
Annex Q [temporary ‘number’]
(informative)

Order-preserving subkey reduction

The template table of collation weights has four levels. When applied to a string,
each level nominally produces a subkey that is about as long, in number of weights, as
the number of characters in the string itself. There are, however, a number of ways to
reduce the size of the subkeys without changing the ordering as determined by the
nominal key. This international standard neither specifies normatively, and even less
requires the use of, any subkey reduction technique. However, for conformity, any
key size reduction method must preserve the order between strings as determined by
the nominal key produced by the selected tailoring of the template table.

For illustration of what can be done in terms of subkey reduction, we here present
two example reduction methods. Good implementations of these methods produce the
reduced key directly, without producing the nominal key first.

Applied correctly to each nominal key, these reduction methods keep the order
between the strings, since each is a strictly monotonically increasing mapping, i.e., if
nominal_key1<nominal_key2, then reduce1(nominal_key1)<reduce1(nominal_key2),
and reduce2(nominal_key1)<reduce2(nominal_key2).

Each subkey reduction method that results in a strictly monotonically increasing
mapping can be applied to any level. And different reduction methods can be applied
to different levels, as long as it is done consistently for all keys. E.g., example method
1 below can be used for levels 2 and 4, while using example method 2 below for level
3, while no reduction method need be applied to level 1.

�� ([DPSOH�NH\�UHGXFWLRQ�PHWKRG����LQWHUOHDYHG�FRXQWV�
DQG�ZHLJKWV�

This method can be applied for a single selected weight at each level this method is
used, preferably a weight that is very commonly used at that level.

This method uses a count value, which may be stored in the subkey using different
number of digits from what the weights uses at that level. The transformed value (see
below) of the count need have no particular relation to any of the weight values. In
this illustration we will use integer values between 00 and FF (in hexadecimal), the
latter is the maxcntlvl. A practical implementation may of course use a wider range of
values.

The reduction method works as follows, described in principle, not in
implementation terms: Each maximal subrun of the for that level selected weight,
including the subruns of length 0, is replaced by a transformed count value, as follows:

• swalvl is the selected reduction weight at level lvl.
• wb is the weight (including subkey separator (1) and key terminator (0)) that

follows the (empty or not) maximal subrun of swalvl currently processed.
• cnt is the length (�����RI�WKH�VXEUXQ�FXUUHQWly processed.
• maxcntlvl is a value ����DQG�DQG�LV�WKH�ODUJHVW�YDOXH�WKDW�FDQ�EH�VWRUHG�DV�D�FRXQW�

in the subkey, given the number of digits used for the storage of a (transformed)
count in a subkey at that level.

• guardcntlvl is a value ����DQG���maxcntlvl, e.g. maxcntlvl div 2.
• lowcntsizelvl = guardcntlvl + 1.
• highcntsizelvl = maxcntlvl í guardcntlvl + 1.
• If swalvl > wb:

Replace the subrun with the count/weight-pair (guardcntlvl, swalvl)
repeated (cnt div lowcntsizelvl) times, followed by the count
(cnt mod lowcntsizelvl).

• If swalvl < wb:
Replace the subrun with the count/weight-pair (guardcntlvl, swalvl)
repeated (cnt div highcntsizelvl) times, followed by the count
(maxcntlvl í (cnt mod highcntsizelvl)).

Note that if the limits are set reasonably high, the count/weight-pairs will be
repeated zero times in practical cases. In the other extreme, if maxcntlvl is zero, the
subkey is not changed.

The reason this method works only for one weight per level is that empty subruns
otherwise would cause ambiguous key reductions.

This reduction method can be applied to level 2, where <BASE> can be expected to
be a very common weight. It can also be used for level 3, where <MIN> (minuscule,
i.e. lower-case, or case-less) can be expected to be very common. This reduction
method can also be applied to level 4, where <PLAIN> is likely to be very common on
level 4. Note that if the selected weight is not very common in a string, the resulting
key by this method may be longer than the nominal key, since empty subruns of the
selected weight must be replaced by another subrun that is non-empty.

An example reduction using this method on level 2 (selecting the weight <BASE>),
on level 3 (selecting the weight <MIN>), and on level 4 (selecting the weight
<PLAIN>). For readability, we will in this example write <a>, , etc. for the
weights of the letters, <-> for <BLANK>, <l> for <MIN>, <u> for <CAP>, <*> for
<PLAIN>, <A> for <ACUTE>, <H> for the level 4 weight of a hyphen, and <P> for
the level 4 weight of an apostrophe. The example character string is “Vice-
Président’s”. The nominal key, according to the template table, is (as a number in R,
expressed as a hexadecimal fractional number; <v> etc. really stands for digit
sequences; spaces are used for alignment for clarity, they are in no way part the actual
key):

 0.<v><i><c><e> <p><r><e> <s><i><d><e><n><t> <s> 0001
 <-><-><-><-> <-><-><-><A><-><-><-><-><-><-> <-> 0001
 <u><l><l><l> <u><l><l> <l><l><l><l><l><l> <l> 0001
 <*><*><*><*><H><*><*><*> <*><*><*><*><*><*><P><*> 0000

Do the reduction as described above (note that here: <-> (<l>) is smaller than any
other level 2 (3) weight, but greater than 1 (the subkey separator weight), and <*> is
greater than any other level 4 weight):

 0.<v><i><c><e> <p><r><e> <s><i><d><e><n><t> <s> 0001
 F8 <A> 07 0001
 FF <u> FC <u> 0B 0001
 04 <H> 09 <P> 01 0000

Note that “count” values are at the beginning and end of the subkeys, as well as
between each non-selected weight. This key is significantly shorter than the nominal
key, in this example as well as for most (not all) other strings that normally occurs in a
collation.

�� ([DPSOH�NH\�UHGXFWLRQ�PHWKRG����HDFK�FRXQW�
LQWHJUDWHG�LQ�D�ZHLJKW�

This method can be applied for a set of weights at each level, preferably ones that
are fairly commonly used at that level.

This method also uses a count value, but the transformed weight value must have
the same number of digits as all other weights at that level uses. The transformed
values (see below) for the count must have values that are in the neighborhood of the
weight in the subrun that is replaced. This neighborhood of a weight must not overlap
with any other weights or neighborhoods of weights.

The reduction method works as follows, described in principle, not in
implementation terms: Each non-empty maximal subrun of a weight selected for
reduction is replaced as follows:

• wa is the weight in the subrun.
• wb is the weight (including subkey separator (1) and key terminator (0)) that

follows the non-empty maximal subrun of wa currently processed.
• cnt is the length (�����RI�WKH�VXEUXQ�FXUUHQWO\�SURFHVVHG�
• minnbhwa is the minimum value that constitutes the neighborhood of wa.
• maxnbhwa is the maximum value that constitutes the neighborhood of wa.
• lownbhsizewa = wa í minnbhwa + 1.
• highnbhsizewa = maxnbhwa í wa + 1.
• If wa > wb:

Replace the subrun with the weight wa repeated (cnt div lownbhsizewa)
times, and, if (cnt mod lownbhsizewa) is non-zero, followed by the weight
(minnbhwa + (cnt mod lownbhsizewa) í 1).

• If wa < wb:
Replace the subrun with the weight wa repeated (cnt div highnbhsizewa)
times, and, if (cnt mod highnbhsizewa) is non-zero, followed by the weight
(maxnbhwa í (cnt mod highnbhsizewa) + 1).

Note that if the neighborhood of wa consists of wa only, the subrun is not changed.

This reduction method can be applied to level 2, for <BASE>. It can also be used
for level 3, e.g. for <MIN>, <CAP>, <HIRA>, and <KATA>. It can also be applied to
level 4, for <PLAIN>. Note that even if the weight reduced is not common, the
resulting subkey is never longer than the nominal subkey. A nontrivial neighborhood
is needed around each of the selected weights for a shortening of the subkey to
actually take place.

We do an example reduction using this method on level 2 (for <BASE>), on level 3
(for <MIN> and <CAP>), and on level 4 (for <PLAIN>). For this we make the
following assumptions:

• <-> (level 2): value of weight: 0026; minimum of neighborhood: 0022;
maximum of neighborhood: 002A.

• <l> (level 3): value of weight: 0005; minimum of neighborhood: 0002,
maximum of neighborhood: 0007.

• <u> (level 3): value of weight: 0017; minimum of neighborhood: 0015,
maximum of neighborhood: 001A.

• <*> (level 4): value of weight: 0F80; minimum of neighborhood: 0F00,
maximum of neighborhood: 0FFE.

For the same example string as in the description of example reduction method 1,
we still have the nominal key:

 0.<v><i><c><e> <p><r><e> <s><i><d><e><n><t> <s> 0001
 <-><-><-><-> <-><-><-><A><-><-><-><-><-><-> <-> 0001
 <u><l><l><l> <u><l><l> <l><l><l><l><l><l> <l> 0001
 <*><*><*><*><H><*><*><*> <*><*><*><*><*><*><P><*> 0000

Do the reduction as described above:

 0.<v><i><c><e> <p><r><e> <s><i><d><e><n><t> <s> 0001
 0024 <A>0028 0001
 0015 0005 0015 0005 0005 0002 0001
 0F03 <H>0F08 <P>0F00 0000

If the lower neighborhood of <l> had been a bit bigger, we could have used only one
weight (or two), instead of three, for the sequence of nine <l> weights.

This key is also significantly shorter than the nominal key, and this method never
lengthens the key, since every subrun replaced is replaced by one that is shorter or at
most as long as the original subrun. This method can also be applied to several
weights at each level, which example method 1 cannot. On the other hand, example
method 2 is a bit more complex than example method 1, since it needs to keep track of
non-overlapping neighborhoods around some of the weights.

