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Introduction

● Two competing proposals for (trivial) relocation

● P2786R4 (Mungo Gill, Alisdair Meredith)
○ Approved by EWG for C++26 in Tokyo
○ Lots of follow-ups

● P1144R10 (Arthur O'Dwyer)
○ Not seen in Tokyo?

● Other papers:
○ P2814R0: comparison paper between P2786/P1144
○ P3236R1: “Please reject P2786 and adopt P1144” (myself + many authors)
○ P3278R0: “Analysis of interaction between relocation, assignment, and swap” (Nina Ranns)

● Some other proposals, not relevant right now
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What is P3233 about?

● P3233 is not a counter-proposal
● My take on the issue

○ Personal / as a contributor to the Qt Project
● Criticism, first and foremost to some design decisions of P2786

○ Alas, not always constructive
● Not a blanket endorsement of P1144 either

○ Some aspects of P1144 could also be refined
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I’m seeking direction

● Many design decisions around trivial relocatability are subtle and complex
● I’m really not sure if this room will have the necessary data for a well-informed 

decision right here, right now
○ Or if instead the discussion will get stuck in some of these subtle issues, and we’ll lack 

consensus to move in any specific direction
○ Some of the issue I raise need further exploration

● I don’t want to just “rant” about things: 
○ I’ll end with a bunch of ideas/“action points”
○ Possible candidates for polls
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The status quo: P2786 approved in Tokyo

● C++26 will have a new type property called “trivially relocatable” (TR)
○ TR types: scalars, TR classes, arrays of TR, cv-TR types

● A class can be manually marked as TR by using the 
trivially_relocatable contextual keyword 

○ Optionally with a bool argument
● An unmarked class is automatically TR under certain conditions:

○ All subobjects are TR, or of reference type
○ No virtual bases
○ Non-deleted, non-user-provided destructor
○ Move constructible via a non-deleted non-user-provided constructor

● Enforcement: if a class is manually marked as TR, and has a non-TR 
subobject or a virtual base, the program is ill-formed.
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The status quo (cont.)

● A new library function:
std::trivially_relocate(T *begin, T *end, T *out)
that perform trivial relocation

● “Compiler magic”:
○ End lifetime of objects in the source range
○ Start lifetime of objects in the destination
○ Copy their representations (i.e. memcpy)

● Constrained to work only on TR types
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The main use case for P2786 trivial relocation

● The #1 use case for P2786’s definition of TR is to be able to optimize vector 
reallocation.
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The main use case for P2786 trivial relocation

● Vector reallocation is implemented like this:
a. new storage is acquired;
b. existing objects are move-(if-noexcept) constructed into the new storage;
c. old objects are destroyed;
d. old storage is deallocated;
e. bookkeeping is updated.

● With TR we can turn b. + c. into “one call to memcpy” → huge speedup

● Wide applicability: std::vector<unique_ptr<T>>, 
std::vector<std::vector<X>>, etc.

● The current requirements for TR types directly support this use case.
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Agenda
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Issues with P2786: agenda

1. Lack of/questionable relocation semantics
2. Lack of Library API
3. Missed optimizations
4. Enforcement model
5. Conclusions 

Several of these issues are intertwined, which further complicates discussion and 
analysis.
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Unclear Relocation Semantics
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What is relocation?

● P2786 does not define what relocation is; only trivial relocation

● This is an asymmetry with existing properties which also exist in a trivial-less 
version

○ E.g. copy constructible ⇔ trivially copy constructible
○ Destructible ⇔ trivially destructible
○ Granted, “trivial” semantics need fixing (CWG2463, P3279)

● Only exception: trivially copyable, “umbrella” property
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What is relocation?

● P2786’s model does not state that a relocation is “move construction + 
destruction of the source”

● This makes it hard to reason about the impact of this type property with class 
design (RO5)

○ It surely has some interaction with RO5, given that the presence of user-defined moves or 
destruction disables automatic TR

● This is at odds with existing practice (Qt, Folly, BSL, …), cf. P1144

● This is at odds with providing higher-level library features like 
std::uninitialized_relocate(begin, end, out)

○ Which trivially relocates TR types, and does “something else” for non-TR types
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Non-movable types can be trivially relocated

● It is possible to create TR types which are not movable:
struct S trivially_relocatable {
  S();
  S(const S &) = delete;
  S(S &&) = delete;
  ~S();
};

● Why is this allowed? What does it mean? Is it a “destructive move” for 
immovable objects? (With dynamic storage duration)?

○ Is this type an “abomination”?
○ Is TR a brand new primitive operation? 
○ Is TR going to interfere with future work on destructive moves?
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Class authors can “lie”

● Why is it allowed for a user to lie?

struct S trivially_relocatable(false) {
  int i;
};

● This class would be “naturally” TR, but the user is allowed to say it isn’t. Why 
is that a good thing?

○ At odds with any other similar type property
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Trivially copyable isn’t a subset of trivially relocatable

● This has “interesting” consequences. For instance, is possible to create 
Trivially Copyable (TC) types which are not TR:

struct TC trivially_relocatable(false) {
  int a, b;
};

● In the adopted model the sets of TC and TR types are merely intersecting
○ Conflicts with existing practice
○ In P1144, TC is a subset of TR

● Unclear why this is allowed, instead of being ill-formed or ignored
○ No need of perpetuating broken precedents

● This results in vexing / duplicated code (see next slide)
16



Trivially copyable isn’t a subset of trivially relocatable
Example:

template <typename T>
vector<T>::reallocate_impl(size_t new_capacity)
{
    assert(m_size <= new_capacity);
    T *new_storage = allocate(new_capacity);

    // Need to handle TR and TC separately, because it's
    // not allowed to call trivially_relocate on a non-TR type,
    // even if it's TC!
    if constexpr (std::is_trivially_relocatable_v<T>) {
        std::trivially_relocate(m_begin, m_begin + m_size, new_storage);
    } else if constexpr (std::is_trivially_copyable_v<T>) {
        std::memcpy(new_storage, m_begin, m_size * sizeof(T));
    } else if constexpr (std::is_nothrow_move_constructible_v<T>) {
        std::uninitialized_move(m_begin, m_begin + m_size, new_storage);
        std::destroy(m_begin, m_begin + m_size);
    } else {
        // …
    }

    deallocate(m_begin);
    m_begin = new_storage;
    m_capacity = new_capacity;
}
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Unclear behavior for slicing / polymorphic classes

Polymorphic classes can be implicitly TR:

struct Base {
  virtual void f();
  int a;
};

struct Derived : Base {
  void f() override;
  int b;
};

static_assert(std::is_trivially_relocatable_v<Base>);    // OK
static_assert(std::is_trivially_relocatable_v<Derived>); // OK
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Unclear behavior for slicing / polymorphic classes

● While it makes sense to want to use TR to reallocate a 
std::vector<Derived>, the semantics break down for single-object 
operations

○ When these operations involve static/apparent types

● This is a “known” problem for these kinds of operations/optimizations:
○ E.g.: given a type T which is trivially copyable, and contiguous input/output ranges of T, one 

cannot use memcpy to implement a std::copy of 1 object because of potentially overlapping 
subobjects

○ https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108846
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Unclear behavior for slicing / polymorphic classes

Example:

struct Base {
  virtual void f();
  int a;
};

struct Derived : Base {
  void f() override;
  int b;
};

Base *source = new Derived;
Base *target = allocate(sizeof(Derived));

std::trivially_relocate(source, source + 1, target);
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Unclear behavior for slicing / polymorphic classes

Base *source = new Derived;
Base *target = allocate(sizeof(Derived));

// What is the behavior here?
std::trivially_relocate(source, source + 1, target);

● If relocation were defined in terms of moves and destructions, we could claim 
this is UB because it’s “destroying” a Derived object through a Base pointer, 
and Base does not have a virtual destructor…

● Again: the lack of a precise specification of what “relocation” is makes it hard 
to reason about this.
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Unclear behavior for slicing / polymorphic classes

Let’s add the missing virtual destructor:

struct Base {
  virtual ~Base() = default; // still TR: defaulted dtor
  virtual void f();
  int a;
};

struct Derived : Base {
  void f() override;
  int b;
};
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Unclear behavior for slicing / polymorphic classes

Base *source = new Derived;
Base *target = allocate(sizeof(Derived));

std::trivially_relocate(source, source + 1, target);

● This code is still extremely problematic: the TR operation is copying 
Derived’s vtable pointer into a Base object!

○ If someone calls target->f(), this will be dispatched through Derived::f(), with this 
pointing to a Base object!

● This should still be UB!
○ The enforcement model is not preventing this!
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Slicing in P1144

● In P1144 polymorphic classes are not TR

● Slicing (via relocation) a class without a virtual destructor is UB
○ Polymorphic or non-polymorphic, TR or non-TR
○ This is just matching core language

● Slicing (via relocation) a class with a virtual destructor … just slices™
○ “Falls back” to move construction and destruction, well-defined behavior
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Lack of Standard Library APIs

25



Procedural precedent
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● Is it sound to split a feature in language and library, and merge them 
separately, before a consistent design is achieved?

● Is this encouraging authors of changes affecting language and library 
changes to split their papers?

○ … I have P2509 on the table …

● Is this why P1144 failed to gain consensus?



Lack of Standard Library API
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● P2786 only added a minimal library API:
○ A type trait
○ A trivial relocation function

● Further library work has been delegated to other papers:
○ P2959, “Container Relocation”
○ P2967, “Relocation Has A Library Interface”
○ P3239, “Relocating Swap”



Have we got the design right?
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● Trivial Relocation is a feature that first and foremost is going to be used to 
optimize library facilities

● The library additions should have been thoroughly analyzed in order to 
validate the language changes

○ P2786 has no field experience
○ P1144’s design has widespread implementation experience: Qt, Folly, BSL, others



Leaving the status of Standard Library types as QoI
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● Types in the Standard Library may or may not be TR
○ Their status is left unspecified

● Since TR has enforcement semantics, this completely reasonable code is 
not portable:

struct S trivially_relocatable {
    S();
    S(S &&);
    ~S();

    Private *data;
    std::unique_ptr<int> ptr; // ERROR if not TR
};



Missing: std::uninitialized_relocate algorithm

● This is what end-users need, as a useful building block

● Sure, they can implement their own
○ But so they can reimplement any std::uninitialized_* algorithm…?

● As noted before: this kind of algorithms create relationships between RO5 
and trivial relocability, which in the adopted model are not clear
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● We’d like to use std::realloc to reallocate an array of TR elements
○ Standard Library containers can’t use realloc yet… ☹

● In one call we allocate new memory, memcpy the elements there, deallocate 
the old memory

○ Hopefully, it’s actually even cheaper: the allocator grows in-place

● std::realloc (and any other similar function) needs to have granted the 
same special handling that only std::trivially_relocate offers at the 
moment

○ Also an issue with P1144

Missing: std::realloc
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Trivial relocation for assignments
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Optimizing assignments
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● As already noted, P2786’s TR model can optimize vector reallocation
○ During reallocation, we move-construct elements in the newly allocated buffer
○ Destroy the original objects

● It does not allow many other related optimizations: vector erasure, 
insertion, swap, swap-based algorithms, etc.

○ They are based on move assignments, not constructions
○ Whether TR can be used for move assignments is a different type property

● Meant to be tackled by follow-up papers



Example: vector erasure
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● Vector erasure is specified (in [vector.modifiers]) in terms to work in terms of 
move assignments

● For instance, to erase one element:
○ Move-assign each element after the to-be-erased one to the left
○ Destroy the last element



Example: vector erasure
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● Move-assign each element after the to-be-erased one to the left
● Destroy the last element



Example: vector erasure
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● Move-assign each element after the to-be-erased one to the left
● Destroy the last element



Example: vector erasure
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● Move-assign each element after the to-be-erased one to the left
● Destroy the last element



Example: vector erasure
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● Move-assign each element after the to-be-erased one to the left
● Destroy the last element



Vector erasure for TR types
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● Given a vector of TR types, couldn’t we use TR to erase?
● In principle, yes:

○ Destroy the element(s) to be erased
○ Compact the tail to the left by trivially relocating it



Vector erasure for TR types
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● Given a vector of TR types, couldn’t we use TR to erase?
● In principle, yes:

○ Destroy the element(s) to be erased
○ Compact the tail to the left by trivially relocating it



TR and move assignments
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● However, in practice, no

● We can’t “just” change semantics for vector operations, swaps, etc.
○ Changes the requirements on the operations
○ Hyrum’s law: people are depending on the current semantics…

● For instance, can’t change vector::erase to do something else:
○ Destroy the element to be deleted;
○ And then move construct+destroy elements from the tail.

○ Although this would unlock relocation semantics…



TR and move assignments
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● Relocation semantics and move assignments semantics are actually tied

● We could keep the existing semantics for vector erase and use TR if we had 
an extra guarantee from a type:

that its move assignment is “equivalent” to destruction of the target followed 
by move construction from the source.

● There are TR types for which this holds, and TR types for which does not.



How TR can optimize erasure (given a suitable type)
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Erase as currently specified: Possibly “equivalent” to: Which is then equivalent to:

Move assign C onto B
Destroy B Destroy B

Move construct C over B
Relocate C over B

Move assign D onto C
Destroy C

Move construct D over C
Relocate D over C

Destroy D Destroy D



TR and move assignments
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● Consider std::unique_ptr<int> and std::tuple<int &>
○ Both are TR types in P2786

● Very different behaviors on move assignment:
○ std::unique_ptr<int>: destroys the object owned by the target, 

transfers ownership from source, source is left empty.
■ Equivalent to destroying the target unique_ptr, and move 

constructing from the source
○ std::tuple<int &>: writes through the reference

■ Not equivalent

● Erasing an element out of a vector<unique_ptr<int>> could use TR
● Erasing an element out of a vector<tuple<int &>> cannot use TR

○ The side-effects in the referenced objects need to be visible



tuple<int &>? Really?
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● OK: a better example is std::pmr::string
○ Polymorphic allocators don’t propagate on assignment
○ OK: std::basic_string may not be TR at all (SSO, self-referential)

● In other words, assuming a TR basic_string, then
    std::vector<std::pmr::string> 
has the same “issue” of 
    std::vector<std::tuple<int &>>

○ One can’t use TR to optimize erasure



How to model this type property?

● This is a different type property than trivially relocatable: how to model it?

● In P1144’s model, TR covers both construction and assignment 
○ And therefore swaps, algorithms, etc.

■ We want them! Sorting an array of unique_ptr generates terrible code today.
○ In P1144’s model, tuple<int &> is not TR 

■ We can still optimize vector reallocation for it if tuple<int &> is trivially move 
constructible + trivially destructible

■ But yes, reallocating a vector of a std::pmr type won’t get automatically optimized

● In P2786’s model, TR only covers construction
○ Assignment, swaps, etc. are left to follow-up papers
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How to model this type property?
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● P2959 (follow-up of P2786) proposes a library trait/customization point
○ The idea is that it doesn’t affect the core language

● RO5 types can opt-in by specializing a trait:
template <>
inline constexpr bool container_replace_with_assignment_v<RO5Type> = true;

● Otherwise: calculate the value of the trait
○ Using compiler magic, reflection, … (but it should not have to wait for reflection!)

// S should get “TR for assignments” automatically,
// (assuming unique_ptr<int> has it)
struct S {

std::unique_ptr<int> ptr;
};



A separate enabler?
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● Having a separate enabler is vexing for TR RO5 types
○ Most of them can have this optimization, but need to remember to opt-in into another enabler 

(in addition to the explicit trivially_relocatable mark)! 
○ … RO7?

● It should have the same enforcement policy as TR for construction!
○ If a subobject doesn’t qualify for TR for assignments, marking a class should make the 

program ill-formed!

● Therefore, it should be a language feature, not a library one



Another keyword perhaps?
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● Should we have another keyword for this?

● Maybe, but IMO: trivially_relocatable should enable TR for 
construction and assignment

○ Precedent of trivially copyable, umbrella property
○ Widespread implementation precedent of these semantics

○ … find another keyword for “TR for construction only”



Summary: lack of TR for assignments
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● It’s a huge optimization opportunity left on the plate (erase, insert, swap, 
algorithms)

○ most TR types have “value semantics” for move assignments and would benefit;
○ should’ve been included from the get-go

● At odds with existing practice
○ Qt, Folly, BSL: their definitions of TR types always encompass construction and assignment

● Squatting the term “trivially relocatable”
○ I’d prefer it to be akin to “trivially copyable”: an umbrella property for both TR for move 

construction and move assignment

● Should be a language feature
○ (Absolutely not have to wait for reflection)
○ Use a contextual keyword just like for TR for construction?
○ Have the same enforcement semantics as the main feature



Enforcement semantics
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Enforcement semantics
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● It is ill-formed to mark as TR a class that has non-TR bases or members:

struct S trivially_relocatable {
    S();
    ~S();

    NonTRClass m_data; // ERROR
};    



Enforcement semantics
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● On one side, this is going to prevent mistakes
● Many vocabulary types may not be TR:

struct S trivially_relocatable {
  S();
  ~S();

  std::string m_data; // ERROR! Likely not TR, SSO may
                      // require a pointer into self
};    



Enforcement semantics: adoption issues
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● On one other side, this may be annoying to deploy in practice
○ The bar for adoption is set extremely high given no existing code uses TR

struct S /* trivially_relocatable? */ 
{
    S();
    ~S();

    Lib1::Class1 m_foo;
    Lib2::Class2 m_bar;
    Lib3::Class3 m_baz;
}; 



Enforcement semantics: Standard Library
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● One of the offenders will be the Standard Library itself, due to its unspecified 
status:

struct S /* trivially_relocatable? */ 
{
    S();
    ~S();

    std::shared_ptr<int> m_foo;
    std::vector<int> m_bar;
};    



Enforcement semantics: unclear implementation costs
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● It is very common to implement vocabulary types via extensive (private) 
inheritance and composition. E.g. std::variant from libc++:

template<typename... _Types>
  class variant
  : private __detail::__variant::_Variant_base<_Types...>,
    private _Enable_default_constructor<
      __detail::__variant::_Traits<_Types...>::_S_default_ctor,
        variant<_Types...>>,
    private _Enable_copy_move<
      __detail::__variant::_Traits<_Types...>::_S_copy_ctor,
      __detail::__variant::_Traits<_Types...>::_S_copy_assign,
      __detail::__variant::_Traits<_Types...>::_S_move_ctor,
      __detail::__variant::_Traits<_Types...>::_S_move_assign,
      variant<_Types...>>
  {



Enforcement semantics: unclear implementation costs
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● All these base classes must be TR for the final type to be TR
○ A few will certain require explicit marking

● How vexing is this going to be, compared to just marking the “leaf” class?
○ Experience needed!



Enforcement semantics: UB still possible
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● Even for RO0 types, UB may still be possible
○ Should std::trivially_relocate have preconditions?
○ Cf. the discussion on slicing / polymorphic types

● What does SG12 think about this?



Conclusions
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Conclusions
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● Reconsider the adoption of P2786 as the relocation model for C++
● Ideally, P1144 and P2786 should be “merged”

○ But given the status quo, P1144 provides the semantics that match existing experience
● One proposal that covers language + library



Conclusions
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● Give proper name and semantics to what “relocation” means
● Give proper name and semantics to the type property “move assignment = 

destruction + move construction”
● Have two language enablers

○ One for trivial relocation only for destructive moving
○ One for trivial relocation “everywhere” (construction / assignments / swaps / …)

● The latter should have the simpler, more generic name!
○ Most TR types will want to use that one
○ “Trivially copyable” as precedent

● This should be part of the same package



Conclusions
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● The costs of enforcement semantics are unknown
○ Ask for express vote, SG12 opinion?

● If enforcement is wanted, then the proposal must mark all the RO5 Standard 
Library types that are TR

○ TR shouldn’t ship in C++26 if the library isn’t also ready
○ Leaving it to QoI is a usability nightmare / poorly cooked feature



Thank you!
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