
Document Number: P3319R0

Date: 2024-05-22

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Target: C++26

Add an iota object for simd (and
more)

ABSTRACT

There is one important constant in SIMD programming: 0, 1, 2, 3, In the standard library

we have an algorithm called iota that can initialize a range with such values. For simd we want to
have simple to spell constants that scale with the SIMDwidth. This paper proposes a simple facility

that can be generalized.

CONTENTS

1 Changelog 1
2 Straw Polls 1
3 Motivation 1
4 Generalization 1
5 Relation to list-initialization of simd 2
6 Proposed polls 2
7 Wording 2

P3319R0 1 Changelog

1 CHANGELOG

(placeholder)

2 STRAW POLLS

(placeholder)

3 MOTIVATION

The 90% use case for simd generator constructors is a simd with values 0, 1, 2, 3, … potentially

with scaling and offset applied. However, often it would be more easier and more readable to use

an “iota” simd object instead.
generator ctor iota

std::simd <int > a([](int i) { return i; };

std::simd <int > b([](int i) { return 2 + 3 * i; };

auto a = std::iota_v <std::simd <int >>;

auto b = 2 + 3 * std::iota_v <std::simd <int >>;

The minimal definition I propose for basic_simd can look like this:

template <class T>
inline constexpr T
iota_v;

template <class T>
requires (std:: is_arithmetic_v <T>)
inline constexpr T
iota_v <T> = T();

template <detail :: simd_type T>
inline constexpr T
iota_v <T> = T([](auto i) { return static_cast < typename T:: value_type >(i); });

4 GENERALIZATION

If we define a (constexpr) variable template std::iota_v<T> where T must be a basic_simd type,
we’re simply filling a sequence of values. We can create such an object for any type with static

extent. This is especially interesting for the degenerate case in SIMD-generic programming, where

T could e. g. be an int. A std::iota_v<int> is nothing other than an object int with value 0. We

can easily generalize to iota_v<std::array<T, N>> and iota_v<T[N]>. And the next step then is

to allow any type that

1

P3319R0 5 Relation to list-initialization of simd

• has a static extent,

• has a value_type member type,

• can be list-initialized with N numbers of type value_type, where N equals the static extent of
the type, and

• where value_type() + 1 is an constant expression and convertible to value_type.

Consequently you could write

auto x = std::iota_v <float [5] >;
auto y = std::iota_v <std::array < my_fixed_point , 8>>;
// ...

5 RELATION TO LIST-INITIALIZATION OF SIMD

If we add a constructor to basic_simd that enables list-initialization, then many users might use

that in place of a generator constructor. This leads to code that doesn’t scale with the vector width

anymore. Therefore we should provide a simple facility that works better and is more portable.

6 PROPOSED POLLS

Poll: We want an iota facility for basic_simd

SF F N A SA

Poll: The iota facility should be generalized to scalars

SF F N A SA

Poll: The iota facility should be generalized to any sequence of static extent

SF F N A SA

7 WORDING

TBD after deciding on the preferred solution.

2

	1 Changelog
	2 Straw Polls
	3 Motivation
	4 Generalization
	5 Relation to list-initialization of simd
	6 Proposed polls
	7 Wording

