than voidvoidvoid) that potentially desig-
nates an object;54) if an lvalue does not designate an object when it is evaluated, the behav-
ior is undefined. When an object is said to have a particular type, the type is specified by
the lvalue used to designate the object.

2 A modifiable lvalue is an lvalue that either:

— Does not have array type, does not have an incomplete type, does not have a const-
qualified type, and if it is a structure or union, does not have any member (including, re-
cursively, any member or element of all contained aggregates or unions) with a const-
qualified type; or

— is an expression E with array type and *(E) is a modifiable lvalue (if this expression
has array type the rule applies recursively).

3 Except when it is

— the operand of the sizeofsizeofsizeof or typeof operators,

— the operand of the the ++, -- or unary & operator, or

— the left operand of the . operator or an assignment operator,

an lvalue that does not have array type is converted to the value stored in the designated
object (and is no longer an lvalue); this is called lvalue conversion. If the lvalue has quali-
fied type, the value has the unqualified version of the type of the lvalue; additionally, if the
lvalue has atomic type, the value has the non-atomic version of the type of the lvalue; oth-
erwise, the value has the type of the lvalue.

4 An lvalue which is an array with selection undergoes lvalue conversion in the same con-
texts as singleton lvalues. The result is an array with the same selection and with its sin-
gletons having undergone lvalue conversion as described above.

5 EXAMPLE
int int int A[6][4];;;
const const const intintint B[10][10];
A[:][:] = B[2:6][0:4];

When the expression B[2:6][0:4] undergoes lvalue conversion the result is an array of
type intintint[6][4] where each singleton results from the lvalue conversion of the corre-
sponding singleton in B[2:6][0:4].

6 If an lvalue (that does have array type) designates an object of automatic storage duration
that never had its address taken, and that object is uninitialized (not declared with an ini-
tializer and no assignment to it has been performed prior to use) when it undergoes lvalue
conversion, the behavior is undefined. An address of an object is taken by application of
the address operator to an lvalue designating the object, by being an element of an array
that was designated by an expression that is converted to a pointer as described below, or
by being a member of a structure or union object whose address is taken.

7 An expression lvalue that has type “array of type” and the array does not carry a selection

“with its
singletons”
instead of
“with its
elements”
because
“described
above” is
only for
singletons.

48

is converted to an expression with type “pointer to type” except when it is:

— the operand of the sizeofsizeofsizeof, ___CountofCountofCountof or typeof operators,

— the operand of the unary & operator or the left operand of an assignment,

— one of the two expressions of an array subscripting operator or the left operand of a
range selection, or

— a string literal used to initialize an array.

The resulting pointer points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is implementation-defined.

8 [...]

Forward references: address and indirection operators (6.5.5.3), assignment operators
(6.5.17), common definitions <stddef.h> (7.21), initialization (6.7.11), array subscripting
(6.5.4.2), array selection (6.5.4.3), postfix increment and decrement operators (6.5.4.6),
prefix increment and decrement operators (6.5.5.2), the sizeofsizeofsizeof, ___CountofCountofCountof and alignofalignofalignof
operators (6.5.5.5), structure and union members (6.5.4.4).

6.5 Expressions

6.5.2 Arrays with selection as operands

Constraints

1 For the operands in the following two cases:

— the two operands of the multiplicative, additive, equality, relational and assignment
operators, and those of all binary bitwise operators, when both of them are arrays carry-
ing a nonempty selection;

— the arguments of a function call that are arrays carrying a nonempty selection, when
these are more than one,

the lengths of the outermost selections, if both of them are fixed constant, shall be the
same.xx)

2 For the operands in the first case with exception of those of equality operators, if one of
the operands carries a selection of singletons (i.e., with selection in as many dimensions as
the array has), so shall the other.

3 For the binary operators above with the exception of relational and equality operators,xy) if
one operand is an array with an empty selection or without selection which is not con-
verted to a pointer (e.g., as a result of the application of the rule in p. 5 below), the other
operand shall be an array that is not converted to a pointer; if this array carries a selec-
tion, its innermost selected elements shall be arrays. When these conditions for the oper-
ands hold then, also for relational operators, those innermost arrays of the other operand
or the operand itself if it does not carry a selection shall have the same number of dimen-
sions as the first mentioned operand (considered both as multidimensional arrays), and if
for any of these dimensions the lengths in the two operands are fixed constant, they shall
be the same.

xx)The length of inner selections shall also be the same. This follows from the recursive rule in p. 5 be-
low.
xy)For relational operators a stronger requirement holds: no operand can be of the kind described in
this paragraph (6.5.10).

A op x.
x must be B
or B[], ex-
cept that
A == s is al-
lowed. The
dimensions
of A and B
or B[] shall
match.

A[:]s == B[]
is allowed

49

4 EXAMPLE 1 In the code
intintint A[10][5][n], B[5][9];
A[:] + B[];

the addition expression satisfies the constraint: One of its operands, namely B[], is “an ar-
ray with an empty selection” and the other operand, A[:], is “an array that is not con-
verted to a pointer”. This second operand carries a selection and satisfies that “its inner-
most selected elements shall be arrays”. Further, the innermost selected elements from
this other operand; i.e., each of the A[i], are arrays with the same number of dimensions
(two) as “the first mentioned operand”, B[], and of these two dimensions the first one is
fixed constant in both each A[i] and B[], and the lengths agree (5).

Semantics

5 If the operands of the binary operators listed in the first constraint are arrays carrying a
nonempty selection, when their lengths are evaluated they shall be the same. The expres-
sion is an array of that length, with its elements selected, where each element is the result
of operating the corresponding element from the first operand with the corresponding ele-
ment from the second operand. For this operation, if the elements of any of the operands
are arrays with no further selection they are treated as if they carried an empty selection
(that is, they are not converted to pointers).

6 For the same operators as in the previous paragraph, if one operand is an array carrying a
selection of singletons and the other operand is a singleton or an array which is converted
to a pointer, in which case the latter pointer is a singleton, the expression is an array with
the same dimensions as the operand which is an array with selection, with its elements se-
lected, each element being the result of operating the corresponding element from the ar-
ray with selection with the other operand, according to the semantics described for the op-
erator for operands which are singletons. This other operand is evaluated only once.

7 For the same operators as above with the exception of relational and equality operators, if
one operand is an array with an empty selection or without selection which is not con-
verted to a pointer, let E be the other operand, and let v be the innermost selected ele-
ments from E or the operand E itself if it does not carry a selection. The result is an array
with the same dimensions and selection as E and where the innermost selected elements
are the result of operating each singleton of the corresponding v with the corresponding
singleton of the other operand; each singleton of this latter operand is evaluated only once.
Whenever the expression is evaluated, the array lengths of v and of the first mentioned op-
erand (considered as multidimensional arrays) shall be the same.

8 The dimensions of the resulting array are given by the dimensions of the operated arrays,
as expressed in the previous paragraphs. When at least one of the array lengths of the op-
erands that correspond to an array length of the result is fixed constant, the corresponding
array length of the result is fixed constant.

9 Whenever an array has each of its elements operated with the other operand, or with a cor-
responding element of the other operand, these operations are unsequenced.

10 Whenever an array has each of its elements operated, if none of the individual operations
would raise a certain floating-point exception, that exception is not raised. If any of the op-
erations would raise it, it is implementation defined whether the exception is raised or not.
The corresponding status flag is set or not accordingly.

11 EXAMPLE 2
shortshortshort A[12], B[12];
intintint C[8][12][4], D[8][10][2], b;

A[:] op A[:]

A[:]s op s

A op B
A[] op B

A == B pro-
duces a
singleton,
not an array

A < B not al-
lowed

50

B[0:6] = A[0:6] + A[6:6];
D[:][0:6][:] = C[:][0:6][0:2] + C[:][6:6][0:2];

In the expression A[0:6] + A[6:6] each of the operands is an array of six elements carry-
ing a selection. The expression is therefore an array of type intintint[6] with its elements se-
lected and whose values are the sums of the two arrays. The type of the assignment expres-
sion of which it is part is also intintint[6]. In the expression C[:][0:6][0:2] + C[:] ​[6:6] ​
[0:2], each operand as well as the expression itself and the assignment expression of
which it is part are of type intintint[8][6][2] and carry a three-dimensional selection. The op-
erated elements are C[i][j][k] + C[i] ​[6+j] ​[k]. The 96 operations are unsequenced.

12 EXAMPLE 3
floatfloatfloat A[n], B[n][n], C[n];
A[:] = B[:][:] * C[:];
B[:][1:n/2:2] = -B[:][1:n/2:2];

The rule in p. 5 applies to B[:][:] * C[:], yielding B[i][:] * C[i]. Each of these is the
multiplication of an array with singletons selected, B[i], and a singleton, C[i]. Therefore,
the rule of p. 6 applies to it; the result of each operation is the value B[i][j]*C[i], with
0 ≤ j ≤ n, where n is the value to which n evaluates at the declaration, and that of the multi-
plication expression is the n × n array B[i][j]*C[i] (multiplication of B by rows).

13 The expression B[:][1:n/2:2] = -B[:][1:n/2:2] is likewise subject to the rule in p. 5,
yielding B[i][1:n/2:2] = -B[i][1:n/2:2]. For each of these, the rule in p. 5 applies
again, resulting in B[i][j] = -B[i][j] for odd j. Here n may be 1, in which case no opera-
tion is performed and the expression has type floatfloatfloat[1][0].

14 EXAMPLE 4
floatfloatfloat A[n][m][5], B[n][5], C[5], D[m][5];
B[:] *= C[];
A[:] *= D[];
A[:][:] *= B[:];

The rule in p. 7 applies to B[:]*=C[], whereby each B[i][j] is multiplied by C[j] (multi-
plication of B by columns). By the same rule, each A[i][j][k] in the next statement is mul-
tiplied by D[j][k]. In the third statement, application of the rule of p. 5 yields that each
A[i] is multiplied by B[i]; each of these multiplications is like that of B[:]*=C[] (with m
in place of n).

15 EXAMPLE 5 The code
intintint A[10][10];
A[:] + 1;

has undefined behavior. While A[0] + 1 through A[9] + 1 would be valid, when these oper-
ations are part of a range operation as in A[:] + 1, each A[i] is not converted to a pointer
and there is no semantics defined for the addition of an array and an integer.

16 EXAMPLE 6 The additive expression is an array of fixed constant length:
intintint A[6], B[n];
A[:] + B[:];

6.5.4 Postfix operators

6.5.4.1 General

Syntax

51

postfix-expression:
primary-expression
postfix-expression [[[expression]]]
postfix-expression [[[]]]
postfix-expression range-selector
postfix-expression (((argument-expression-listopt)))
postfix-expression ... identifier
postfix-expression ->->-> identifier
postfix-expression ++++++
postfix-expression ------
compound-literal

 argument-expression-list:
assignment-expression
assignment-expression-list , , , assignment-expression

 range-selector:
[:][:][:]
[[[conditional-expression ::: conditional-expression]]]
[[[conditional-expression ::: conditional-expression ::: conditional-expression]]]

6.5.4.2 Array subscripting

7 EXAMPLE 2
intintint x[6];
x[2:3][0]; // Designates the element x[2]

6.5.4.3 Array selection

Description

1 An empty pair of brackets following a postfix expression is an empty selector. A postfix ex-
pression followed by an empty selector is an empty selection. Its intent is to select the ma-
trix as a whole.

2 A postfix expression followed by a construction of the form [:] or [B:L] or [B:L:s],
where B, L and s are conditional expressions is a range selection, which selects some ele-
ments from the array. The intent of [:] is to select all elements, that of [B:L] to selects L
elements starting from the B-th and that of [B:L:s] to select the elements at positions B,
B+s ... B+(L-1)*s. The evaluations of B, L and s are unsequenced.

3 Empty selectors and range selectors are collectively called array selectors. Empty selec-
tions and range selections are collectively called array selections.

Constraints

4 The conditional expressions shall have integer type. If the postfix expression is not an ar-
ray with selection then: If the array selector has the form [] or [:] the postfix expression
shall be a complete array; if it has any of the other two forms the postfix expression shall
be a pointer to a complete object or an array.

5 If the postfix expression in a range selection is an array with selection its innermost se-
lected elements shall be of array type.

6 If the array selection is not discarded, if L is an integer constant expression it shall be
greater than zero.

7 If the array selection is not discarded and the postfix expression is of array type, any of the

Here is the
restriction
that in
A[R][R’],
A[R] cannot
be an array
of pointers.

The ... are
unsequen-
ced. Could
be omited
as per 6.5.1,
p.4.

52

expressions B and B+L in the form [B:L], or B and B+(L-1)*s in the form [B:L:s], if an
integer constant expression, shall not be negative. If further the array is complete, let la be
the length of the array if it does not carry a selection or the length of each innermost se-
lected element if it carries a selection; if la is fixed constant, the value of those expressions
as well as that of L in the form [B:L] if an integer constant expression shall be less than la.

Semantics

8 In the following paragraphs, let b, l and s be the value of B, L and s respectively. l shall be
nonnegative. No restriction applies in general to s; in particular, it may be zero. An array
of size zero (that can only be created via a range selection where l is zero) shall not be the
operand of a sizeofsizeofsizeof, ___CountofCountofCountof or typeof operator that is evaluated.

9 An array with a memory layout different from that of an array without selection is a bro-
ken array. A broken array is broken-qualified. Different broken arrays that have the same
element type and number of elements may have different memory layouts. Conditions un-
der which an array with selection is broken are stated in the following paragraphs.

10 If the expression is of the form A[B:L] or A[B:L:s] and A is a pointer or an array which
does not carry a range selection, the first form selects the range of l elements starting from
the b-th, the latter counted from zero. In the second form the expression s is called the
step, as well as the value s; it selects the elements A[b], A[b+s] ... A[b+s*(l-1)] (if s is
zero it selects A[B] l times). The resulting array is said to carry a selection or to have (a
range of) elements selected. Let type be the type of A[0] if A is a pointer or an lvalue, and
let it be the unqualified non-atomic version of that type otherwise. The expression has type
“array of type” and it is an lvalue if A is a pointer or an lvalue. It has length l. If L is an in-
teger constant expression it is an array of fixed constant length; otherwise, it is a top-level
variable length array. The elements of the resulting array preserve the order of the selec-
tion, so that, if l is not zero, A[b] is the first, A[b+1] or A[b+s] the second, etc., and
A[b+l-1] or A[b+s*(l-1)] the last (if l is zero the resulting array has zero elements).

11 If the expression is of the form A[B:L] or A[B:L:s] and A is an array with a range of ele-
ments selected, let A have an m-dimensional range of elements selected of type (the inner-
most ones) T, and let T be array of T’. The expression is an array with an (m+1)-dimen-
sional range of elements selected of type T’, obtained by selecting from each selected ele-
ment v in the m-dimensional range the subarray v[B:L] or v[B:L:s], which is as de-
scribed by the previous paragraph (v is not an array with selection). Let u represent the in-
nermost arrays in A that carry a range selection (these arrays’ elements are the v’s), and
let lv be the length of the elements v. If b≠0 or l≠lv the arrays u in A[B:L] or A[B:L:s] are
broken.

12 Whenever the range selection is evaluated all the selected elements shall exist; i.e., if l is
not zero all indices b, b+s, ... , b+(l-1)*s shall be within bounds (not including one past the
last element). Here s is 1 if the selection is of the form [B:L].

13 A selection of the form [B:L:s] where l is greater than 1 and where s is not 1 is a stepped
selection. An array carrying a stepped selection is broken.

14 If an array has nonzero length and its elements are broken arrays, the array itself is bro-
ken.

15 An expression of the form A[:] is equivalent to A[0:___CountofCountofCountof(A)], except that A is evalu-
ated only once.xx)

16 An empty selection is of the form A[]. If A is an array with selection the empty selection
has no effect. Otherwise A is an array without selection and the expression is the same ar-
ray with a 0-dimensional range of elements selected, namely the whole array (one element

xx)Because it is impossible to reselect a selected dimension, here A cannot have length zero.

53

selected), and it is said that the array has, or carries, an empty selection. An array with an
empty selection is equivalent for all purposes to the array with no selection, except that it
cannot be converted to a pointer.

17 NOTE: As a consequence of the rules expressed above, an array that carries a nonempty se-
lection carries a range selection in a certain number of consecutive dimensions starting
from the outermost one. In addition, an array carrying an m-dimensional selection has all
the elements from its first m dimensions selected. This is so because, even if the original
array might have had more elements, an array with selection consist only of the selected
elements.

18 EXAMPLE 1 Consider the array object defined by the declaration
intintint x[3][5];

x[1:2] is an array of 2 × 5 objects and has type intintint[2][5]; it is a subobject of x and has a
one-dimensional range of elements selected, each of which is an array of five intintint.
x[1:2][:] is the same array and has selections in both its dimensions, resulting in a two
dimensional range of elements selected, each of which is a singleton of type intintint.

19 EXAMPLE 2 After the declarations
intintint n = 3;
intintint x[3][5], y[3][n], z[n];

x[:][0:n] is a broken array. Its type is intintint[3][3] and is a variable length array, though
not a top-level variable length array. x[1:n-2] is a variable length array of type intintint[n-
2][5]; i.e., intintint[1][5]. y[:] and y[:][0:3] both have type intintint[3][3], but the former is
a variable length array while the latter is not. z[0:2] is a fixed-size array of two intintint.

x[:][1:3] is a broken array. x[:][1:3][0] has type intintint[3], carries a one-dimensional
selection and is not broken.

20 EXAMPLE 3
floatfloatfloat A[10], B[10];
A[0:3] + B[9:3:-2];

The result is the array {A[0]+B[9], A[1]+B[6], A[2]+B[3]}
21 EXAMPLE 4

intintint x[3][5], y[6][20];
x[:][0:2] + y[3:3][k:2:-4]; // k is of integer type

Here x[:][0:2] and y[3:3][k:2:-4] are broken arrays of type intintint[3][2]. As operands
of the + operator they undergo lvalue conversion and are no longer broken.

22 EXAMPLE 5
intintint x[3][3], y[3];
x[0:1] == y[];

x[0:1] has type intintint[1][3] and has one element selected of type intintint[3], which is also
the type of y[]. The former could also have been written x[0][], which has type intintint[3]
with one element selected of type intintint[3].

6.5.4.4 Function calls

Constraints

1 [...]

2 The number of arguments shall agree with the number of parameters. Each argument, if it

54

is not an array with selection, or each of the innermost selected elements if it is so, shall
have a type such that its value may be assigned to an object with the unqualified version of
the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses () containing a possibly empty, comma-sepa-
rated list of expressions is a function call. The postfix expression denotes the called func-
tion. The list of expressions specifies the arguments to the function.

Forward references: function declarators (6.7.7.4), function definitions (6.9.2), the re-re-re-
turnturnturn statement (6.8.7.5).

6.5.4.4.1 Singleton calls

Description

1 A singleton function call is a function call where no argument carries a range selection (it
may carry an empty selection).

Semantics

2 An argument can be an expression of any complete object type. In preparing for the call to
a function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.92)

[...]

7 Recursive function calls are permitted, both directly and indirectly through any chain of
other functions.

8 EXAMPLE In the function call
(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects are completed
before the function pointed to by pf[f1()] is called.

Forward references: function declarators (6.7.7.4), function definitions (6.9.2), the re-re-re-
turnturnturn statement (6.8.7.5), simple assignment (6.5.17.2).

6.5.4.4.2 Range calls

Description

1 A range function call is a function call where at least one argument carries a range selec-
tion.

Semantics

2 The arguments that do not carry a range selection are evaluated and converted as for sin-
gleton function calls. The expressions designating the arrays with range selections are
evaluated, as are the arguments of each selection (the operands within brackets). The func-
tion call is replaced by l function calls, where l is the length of the range selections of all
arguments that carry a range selection (these lengths shall be equal (6.5.2)). For each of
these calls the arguments are:

— For the arguments that are not arrays with selection, the already converted values.

— For arrays with selection, the value of the i-th selected element for the i-th function
call, converted as for singleton function calls.

To these function calls the same procedure applies, except that expressions that have been

55

already evaluated are not evaluated again and arguments of array type arising from the
second point in the above list are not converted to pointers.

3 The actual function calls are indeterminately sequenced. The order in which the function
calls take place may be different each time the range call is reached. If at least one of the
function calls does not return the behavior is undefined.

4 If the return type of the function is void, that is the type of the range call.
5 If the return type of the function is not void, the range call is an array with selection: the

expression has array type and carries a selection. The type of its innermost selected ele-
ments is that of the return value of the function. Its dimensions are of the form of the se-
lections of the arguments carrying the deepest selection, i.e., carrying a selection in the
greatest number of dimensions.xx) If, for a given dimension, at least one of the arguments
is an array carrying a selection in that dimension of fixed constant length, the correspond-
ing length of the call expression is fixed constant.

6 EXAMPLE 1
Y[:] = log(tan(0.5*F[:]));
Σ[:] = sqrt(N[0:n:n+1]);
p[0:n][:] = exp(Ω[0:n][:]);

The last function call expression is first replaced by n calls of the form exp(Ω[i][:]).
Then each of these is replaced by as many calls as the array length of Ω[0], of the form
exp(Ω[i][j]).

7 EXAMPLE 2
floatfloatfloat x[3], y[3][2];
atan2(y[:][:],x[:]);

The range call is equivalent to the six calls (in some order)
atan2(y[0][0],x[0]); atan2(y[0][1],x[0]);
atan2(y[1][0],x[1]); atan2(y[1][1],x[1]);
atan2(y[2][0],x[2]); atan2(y[2][1],x[2]);

except that the return value is a 3 × 2 matrix and that x, y and each x[i] are evaluated
only once.

8 EXAMPLE 3
func(y[0:2][n], y[2:2][5], x, z[0:m]);

This expression is an array of dimensions [2][5], both of them fixed constant. If the value
of n is not 5 or the value of m is not 2, the behavior is undefined.

9 EXAMPLE 4 In the range call of inc:
voidvoidvoid inc(floatfloatfloat *p, const floatconst floatconst float x){*p += x;}
floatfloatfloat *p, A[6];
/* Assign values to ppp, and AAA */
inc(p,A[:]);

the value in *p is incremented by the sum of all the elements in A, in some unspecified or-
der. The translator is not allowed to parallelize the calls if it cannot ensure that.

6.5.4.6 Postfix increment and decrement operators

Constraints

xx)The behavior is only defined if all selections of the same depth in the different arguments are of the same length.

56

1 The operand of the postfix increment or decrement operator shall have atomic, qualified or
unqualified arithmetic or pointer type, or be an array with elements selected, with the in-
nermost selected elements of any of those types, and shall be a modifiable lvalue.

2 If the left operand is an array with selection and the expression is not discarded, none of
the selections it carries shall be given by a selector of the form [B:L:s] where s is an inte-
ger constant expression of value zero.

Semantics

3 If the left operand is an array with selection, whenever it is evaluated none of the selec-
tions it carries shall be a stepped selection where the step is zero.

4 If the operand is not an array with selection the operated elements is the operand. Other-
wise, it refers to each of the innermost selected elements.

5 The result of the postfix ++ operator is the value of the operand. As a side effect, the value
of the operated elements object(s) is incremented by the adjustment. See the discussions of
additive operators and compound assignment for information on constraints, types, and
conversions and the effects of operations on pointers. The value computation of the result
for each operated element is sequenced before the side effect of updating the stored value
of the said element. Both operations are unsequence with respect to the same operations
on other operated elements. With respect to an indeterminately sequenced function call,
the operation of postfix ++ is a single evaluation. Postfix ++ on an object with atomic type
is a read-modify-write operation on each operated element with memory_order_seq_cst
memory semantics.97)

6 The adjustment used to increment or decrement the operand is the value 1 with a type and
value representation as follows:

— if the operated elements have a pointer type, the adjustment has type ptrdiff_tptrdiff_tptrdiff_t;

— if the operated elements have complex type, the adjustment has the corresponding
real type of the operated elements;

— if the operated elements have decimal floating type, the adjustment has the same type
as the operated elements with a quantum exponent of 0;

— otherwise, the adjustment has the same type as the operated elements.

7 The postfix -- operator is analogous to the postfix ++ operator, except that the value of the
operated elements is decremented by the adjustment.

6.5.5 Unary operators

6.5.5.2 Prefix increment and decrement operators

Constraints

1 The operand of the prefix increment or decrement operator shall have atomic, qualified or
unqualified arithmetic or pointer type, or be an array with elements selected, with the in-
nermost selected elements of any of those types, and shall be a modifiable lvalue.

2 If the left operand is an array with selection and the expression is not discarded, none of
the selections it carries shall be given by a selector of the form [B:L:s] where s is an inte-
ger constant expression of value zero.

Semantics

3 If the left operand is an array with selection, whenever it is evaluated none of the selec-
tions it carries shall be a stepped selection where the step is zero.

4 The value of the operated elements (6.5.4.5) of the prefix ++ operator is incremented. The

57

result is the new value of the operated elements after incrementation. The expression ++E
is equivalent to (E+=1), except that in place of 1 is the adjustment (6.5.4.5). See the dis-
cussions of additive operators and compound assignment for information on constraints,
types, side effects, and conversions and the effects of operations on pointers.

6.5.5.3 Address and indirection operators

Constraints

1 The operand of the unary & operator shall not be an array carrying a nonempty selection
and shall be either a function designator, the result of a [] an array subscripting operator
or unary * operator, or an lvalue that designates an object that is not a bit-field and is not
declared with the registerregisterregister storage-class specifier.

6.5.5.4 Unary arithmetic operators

Constraints

1 If the operand is not an array with selection then: The operand of the unary + or - operator
shall have arithmetic type; of the ~ operator, integer type; of the ! operator, scalar type. If
the operand is an array with selection, the innermost selected elements shall have a type
as constrained by the previous sentence.

[...]

5 The result of the logical negation operator ! applied to a singleton is 0 if the value of its
operand compares unequal to 0, 1 if the value of its operand compares equal to 0. The re-
sult has type intintint. The expression !E is equivalent to (0==E).

6.5.5.5 The sizeofsizeofsizeof, alignofalignofalignof and ___CountofCountofCountof operators

Semantics

4 When sizeofsizeofsizeof is applied to an operand that has type charcharchar, unsigned charunsigned charunsigned char, or signedsignedsigned
charcharchar, (or a qualified version thereof) the result is 1. When applied to an operand that has
array type, the result is the total number of bytes in the array equals the number of ele-
ments of the array times the size of each of its elements (i.e., times the result of sizeofsizeofsizeof
applied to one of its elements).103) When applied to an operand that has structure or union
type, the result is the total number of bytes in such an object, including internal and trail-
ing padding.

[...]

8 EXAMPLE 2 The ___CountofCountofCountof operator computes the number of elements in the outermost
dimension of the array:

doubledoubledouble array[4][9];
static_assertstatic_assertstatic_assert(___CountofCountofCountof array == 4); // number of elements
static_assertstatic_assertstatic_assert(sizeofsizeofsizeof array == 4*sizeofsizeofsizeof array[0]); /* number of
 bytes in the array = 36*sizeofsizeofsizeof(doubledoubledouble) */

The following equality of values always holds for arrays:

sizeofsizeofsizeof(array) = ___CountofCountofCountof(array)*sizeofsizeofsizeof(array[0])

6.5.6 Cast operators

Constraints

[...]

58

5 If the operand is an array with selection it shall carry a selection of singletons (i.e., in as
many dimensions as the array has).

Semantics

6 [...]

7 Preceding an expression by a parenthesized type name converts the value of the expression
to the unqualified, non-atomic version of the named type. This construction is called a
cast.104) If the operand is an array which does not carry a selection, it is first converted to a
pointer and the cast applies to this pointer. If the operand is an array carrying a selection
of singletons the cast is applied to each of its singletons; in this case, the result is an array
with the same dimensions and selection as its operand and with the type of its singletons
the one resulting from the cast applied to a singleton. A cast that specifies no conversion
has no effect on the type or value of an expression.

6.5.7 Multiplicative operators

Constraints

2 Either operand may be an array with selection. Its singletons shall satisfy the constraints
set forth in the following paragraphs.

3 Each of the operands, if not an array with selection, shall have arithmetic type. The oper-
ands of the % operator shall have integer type.

4 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

6.5.8 Additive operators

Constraints

2 Either operand may be an array with selection. Its singletons shall satisfy the constraints
set forth in the following paragraphs for operands which are not arrays.

3 For addition, when the operands are not arrays with selection, either both operands shall
have arithmetic type, or one operand shall be an array or a pointer to a complete object
type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

4 For subtraction, when the operands are not arrays with selection, one of the following
shall hold:

— both operands have arithmetic type;

— both operands are pointers to, or arrays of, qualified or unqualified versions of com-
patible complete object types; or

— the left operand is an array or a pointer to a complete object type and the right oper-
and has integer type.

(Decrementing is equivalent to subtracting 1.)

5 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

Recommended practice

6 Implementations are encouraged to issue a diagnostic message when one operand is an ar-
ray with selection and the other operand is an array that is converted to a pointer to its
first element, and an array of the same type but carrying a selection could be possible in
place of the latter operand.

59

Semantics

7 If an operand is an array without selection, the array is first converted to a pointer to its
first element, thence operated as specified for pointers. If both operands have arithmetic
type, the usual arithmetic conversions are performed on them.

[...]

14 (Change “EXAMPLE” to “EXAMPLE 1”)

[...]

15 EXAMPLE 2 The code
structstructstruct stra A[10];
A[:] + 1;

has undefined behavior. For while A + 1 would be valid, an array with selection is not con-
verted to a pointer, and the selected elements of A[:] are not of a type that could be an op-
erand of the addition operator.

16 EXAMPLE 3 The code
floatfloatfloat *p[3], A[10];
intintint *q[3];
p[:] = A + q[:];

has defined behavior: it is equivalent to p[0] = A+q[0], p[1] = A+q[1], p[2] = A+q[2].

17 EXAMPLE 4 In the code
intintint a[3], b[3];
unsigned longunsigned longunsigned long sum[3];
sum[:] = (unsigned longunsigned longunsigned long)(a + b[:]);

implementations are encouraged to issue a diagnostic message for the operation a + b[:].

6.5.9 Bitwise shift operators

Constraints

2 Each of the operands shall have integer type or be an array with selection with its single-
tons of integer type.

Semantics

3 The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand, when a singleton, is
negative or is greater than or equal to the width of the promoted left operand, the behavior
is undefined.

4 When E1 and E2 are singletons, the result E1 << E2 is E1 left-shifted E2 bit positions; va-
cated bits are filled with zeros. If E1 has an unsigned type, the value of the result is E1×
2E2, wrapped around. If E1 has a signed type and nonnegative value, and E1× 2E2 is repre-
sentable in the result type, then that is the resulting value; otherwise, the behavior is un-
defined.

5 When E1 and E2 are singletons, the result of E1 >> E2 is E1 right-shifted E2 bit positions.
If E1 has an unsigned type or if E1 has a signed type and a nonnegative value, the value of
the result is the integral part of the quotient of E1 / 2E2. If E1 has a signed type and a nega-
tive value, the resulting value is implementation-defined.

60

6.5.10 Relational operators

Constraints

2 Either operand may be an array with selection. The innermost selected elements shall be
singletons and satisfy the constraints set forth in the following paragraphs for operands
which are not arrays.

3 One of the following shall hold when the operands are not arrays with selection:

— both operands have real type; or

— both operands are pointers to, or arrays of, qualified or unqualified versions of com-
patible object types.

4 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

Semantics

5 If an operand is an array without selection, the array is first converted to a pointer to its
first element, thence operated as specified for pointers. If both operands have arithmetic
type, the usual arithmetic conversions are performed. Positive zeros compare equal to neg-
ative zeros.

6.5.11 Equality operators

Constraints

2 If no operand is an array one of the following shall hold:

[...]

3 If either operand is an array not carrying a selection it is converted to a pointer to its first
elements and it is to these pointers to which the constraint in the previous paragraph ap-
plies.

4 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

5 If one of the operands is an array carrying a selection, let T be the type of its singletons. Ei-
ther of the following shall hold:

— The other operand is not an array with selection. If this other operand has pointer
type or is an array converted to a pointer, or has type nullptr_tnullptr_tnullptr_t, T is a pointer type or
nullptr_tnullptr_tnullptr_t. The type T and the other operand satisfy the constraints expressed in the
previous paragraphs for the types of the operands.

— Both operands are arrays with selection. If the singletons of one of the arrays have
pointer type or type nullptr_tnullptr_tnullptr_t so have the singletons of the other array. The type T
and the analogously defined type T’ for the other operand satisfy the constraints ex-
pressed in the previous paragraphs for the types of the operands.

Recommended practice

6 Implementations are encouraged to issue a diagnostic message when one operand is an ar-
ray with selection and the other operand is an array that is converted to a pointer to its
first element, and an array of the same type but carrying a selection could be possible in
place of the latter operand.

Semantics

7 If an operand is an array without selection, the array is first converted to a pointer to its

61

A eq s
A[] eq s

A[] eq B

first element, thence operated as specified for pointers. The == (equal to) and != (not
equal to) operators are analogous to the relational operators except for their lower prece-
dence.105) When operating on singletons, each operand yields 1 if the specified relation is
true and 0 if it is false, the result has type intintint and exactly one of the relations is true.

8 [...]

9 Otherwise, at least one operand is a pointer. [...]

10 [...]

11 [...]

12 If one operand is an array with selection with the innermost selected elements of array
type, or if it is an array with no selection which does not decay to a pointer (this is a se-
lected array from some enclosing array), and the other operand is a singleton, the result is
an array with selection unless the selection is empty or there is no selection, in which case
it is a singleton. The result has one element in place of each selected array (or of the whole
array if it does not carry a selection), which for the == operator has value 1 if all single-
tons of the said array compare equal to the other operand and value 0 otherwise. For the
operator != the values are the opposite. The resulting array carries a selection in all its di-
mensions.

13 If one operand is an array carrying a selection where the innermost selected elements are
arrays a, and the other operand is an array B carrying an empty selection or carrying no se-
lection and not decaying to a pointer (the latter is a selected array from some enclosing ar-
ray), the dimensions of the selected arrays a and the array B are be the same (6.5.2, con-
straint 3). The result is an array with one element in place of each a, which for the == op-
erator has value 1 if all singletons of a compare equal to the corresponding singletons of B
and value 0 otherwise. For the operator != the values are the opposite. The resulting array
carries a selection in all its dimensions.

14 EXAMPLE 1
intintint A[4][3], B[4][3], C[3];
intintint E[4][3], F[4], G, H[4], I[4], J;

E[:][:] = A[:][:] == B[:][:];
F[:] = A[:] == B[:];
G = A[] == B[];
H[:] = A[:] != 2;
I[:] = B[:] == C[];
J = A[] == 2;

F[0] equals (A[0][0]==B[0][0] && A[0][1]==B[0][1] && A[0][2]==B[0][2]), and
similarly for F[1], F[2] and F[3]. G is 1 if all twelve elements of A compare equal to the
corresponding elements of B. H[0] equals !(A[0][0]==2 && A[0][1]==2 && A[0][2] ​
==2), and similarly for H[1], H[2] and H[3]. Each I[i] equals (B[i][0]==C[0] &&
B[i][1]==C[1] && B[i][2]==C[2]). J is 1 if all twelve elements of A are 2.

15 EXAMPLE 2
intintint A[5][4][3], B[5][3], C[5][3];
intintint D[5][4], E[5][4];
D[:][:] = A[:][:] != B[:];
E[:] = B[:][:] != C[:]; // Undefined behavior: E[i] = (B[i][:] != C[i])

Each D[i] is determined by the general recursive rule in 6.5.2 and equals A[i][:] != B[i].

and re-
move the
footnote

If both arrays carry se-
lection, the recursive
rules from 6.5.2 apply.
There remain A[] eq s
and A[] eq B[]

62

These in turn are determined by the rule of paragraph 12, so that D[i][j] equals
!(A[i][j][0]==B[i][0] && A[i][j][1]==B[i][1] && A[i][j][2]==B[i][2]). The ex-
pression for E is, in the first place, determined also by the recursive rule, yielding E[i] =
(B[i][:] != C[i]). This one has undefined behavior because the operand C[i] is an array
which does not decay to a pointer and which does not carry a selection and B[i][:] is an
array carrying a selection of singletons, and there is no rule for that case.

16 EXAMPLE 3
intintint A[1], B[1];
intintint C[1];

C[:] = A[:] == B[:];
C[0] = A[] == B[];

The result of the first comparison is an array which is assigned to an array. The result of
the second comparison is a singleton which is assigned to a singleton.

17 EXAMPLE 4 Implementations are encouraged to issue a diagnostic message for the first of
the following comparisons:

voidvoidvoid *A[3], *B[3];
intintint c;

c = A[] == B; //1 if each A[i] equals (void*)B.
c = A[] == B[]; //1 if each A[i] equals the corresponding B[i].

The diagnostics can be avoided by writing (void*)B in place of B.

6.5.12 Bitwise AND operator

Constraints

2 Each of the operands shall have integer type or be an array with selection with it single-
tons of integer type.

6.5.13 Bitwise exclusive OR operator

Constraints

2 Each of the operands shall have integer type or be an array with selection with with it sin-
gletons of integer type.

6.5.14 Bitwise inclusive OR operator

Constraints

2 Each of the operands shall have integer type or be an array with selection with it single-
tons of integer type.

6.5.17 Conditional operator

Constraints

2 The first operand shall have scalar type.

3 If the second and third operands are singletons one of the following shall hold for them:

[...]

4 If either of the second or third operands is an array without selection it is converted to a

63

pointer to its first elements and it is to these pointers to which the condition in the previ-
ous paragraph applies.

5 If either of the second or third operands has decimal floating type, the other operand shall
not have standard floating type, or complex type.

6 If either of the second or third operands is an array carrying a selection then so shall be
the other. Their number of dimensions, considered as multidimensional arrays, shall be the
same. The number of dimensions with selection in both operands shall be the same. If for
any dimension the lengths in one and the other operand are given by integer constant ex-
pressions, they shall be the same. The singletons of which one and the other array are com-
posed shall satisfy the constraints set above for operands which are not arrays. In addition,
if the singletons of one of the arrays have pointer type or type nullptr_tnullptr_tnullptr_t, so shall have
the singletons from the other operand.

Semantics

7 [...]

8 If the second and third operands have arithmetic type (after conversion to pointer for ar-
rays not carrying a selection), [...].

9 If one of the second and third operands is a null pointer constant, the result has the type of
the other operand. Otherwise, if one operand has type nullptr_tnullptr_tnullptr_t, the result has the type
of the other operand. Otherwise, if both operands are pointers, the result type is a pointer
to a type qualified with all the type qualifiers of the types referenced by both operands. If
the latter types, unqualified, are compatible, the result is a pointer to the appropriately
qualified version of the composite type; otherwise, one of the operands is a pointer to voidvoidvoid
or a qualified version of voidvoidvoid and the result type is a pointer to the appropriately qualified
version of voidvoidvoid.

10 All array length expressions that are not integer constant expressions and which are part
of the type of the operand that is not evaluated are treated as unspecified lengths in the de-
termination of type compatibility and when forming the composite type according to 6.2.7.

11 If both the second and third operands are arrays with selection, the conditional expression
carries the selection of the evaluated operand. The type of its singletons is determined by
applying the above rules to the types of the singletons of both operands.

6.5.18 Assignment operators

6.5.18.1 General

Constraints

2 An assignment operator shall have a modifiable lvalue as its left operand.

3 If the left operand is an array with selection and the expression is not discarded, none of
the selections it carries shall be given by a selector of the form [B:L:s] where s is an inte-
ger constant expression of value zero.

Semantics

4 [...]

5 If the left operand is an array with selection, whenever it is evaluated none of the selec-
tions it carries shall be a stepped selection where the step is zero.

6.5.18.2 Simple assignment

Constraints

64

1 If the left operand is not an array one of the following shall hold:

[...]

2 If the left operand is an array, its singletons together with the right operand if not an array
with selection or the singletons of the right operand if it is an array with selection shall
satisfy the constraint above for the case the left operand is not an array. Furthermore, if
the right operand is an array with selection and the singletons of the left operand have
pointer type or type nullptr_tnullptr_tnullptr_t, so shall have the singletons of the right operand.

3 If the right operand is an array with selection the left operand shall be an array. The num-
ber of dimensions with selection in the left operand shall be greater than or equal to the
number of dimensions with selection in the right operand (an empty selection is consid-
ered a selection in zero dimensions).

Semantics

4 In simple assignment (=), ...

5 If the left operand is not an array and if the value being stored in an objectit is read from
another object that overlaps in any way its storage, then the two objects shall occupy ex-
actly the same storage and the type of the expression used to access the object read shall
be a qualified or unqualified version of a type compatible to that of the left operand; other-
wise, the behavior is undefined.

7 If the left operand is an array, for each singleton i of it in which a value is stored by the as-
signment let C(i) be the set of its singletons that need to be read, in whole or in part, in the
expression at the right of the assignment operator in order to compute the value to store
in i. If C(i) includes another singleton of the array which also has a value stored in it by the
assignment, the behavior is undefined. If C(i) includes i, the condition in the previous para-
graph applies to it. C(i) includes all the values that are read in the abstract machine in the
chain of operations expressed by the right operand that determine de value to store in i,
even if they are not needed from the mathematical viewpoint.

Recommended practice

8 Implementations are encouraged to issue a diagnostic message when the left operand is an
array of pointers, the right operand is an array of pointers that is converted to a pointer
and an array equal to the right operand but not decaying to a pointer would also be possi-
ble as the right operand.

[...]

12 EXAMPLE 4 Consider the following assignments
intintint A[6];
A[1:3] = A[1:3] + 0*A[3];
A[:] = A[:] - A[:];
A[:] = A[3];

In the first assignment C(i) is {i, A[3]} for each i (where A[3] means the object denoted by
A[3], not the value of the expression A[3]) and the behavior is undefined. In the second
assignment C(i) is {i} for all i. In the third assignment C(i) equals {A[3]} for all i and the
behavior is also undefined, even if the expression does not change the value of A[3].

13 EXAMPLE 5 In the following piece of code
intintint A[9];
charcharchar B[7];
A[0:3] = A[B[0]:3:-1];

65

A[3] = ((charcharchar*)A)[0:7] == B[];
A[3:3] = ((charcharchar*)A)[0:7] == B[];

the first assignment has defined behavior if 4 ≤ B[0] ≤ 8. The second assignment has de-
fined behavior always because the left operand is not an array and the value to store in it
is not read from an object, while the third one has undefined behavior if sizeofsizeofsizeof(intintint) ≤ 2.

[...]

14 EXAMPLE 6 Assignments where the left operand is an array.
intintint A[5][4], B[5][4], C[4];
intintint *D[12];
A[:] = C[]; // Equivalent to A[0][:]=C[:], A[1][:]=C[:], etc.
A[:] = B[0][]; // A[0][:]=B[0][:], A[1][:]=B[0][:], etc.
D[:] = B[2]; // D[i] = &B[2][0]
// The following four assignments are equivalent
A=B[]; A[]=B[]; A[:]=B[:]; A[:][:]=B[:][:];

In the first and second assignments above, writing C[] and B[0][] instead of C or B[0] is
necessary to prevent the array from decaying to a pointer.

15 EXAMPLE 7 Implementations are encouraged to issue a diagnostic message in the follow-
ing assignment:

voidvoidvoid **A, *B[3];
A[0:3] = B;

6.5.18.3 Compound assignment

Constraints

1 Either operand may be an array with selection. The left operand may be an array with no
selection. In these cases, it is the singletons of the arrays that shall satisfy the constraints
set forth in the following paragraphs.

2 For the operators += and -= only, if the operands are not arrays then: either the left oper-
and [...]

3 For the other operators, if the operand are not arrays then: the left operand [...]

4 If either operand has decimal floating type, the other operand shall not have standard
floating type, or complex type.

6.7.3.6 typeof specifiers

Constraints

3 The typeof operators shall not be applied to an expression that designates a bit-field mem-
ber.

4 The typeoftypeoftypeof operator shall not be applied to an array carrying a nonempty selection.

6.7.7.3 Array declarators
166)The declaration of variable length arrays with automatic storage duration is a conditional feature that imple-
mentations are not required to support; see 6.10.10.4.

66

6.7.10 Type inference

Semantics

2 For such a declaration that is the definition of an object the init-declarator shall have the
form

direct-declarator = assignment-expression

The inferred type of the declared object is the type of the assignment expression after
lvalue, array to pointer or function to pointer conversion, additionally qualified by quali-
fiers and amended by attributes as they appear in the declaration specifiers.169) The assign-
ment expression shall not be an array of size zero.

6.10.10.4 Conditional feature macros

______STDC_NO_STDC_NO_STDC_NO_VLA__ VLA__ VLA__ The integer literal 1, intended to indicate that the implementation does
not support the declaration of variable length arrays with automatic storage dura-
tion. Parameters declared with variable length array types are adjusted and then de-
fine objects of automatic storage duration with pointer types. Thus, support for such
declarations is mandatory.

______STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__STDC_RANGE_SELECTIONS__ The integer literal 1, intended to indicate that the imple-
mentation supports array selections beyond empty selections. Otherwise the macro
shall not be defined or defined to 0.

If the implementation supports only empty selections, the following two macros may not
be defined; if defined, the first one shall be defined to 0.

______STDC_STDC_STDC_ARRSEL_NESTED__ARRSEL_NESTED__ARRSEL_NESTED__ The integer literal 0 if selections of the form [B:L] and
[B:L:s] can only be applied to expressions of pointer type and to arrays carrying no
selection or an empty selection, and the type from which the pointer type or the array
type is derived is not an array type. The integer literal 1 otherwise.

______STDC_STDC_STDC_ARRSEL_STEPPED__ARRSEL_STEPPED__ARRSEL_STEPPED__ The integer literal 0 if selections of the form [B:L:s] are not
supported; the integer literal 1 if they are.

	Array Notation for Vectorization
	Table of contents
	1	 Introduction
	Intent of the feature
	This paper
	Prior art
	Empty selections
	Intent of the proposal
	Terminology

	2	 Selections [B:L], [B:L:s] and [:]
	Semantics of range selection
	Continuous subarray selection
	The type after lvalue conversion
	Broken arrays
	Ignored elements are not padding
	Selection from an array of pointers
	The broken pseudo-qualifier
	Broken vs. potentially broken
	Consequences for implementations
	Changes need to the wording in “Types”

	The type of A[B:L] for nonconstant L
	A variable length array

	Stepped selections
	s equal to zero

	Definition of broken array
	The kind of expressions allowed for B, L and s
	Range operation
	Restrictions on the values of B, L and s
	Array subscripting applied to an array with selection
	Pointer to one of its elements; valid offsets

	3	 Relational operators and empty selections
	0-dimensional selection
	Equality operators
	Relational operators
	The equivalence of matrix without or with 0‑dim. selection

	4	 Restrictions on arrays with selection
	Inconvertibility to pointer
	Restrictions for broken arrays before lvalue conversion
	sizeof
	& operator
	typeof

	Other Restrictions
	Argument to function
	_Generic
	auto
	alignof
	unary *

	5	 Casts
	Changing the singleton type
	Array cast
	Variants of the element type in the cast

	6	 Assignments
	Assigning an array
	Overlapping in assignment
	Overlapping in the range

	7	 General rules for operating arrays with selection
	The general rules
	Assignment, equality and relational operators

	Application to multiplications of matrices

	8	 Other
	The decaying of plain arrays to pointers
	Non-lvalues cannot decay

	Literal 0 promoted to pointer
	Mixing arrays with selection and arrays which decay to pointers
	On modifiable lvalues

	9	 Functions
	Functions acting as range operators

	10	 Selections of length zero
	Motivation
	Relation to a value of B out of bounds
	Its type
	Fitting it into the type system
	Literal zero for the length
	Final set of restrictions
	Negative value for L

	11	 implementation of range operations
	What would be mandatory
	How range selections might be translated
	Sequence points

	12	 Indexed and direct selections
	The different kinds of array selections
	Terminology
	The most general selection carried

	Comma-separated list
	Conflict with array subscripting

	13	 Further extensions
	A[B:-L]
	A[B:L][B’:L’] when the elements of A[B:L] are pointers
	Functions returning arrays
	Functions taking arrays

	14	 Further editorial fixes
	6.5.16 Conditional operator
	6.5.17 Assignment operators

	Wording
	6.2.5 Types
	6.2.6 Representation of types
	6.2.6.1 General

	6.3.3.1 Lvalues, arrays, and function designators
	6.5 Expressions
	6.5.2 Arrays with selection as operands
	6.5.4 Postfix operators
	6.5.4.1 General
	6.5.4.2 Array subscripting
	6.5.4.3 Array selection
	6.5.4.4 Function calls
	6.5.4.6 Postfix increment and decrement operators

	6.5.5 Unary operators
	6.5.5.2 Prefix increment and decrement operators
	6.5.5.3 Address and indirection operators
	6.5.5.4 Unary arithmetic operators
	6.5.5.5 The sizeof, alignof and _Countof operators

	6.5.6 Cast operators
	6.5.7 Multiplicative operators
	6.5.8 Additive operators
	6.5.9 Bitwise shift operators
	6.5.10 Relational operators
	6.5.11 Equality operators
	6.5.12 Bitwise AND operator
	6.5.13 Bitwise exclusive OR operator
	6.5.14 Bitwise inclusive OR operator
	6.5.17 Conditional operator
	6.5.18 Assignment operators
	6.5.18.1 General
	6.5.18.2 Simple assignment
	6.5.18.3 Compound assignment

	6.7.3.6 typeof specifiers
	6.7.7.3 Array declarators
	6.7.10 Type inference
	6.10.10.4 Conditional feature macros

