
P3233R0
Issues with P2786

Giuseppe D’Angelo, KDAB
<giuseppe.dangelo@kdab.com>

WG21 St. Louis, MO, USA
June 2024

Introduction

● Two competing proposals for (trivial) relocation

● P2786R4 (Mungo Gill, Alisdair Meredith)
○ Approved by EWG for C++26 in Tokyo
○ Lots of follow-ups

● P1144R10 (Arthur O'Dwyer)
○ Not seen in Tokyo?

● Other papers:
○ P2814R0: comparison paper between P2786/P1144
○ P3236R1: “Please reject P2786 and adopt P1144” (myself + many authors)
○ P3278R0: “Analysis of interaction between relocation, assignment, and swap” (Nina Ranns)

● Some other proposals, not relevant right now
2

What is P3233 about?

● P3233 is not a counter-proposal
● My take on the issue

○ Personal / as a contributor to the Qt Project
● Criticism, first and foremost to some design decisions of P2786

○ Alas, not always constructive
● Not a blanket endorsement of P1144 either

○ Some aspects of P1144 could also be refined

3

I’m seeking direction

● Many design decisions around trivial relocatability are subtle and complex
● I’m really not sure if this room will have the necessary data for a well-informed

decision right here, right now
○ Or if instead the discussion will get stuck in some of these subtle issues, and we’ll lack

consensus to move in any specific direction
○ Some of the issue I raise need further exploration

● I don’t want to just “rant” about things:
○ I’ll end with a bunch of ideas/“action points”
○ Possible candidates for polls

4

The status quo: P2786 approved in Tokyo

● C++26 will have a new type property called “trivially relocatable” (TR)
○ TR types: scalars, TR classes, arrays of TR, cv-TR types

● A class can be manually marked as TR by using the
trivially_relocatable contextual keyword

○ Optionally with a bool argument
● An unmarked class is automatically TR under certain conditions:

○ All subobjects are TR, or of reference type
○ No virtual bases
○ Non-deleted, non-user-provided destructor
○ Move constructible via a non-deleted non-user-provided constructor

● Enforcement: if a class is manually marked as TR, and has a non-TR
subobject or a virtual base, the program is ill-formed.

5

The status quo (cont.)

● A new library function:
std::trivially_relocate(T *begin, T *end, T *out)
that perform trivial relocation

● “Compiler magic”:
○ End lifetime of objects in the source range
○ Start lifetime of objects in the destination
○ Copy their representations (i.e. memcpy)

● Constrained to work only on TR types

6

The main use case for P2786 trivial relocation

● The #1 use case for P2786’s definition of TR is to be able to optimize vector
reallocation.

7

The main use case for P2786 trivial relocation

● Vector reallocation is implemented like this:
a. new storage is acquired;
b. existing objects are move-(if-noexcept) constructed into the new storage;
c. old objects are destroyed;
d. old storage is deallocated;
e. bookkeeping is updated.

● With TR we can turn b. + c. into “one call to memcpy” → huge speedup

● Wide applicability: std::vector<unique_ptr<T>>,
std::vector<std::vector<X>>, etc.

● The current requirements for TR types directly support this use case.

8

Agenda

9

Issues with P2786: agenda

1. Lack of/questionable relocation semantics
2. Lack of Library API
3. Missed optimizations
4. Enforcement model
5. Conclusions

Several of these issues are intertwined, which further complicates discussion and
analysis.

10

Unclear Relocation Semantics

11

What is relocation?

● P2786 does not define what relocation is; only trivial relocation

● This is an asymmetry with existing properties which also exist in a trivial-less
version

○ E.g. copy constructible ⇔ trivially copy constructible
○ Destructible ⇔ trivially destructible
○ Granted, “trivial” semantics need fixing (CWG2463, P3279)

● Only exception: trivially copyable, “umbrella” property

12

What is relocation?

● P2786’s model does not state that a relocation is “move construction +
destruction of the source”

● This makes it hard to reason about the impact of this type property with class
design (RO5)

○ It surely has some interaction with RO5, given that the presence of user-defined moves or
destruction disables automatic TR

● This is at odds with existing practice (Qt, Folly, BSL, …), cf. P1144

● This is at odds with providing higher-level library features like
std::uninitialized_relocate(begin, end, out)

○ Which trivially relocates TR types, and does “something else” for non-TR types

13

Non-movable types can be trivially relocated

● It is possible to create TR types which are not movable:
struct S trivially_relocatable {
 S();
 S(const S &) = delete;
 S(S &&) = delete;
 ~S();
};

● Why is this allowed? What does it mean? Is it a “destructive move” for
immovable objects? (With dynamic storage duration)?

○ Is this type an “abomination”?
○ Is TR a brand new primitive operation?
○ Is TR going to interfere with future work on destructive moves?

14

Class authors can “lie”

● Why is it allowed for a user to lie?

struct S trivially_relocatable(false) {
 int i;
};

● This class would be “naturally” TR, but the user is allowed to say it isn’t. Why
is that a good thing?

○ At odds with any other similar type property

15

Trivially copyable isn’t a subset of trivially relocatable

● This has “interesting” consequences. For instance, is possible to create
Trivially Copyable (TC) types which are not TR:

struct TC trivially_relocatable(false) {
 int a, b;
};

● In the adopted model the sets of TC and TR types are merely intersecting
○ Conflicts with existing practice
○ In P1144, TC is a subset of TR

● Unclear why this is allowed, instead of being ill-formed or ignored
○ No need of perpetuating broken precedents

● This results in vexing / duplicated code (see next slide)
16

Trivially copyable isn’t a subset of trivially relocatable
Example:

template <typename T>
vector<T>::reallocate_impl(size_t new_capacity)
{
 assert(m_size <= new_capacity);
 T *new_storage = allocate(new_capacity);

 // Need to handle TR and TC separately, because it's
 // not allowed to call trivially_relocate on a non-TR type,
 // even if it's TC!
 if constexpr (std::is_trivially_relocatable_v<T>) {
 std::trivially_relocate(m_begin, m_begin + m_size, new_storage);
 } else if constexpr (std::is_trivially_copyable_v<T>) {
 std::memcpy(new_storage, m_begin, m_size * sizeof(T));
 } else if constexpr (std::is_nothrow_move_constructible_v<T>) {
 std::uninitialized_move(m_begin, m_begin + m_size, new_storage);
 std::destroy(m_begin, m_begin + m_size);
 } else {
 // …
 }

 deallocate(m_begin);
 m_begin = new_storage;
 m_capacity = new_capacity;
}

17

Unclear behavior for slicing / polymorphic classes

Polymorphic classes can be implicitly TR:

struct Base {
 virtual void f();
 int a;
};

struct Derived : Base {
 void f() override;
 int b;
};

static_assert(std::is_trivially_relocatable_v<Base>); // OK
static_assert(std::is_trivially_relocatable_v<Derived>); // OK

18

Unclear behavior for slicing / polymorphic classes

● While it makes sense to want to use TR to reallocate a
std::vector<Derived>, the semantics break down for single-object
operations

○ When these operations involve static/apparent types

● This is a “known” problem for these kinds of operations/optimizations:
○ E.g.: given a type T which is trivially copyable, and contiguous input/output ranges of T, one

cannot use memcpy to implement a std::copy of 1 object because of potentially overlapping
subobjects

○ https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108846

19

Unclear behavior for slicing / polymorphic classes

Example:

struct Base {
 virtual void f();
 int a;
};

struct Derived : Base {
 void f() override;
 int b;
};

Base *source = new Derived;
Base *target = allocate(sizeof(Derived));

std::trivially_relocate(source, source + 1, target);
20

Unclear behavior for slicing / polymorphic classes

Base *source = new Derived;
Base *target = allocate(sizeof(Derived));

// What is the behavior here?
std::trivially_relocate(source, source + 1, target);

● If relocation were defined in terms of moves and destructions, we could claim
this is UB because it’s “destroying” a Derived object through a Base pointer,
and Base does not have a virtual destructor…

● Again: the lack of a precise specification of what “relocation” is makes it hard
to reason about this.

21

Unclear behavior for slicing / polymorphic classes

Let’s add the missing virtual destructor:

struct Base {
 virtual ~Base() = default; // still TR: defaulted dtor
 virtual void f();
 int a;
};

struct Derived : Base {
 void f() override;
 int b;
};

22

Unclear behavior for slicing / polymorphic classes

Base *source = new Derived;
Base *target = allocate(sizeof(Derived));

std::trivially_relocate(source, source + 1, target);

● This code is still extremely problematic: the TR operation is copying
Derived’s vtable pointer into a Base object!

○ If someone calls target->f(), this will be dispatched through Derived::f(), with this
pointing to a Base object!

● This should still be UB!
○ The enforcement model is not preventing this!

23

Slicing in P1144

● In P1144 polymorphic classes are not TR

● Slicing (via relocation) a class without a virtual destructor is UB
○ Polymorphic or non-polymorphic, TR or non-TR
○ This is just matching core language

● Slicing (via relocation) a class with a virtual destructor … just slices™
○ “Falls back” to move construction and destruction, well-defined behavior

24

Lack of Standard Library APIs

25

Procedural precedent

26

● Is it sound to split a feature in language and library, and merge them
separately, before a consistent design is achieved?

● Is this encouraging authors of changes affecting language and library
changes to split their papers?

○ … I have P2509 on the table …

● Is this why P1144 failed to gain consensus?

Lack of Standard Library API

27

● P2786 only added a minimal library API:
○ A type trait
○ A trivial relocation function

● Further library work has been delegated to other papers:
○ P2959, “Container Relocation”
○ P2967, “Relocation Has A Library Interface”
○ P3239, “Relocating Swap”

Have we got the design right?

28

● Trivial Relocation is a feature that first and foremost is going to be used to
optimize library facilities

● The library additions should have been thoroughly analyzed in order to
validate the language changes

○ P2786 has no field experience
○ P1144’s design has widespread implementation experience: Qt, Folly, BSL, others

Leaving the status of Standard Library types as QoI

29

● Types in the Standard Library may or may not be TR
○ Their status is left unspecified

● Since TR has enforcement semantics, this completely reasonable code is
not portable:

struct S trivially_relocatable {
 S();
 S(S &&);
 ~S();

 Private *data;
 std::unique_ptr<int> ptr; // ERROR if not TR
};

Missing: std::uninitialized_relocate algorithm

● This is what end-users need, as a useful building block

● Sure, they can implement their own
○ But so they can reimplement any std::uninitialized_* algorithm…?

● As noted before: this kind of algorithms create relationships between RO5
and trivial relocability, which in the adopted model are not clear

30

● We’d like to use std::realloc to reallocate an array of TR elements
○ Standard Library containers can’t use realloc yet… ☹

● In one call we allocate new memory, memcpy the elements there, deallocate
the old memory

○ Hopefully, it’s actually even cheaper: the allocator grows in-place

● std::realloc (and any other similar function) needs to have granted the
same special handling that only std::trivially_relocate offers at the
moment

○ Also an issue with P1144

Missing: std::realloc

31

Trivial relocation for assignments

32

Optimizing assignments

33

● As already noted, P2786’s TR model can optimize vector reallocation
○ During reallocation, we move-construct elements in the newly allocated buffer
○ Destroy the original objects

● It does not allow many other related optimizations: vector erasure,
insertion, swap, swap-based algorithms, etc.

○ They are based on move assignments, not constructions
○ Whether TR can be used for move assignments is a different type property

● Meant to be tackled by follow-up papers

Example: vector erasure

34

● Vector erasure is specified (in [vector.modifiers]) in terms to work in terms of
move assignments

● For instance, to erase one element:
○ Move-assign each element after the to-be-erased one to the left
○ Destroy the last element

Example: vector erasure

35

● Move-assign each element after the to-be-erased one to the left
● Destroy the last element

Example: vector erasure

36

● Move-assign each element after the to-be-erased one to the left
● Destroy the last element

Example: vector erasure

37

● Move-assign each element after the to-be-erased one to the left
● Destroy the last element

Example: vector erasure

38

● Move-assign each element after the to-be-erased one to the left
● Destroy the last element

Vector erasure for TR types

39

● Given a vector of TR types, couldn’t we use TR to erase?
● In principle, yes:

○ Destroy the element(s) to be erased
○ Compact the tail to the left by trivially relocating it

Vector erasure for TR types

40

● Given a vector of TR types, couldn’t we use TR to erase?
● In principle, yes:

○ Destroy the element(s) to be erased
○ Compact the tail to the left by trivially relocating it

TR and move assignments

41

● However, in practice, no

● We can’t “just” change semantics for vector operations, swaps, etc.
○ Changes the requirements on the operations
○ Hyrum’s law: people are depending on the current semantics…

● For instance, can’t change vector::erase to do something else:
○ Destroy the element to be deleted;
○ And then move construct+destroy elements from the tail.

○ Although this would unlock relocation semantics…

TR and move assignments

42

● Relocation semantics and move assignments semantics are actually tied

● We could keep the existing semantics for vector erase and use TR if we had
an extra guarantee from a type:

that its move assignment is “equivalent” to destruction of the target followed
by move construction from the source.

● There are TR types for which this holds, and TR types for which does not.

How TR can optimize erasure (given a suitable type)

43

Erase as currently specified: Possibly “equivalent” to: Which is then equivalent to:

Move assign C onto B
Destroy B Destroy B

Move construct C over B
Relocate C over B

Move assign D onto C
Destroy C

Move construct D over C
Relocate D over C

Destroy D Destroy D

TR and move assignments

44

● Consider std::unique_ptr<int> and std::tuple<int &>
○ Both are TR types in P2786

● Very different behaviors on move assignment:
○ std::unique_ptr<int>: destroys the object owned by the target,

transfers ownership from source, source is left empty.
■ Equivalent to destroying the target unique_ptr, and move

constructing from the source
○ std::tuple<int &>: writes through the reference

■ Not equivalent

● Erasing an element out of a vector<unique_ptr<int>> could use TR
● Erasing an element out of a vector<tuple<int &>> cannot use TR

○ The side-effects in the referenced objects need to be visible

tuple<int &>? Really?

45

● OK: a better example is std::pmr::string
○ Polymorphic allocators don’t propagate on assignment
○ OK: std::basic_string may not be TR at all (SSO, self-referential)

● In other words, assuming a TR basic_string, then
 std::vector<std::pmr::string>
has the same “issue” of
 std::vector<std::tuple<int &>>

○ One can’t use TR to optimize erasure

How to model this type property?

● This is a different type property than trivially relocatable: how to model it?

● In P1144’s model, TR covers both construction and assignment
○ And therefore swaps, algorithms, etc.

■ We want them! Sorting an array of unique_ptr generates terrible code today.
○ In P1144’s model, tuple<int &> is not TR

■ We can still optimize vector reallocation for it if tuple<int &> is trivially move
constructible + trivially destructible

■ But yes, reallocating a vector of a std::pmr type won’t get automatically optimized

● In P2786’s model, TR only covers construction
○ Assignment, swaps, etc. are left to follow-up papers

46

How to model this type property?

47

● P2959 (follow-up of P2786) proposes a library trait/customization point
○ The idea is that it doesn’t affect the core language

● RO5 types can opt-in by specializing a trait:
template <>
inline constexpr bool container_replace_with_assignment_v<RO5Type> = true;

● Otherwise: calculate the value of the trait
○ Using compiler magic, reflection, … (but it should not have to wait for reflection!)

// S should get “TR for assignments” automatically,
// (assuming unique_ptr<int> has it)
struct S {

std::unique_ptr<int> ptr;
};

A separate enabler?

48

● Having a separate enabler is vexing for TR RO5 types
○ Most of them can have this optimization, but need to remember to opt-in into another enabler

(in addition to the explicit trivially_relocatable mark)!
○ … RO7?

● It should have the same enforcement policy as TR for construction!
○ If a subobject doesn’t qualify for TR for assignments, marking a class should make the

program ill-formed!

● Therefore, it should be a language feature, not a library one

Another keyword perhaps?

49

● Should we have another keyword for this?

● Maybe, but IMO: trivially_relocatable should enable TR for
construction and assignment

○ Precedent of trivially copyable, umbrella property
○ Widespread implementation precedent of these semantics

○ … find another keyword for “TR for construction only”

Summary: lack of TR for assignments

50

● It’s a huge optimization opportunity left on the plate (erase, insert, swap,
algorithms)

○ most TR types have “value semantics” for move assignments and would benefit;
○ should’ve been included from the get-go

● At odds with existing practice
○ Qt, Folly, BSL: their definitions of TR types always encompass construction and assignment

● Squatting the term “trivially relocatable”
○ I’d prefer it to be akin to “trivially copyable”: an umbrella property for both TR for move

construction and move assignment

● Should be a language feature
○ (Absolutely not have to wait for reflection)
○ Use a contextual keyword just like for TR for construction?
○ Have the same enforcement semantics as the main feature

Enforcement semantics

51

Enforcement semantics

52

● It is ill-formed to mark as TR a class that has non-TR bases or members:

struct S trivially_relocatable {
 S();
 ~S();

 NonTRClass m_data; // ERROR
};

Enforcement semantics

53

● On one side, this is going to prevent mistakes
● Many vocabulary types may not be TR:

struct S trivially_relocatable {
 S();
 ~S();

 std::string m_data; // ERROR! Likely not TR, SSO may
 // require a pointer into self
};

Enforcement semantics: adoption issues

54

● On one other side, this may be annoying to deploy in practice
○ The bar for adoption is set extremely high given no existing code uses TR

struct S /* trivially_relocatable? */
{
 S();
 ~S();

 Lib1::Class1 m_foo;
 Lib2::Class2 m_bar;
 Lib3::Class3 m_baz;
};

Enforcement semantics: Standard Library

55

● One of the offenders will be the Standard Library itself, due to its unspecified
status:

struct S /* trivially_relocatable? */
{
 S();
 ~S();

 std::shared_ptr<int> m_foo;
 std::vector<int> m_bar;
};

Enforcement semantics: unclear implementation costs

56

● It is very common to implement vocabulary types via extensive (private)
inheritance and composition. E.g. std::variant from libc++:

template<typename... _Types>
 class variant
 : private __detail::__variant::_Variant_base<_Types...>,
 private _Enable_default_constructor<
 __detail::__variant::_Traits<_Types...>::_S_default_ctor,
 variant<_Types...>>,
 private _Enable_copy_move<
 __detail::__variant::_Traits<_Types...>::_S_copy_ctor,
 __detail::__variant::_Traits<_Types...>::_S_copy_assign,
 __detail::__variant::_Traits<_Types...>::_S_move_ctor,
 __detail::__variant::_Traits<_Types...>::_S_move_assign,
 variant<_Types...>>
 {

Enforcement semantics: unclear implementation costs

57

● All these base classes must be TR for the final type to be TR
○ A few will certain require explicit marking

● How vexing is this going to be, compared to just marking the “leaf” class?
○ Experience needed!

Enforcement semantics: UB still possible

58

● Even for RO0 types, UB may still be possible
○ Should std::trivially_relocate have preconditions?
○ Cf. the discussion on slicing / polymorphic types

● What does SG12 think about this?

Conclusions

59

Conclusions

60

● Reconsider the adoption of P2786 as the relocation model for C++
● Ideally, P1144 and P2786 should be “merged”

○ But given the status quo, P1144 provides the semantics that match existing experience
● One proposal that covers language + library

Conclusions

61

● Give proper name and semantics to what “relocation” means
● Give proper name and semantics to the type property “move assignment =

destruction + move construction”
● Have two language enablers

○ One for trivial relocation only for destructive moving
○ One for trivial relocation “everywhere” (construction / assignments / swaps / …)

● The latter should have the simpler, more generic name!
○ Most TR types will want to use that one
○ “Trivially copyable” as precedent

● This should be part of the same package

Conclusions

62

● The costs of enforcement semantics are unknown
○ Ask for express vote, SG12 opinion?

● If enforcement is wanted, then the proposal must mark all the RO5 Standard
Library types that are TR

○ TR shouldn’t ship in C++26 if the library isn’t also ready
○ Leaving it to QoI is a usability nightmare / poorly cooked feature

Thank you!

63

