
NO, INPLACE_VECTOR 
SHOULDN’T HAVE AN 
ALLOCATOR

FEBRUARY 13TH, 2025

NEVIN LIBER
nliber@anl.gov

PRESENTATION
P3636R0

PAPER
P3581R0

1



LEWG LOVES TO RE-LITIGATE INPLACE_VECTOR

2



LEWG LOVES TO RE-LITIGATE INPLACE_VECTOR

3



EXAMPLE: BAD_ALLOC, AGAIN
Wg21telecons2024/P0843#Library-Evolution-2024-01-30

▪ Agreed upon in Varna 

▪ Almost re-litigated at Library Evolution 
Telecon 2024-01-30 

▪ No new technical information

▪ POLL: We want to revisit the status quo in 
the paper: “Inplace_vector throw a 
“bad_alloc” when exceeding max_size 

▪ Outcome: No consensus for a change

SF F N A SA
3 4 2 5 4

4



TOKYO & P3160R0

5



P3160R0 LEWG LITIGATION
Wg21tokyo2024/P3160

▪ We care about this case 

▪ It should be a different vocabulary type, 
such as basic_inplace_vector<T, N, A> 

▪ Doing this in inplace_vector makes it an 
overly complicated type for the vast 
majority of users.

▪ It is not worth the compilation costs, as the 
vast majority of users will not use this 
feature 

▪ Sidebar: P3062R0 C++ Should Be 
C++ supports this claim with statistics 
on the usage of PMRs 

Query # files %
* 34.6M 100%

std::pmr 1.7k 0.0049%

6



P3160R0 LEWG LITIGATION
Polls

▪ Outcome: No consensus. 

▪ The room was not supportive of applying this paper to inplace_vector data structure.

POLL: We should promise more committee time to pursuing “An Allocator-aware 
inplace_vector,” knowing that our time is scarce and this will leave less time for other work.

SF F N A SA
6 6 4 5 6

7



TOKYO PLENARY
N4980 WG21 March 2024 Hybrid meeting Minutes of Meeting

▪ One technical (constexpr) 

▪ Should be resolved by next plenary 

▪ (Most) P0843 authors agreed this needs to be resolved 

▪ One on allocator support 

▪ LEWG chair informed WG21 it was already discussed 

▪ P0843 authors disagreed with waiting a meeting just to re-litigate this 

▪ On their own initiative, P3160 authors scheduled it for the next SG14 telecon

Two objections to P0843R11

8



ST. LOUIS

9



ST. LOUIS LEWG

▪ The results of the SG14 meeting were not presented. 

10



ST. LOUIS PLENARY
N4985 WG21 June 2024 Hybrid meeting Minutes of Meeting

▪ This paper was delayed in Tokyo. Have all 
the concerns now been addressed? 

▪ Yes. The paper was changed to limit 
the types that are constexpr which 
makes it possible to implement. 

▪ And there is also implementation 
experience now. 

▪ Objections in the room.

▪ Motion passes. 

▪ Only one WG21 member opposed 
this design

In favour Opposed Abstain
In Person 54 1 13

Online 16 0 16
Total 70 1 29

11



“UNLESS SOMETHING CHANGES WE SHOULD 
NOT RE-LITIGATE PREVIOUS DISCUSSIONS” 
 - LEWG CHAIR



P3160R2 - WHAT REALLY CHANGED?

13



P3160R2
Polls

▪ Being “OK with adding the allocator template parameter” is a far cry from being asked to 
re-litigate a strong plenary-approved WG21 design! 

▪ We already knew that some folks were “OK with adding the allocator template 
parameter”. 

▪ This is not new information!

POLL: If the embeded issues can be solved, would you be OK with adding 
the allocator template parameter to inplace vector?

SF F N A SA
6 8 1 3 0

14



P3160R2 SG14 RESULTS

▪ “A number of attendees voiced support for 
being able to have fine-grained memory 
control for allocator-aware objects stored 
within an inplace_vector whether or not 
they would use such a facility.” 

▪ How many? 

▪ If they aren’t using this C++11 facility 
how are they the intended audience?

▪ “Most of the attendees did not object to 
adding allocator support to inplace_vector” 

▪ That doesn’t mean it is their preferred 
design. 

▪ That doesn’t mean it is the right 
design.

15



NO, INPLACE_VECTOR SHOULDN’T HAVE AN 
ALLOCATOR

▪ We should not re-litigate this. 

▪ There is no new information here. 

▪ Make it a separate type, such as basic_inplace_vector<T, N, A>. 

▪ Or maybe clump small_vector, while different (models an indefinite number of elements as 
opposed to inplace_vector, which models up to N elements), meets this need, since it is 
already in the world of allocation. 

▪ Am willing to work with the authors of P3160 to put this forward for C++29.

16



▪ This research used resources from the Argonne Leadership Computing Facility, a U.S. 
DOE Office of Science user facility at Argonne National Laboratory, which is supported by 
the Office of Science of the U.S. DOE under Contract No. DE-AC02-06CH11357.




