
P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

1

Contracts: Protecting The Protector
Gabriel Dos Reis

Microsoft

This paper presents a set of suggestions aimed at improving the “Contracts” facility
as described in P2900R6 to bring them closer to viability, in the contemporary
environments where C++ is used, especially where safety of C++ programs is a
fundamental concern. The core of the suggestion is to remove or to limit the reach of
unbounded behavior in contract predicate evaluation. While some of these ideas
were previously presented in P2680R1, the present proposal focuses on the
containment of undefined behavior for improved safety. It should be emphasized that
the purpose of this proposal is not the definition of a “safe subset” or a “safe mode”
of C++ -- it is not a goal of this proposal and we are not asking for it here.

1 SCOPE
This paper primarily seeks input from SG23 on design requirements for the Contracts facility (P2900)
in order to improve safety in C++ programs using the proposed facility. It contains specific “poll”
formulations to help with design directions.

2 INTRODUCTION
The “Contracts” facility (P2900R6) offers a mitigation mechanism against undesirable runtime
behavior of a program in case of erroneous situations, or erroneous inputs collectively going by the
colloquialism of “bugs”. One source of pernicious and insidious bugs is invocation of undefined
behavior. Pursuant to the specification of “undefined behavior”, compilers are adept at exploiting
any logical derivations they can glean from assuming that the input source code is free of undefined
behavior, often producing confounding outputs when the input source code contains a slight error
or programmer assumption that is formally categorized as invoking undefined behavior. Contract
predicates are expressed as ordinary code. As such, they can themselves contain bugs or be
surrounded by bugs. While we can’t protect against writing bugs in general, and in particular in
contract annotations, we can however provide a language specification that guards against
undefined behavior in contract predicate evaluation. More specifically, a viable contract system
for C++ (however minimal) to be used at large must ensure that the evaluation of a contract
predicate cannot itself be exploitable source of undefined behavior (by compiler optimizers).
Let’s also keep in mind that “Contracts” aren’t as much useful for a correct program execution as
they are for ones that contain bugs.

Consider the following program fragment:

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

2

int f(int);
int g(int a) pre(f(a) > a)
{
 int r = a - f(a);
 return 2 * r;
}

The current (experimental) implementation of contracts in GCC (https://godbolt.org/z/q1fhn9n6f)1
compiles (at optimization level -O3) the definition of ‘g’ into what appears to be a reasonable check
of the precondition, followed by the computation in the function body in case the precondition holds.
All that looks reasonable and expected.

When the above program fragment is augmented with the following definition for ‘f’,

int f(int a) { return a + 100; }

the GCC implementation, after inlining the call to ‘f’ (entirely at its discretion), eliminates the
precondition check (https://godbolt.org/z/jz83KbsEb). The reasoning for that check is based on the
justification that signed integer arithmetic overflow is undefined behavior, and therefore assuming
that no UB ever occurred, the expression a + 100 > a must always evaluate to true irrespective
of the target machine or runtime configuration. Note that if the check wasn’t eliminated, a call to g
with argument INT_MAX – 90 would have failed the precondition on a target machine where signed
integer arithmetic is delivered as a wrapping arithmetic (as would have happened if the body of ‘f’
was executed separately on the input argument). That is, the mitigation measure would have been
successfully activated. Most real life situations aren’t as simple as the above; and, of course, most
programmers don’t write undefined behavior on purpose. The “Contracts” specification should not
compromise the main purpose of the facility; it needs to offer that guarantee for viability.

Protecting contract evaluation from UB exploitation can take several forms. One avenue that was
suggested in the past was to devise some form of “optimization barrier” in contract annotations. The
approach proposed in this paper is to specify more precisely a compile-time checkable condition of
a contract predicate being “free of undefined behavior” that also accommodates the conventional
separate compilation model of C++. It should also be noted that the purpose of this proposal is not
to define a “safe subset” of C++ -- it is not a goal of this proposal and we are not asking for it here.

Poll 1: The Contract facility (P2900) should offer some form of protection
against exploitation of undefined behavior (or absence thereof) in the

evaluation of contract predicates.

1 The examples on godbolt.org use the old attribute-like notation because, at the time, of this writing the
“natural notation” implementation had some stability issues.

mailto:gdr@microsoft.com
https://godbolt.org/z/q1fhn9n6f
https://godbolt.org/z/jz83KbsEb

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

3

3 CONTRACT PREDICATES LANGUAGE
The expectations, and the guarantees, of a function are usually formulated in the meta language
used to describe the operational semantics of the C++ programming language. For instance, an
expectation of the following function

int deref(int* p) { return *p; }

is that the pointer argument represents the address of an object of type int. That is a precondition
for the ability to dereference the pointer ‘p’ and to read the value at the designated location of type
int and returning that value. There is no way to completely express that predicate as current
Standard C++ code. However, trace semantics for C++ can readily express that predicate.

A corollary of the above observation is that any design of a contract system for C++ will, as a
necessity, exhibit inability to express all possible behavior that any arbitrary well-formed C++
program can display. This is because the meta language used to define C++ is much larger and much
more expressive than the C++ language itself. It is possible to add reified fragments of that meta
language to C++, e.g. a predicate object_address, to express the particular precondition of the
deref function and similar functions. However, unless the object language (C++) contains the meta
language used to express its semantics, there will always be swaths of inexpressible behavior as part
of the contracts of a function. Consequently, serious consideration should be given to abandoning
any desire of wanting to express every single aspect or behavior of a C++ program in a contract.
Contracts should be summaries, not detailed transcripts of a function behavior. Those belong in the
body of a function implementation.

Adding reified fragments from the meta language to the object language carries its own set of
constraints, simplifications and complications as exemplified by C++20’s
std::is_constant_evaluated. The aforementioned object_address predicate, if
conceived of as only a compile-time predicate, introduces constraints on where it can be used and
how it affects invocation of a function.

In general, serious considerations should be given to a judicious set of compile-time predicates that
enhances contracts support for C++ to enable robust code analysis support. I use the term “code
analysis” to include “static analysis”, “runtime instrumentation”, and more.

4 DESIGN PRINCIPLES
The ideal that the contract predicates design presented in this paper aims for is: the evaluation of
contract predicates shall be free of undefined behavior, and they shall not modify parameters they
reference. Contracts provide basic mitigation framework, they should not themselves be sources of
vulnerabilities. There are several sorts of causes for undefined behavior. This proposal does not
eliminate all of them, but it is a pretty good starting point to improve upon. The impossibility of total
elimination of undefined behavior from contract predicates should not be reason not to aim for a
more reliable system. We should aim to reduce undefined behavior from contract as much as
possible.

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

4

Turning on contracts in a program should only increase the reliability of the program. If the program
is correct and fed with correct inputs, then there should be no difference in its behavior. The
contracts should in those situations just be tautological checks. Consequently, emphasis should be
given to contracts without exploitable sources of undefined behavior.

This proposal modifies the current “MVP” (P2900R6) as follows:

• Categorize pre-conditions and post-conditions into two groups: (1) non-relaxed contracts;
(2) relaxed contracts

• Introduction of the notion of conveyor functions

4.1 NON-RELAXED CONTRACTS
Non-relaxed contracts use the same syntax as currently defined in P2900R6, with the additional
checkable constraints that the contract predicates are designed to be free of “side effects” when
their evaluations are observed from outside their cone of evaluation. Furthermore, the evaluation of
a non-relaxed contract predicate is guaranteed free from a class of sources of undefined behavior
as specified in the section 6.2 on conveyor functions.

4.2 RELAXED CONTRACTS
This proposal suggests the modifier relaxed when defining preconditions and postconditions. For
example, the declaration

int rem(int x, int y) pre relaxed(event_log(y), y != 0)
{
 return x % y;
}

declares the function rem with a precondition contract that presumably “write a log event” its
second operand before checking it is nonzero.

None of the restrictions and guarantees discussed in the rest of this document applies to relaxed
contracts. Of course, relaxed and non-relaxed contracts can be mixed in a function declaration. For
example, the above function could have been declared as

int rem(int x, int y) pre relaxed(event_log(y), true)
 pre(y != 0)
{
 return x % y;
}

As a programming practice, it is recommended to separate expressions that inherently violate the
restrictions for non-relaxed contracts into their own relaxed contracts, so as to maximize the
guarantees of undefined behavior freedom during the evaluation of contract predicates.

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

5

4.3 POLLS

Poll 2: Irrespective of syntax, the Contract facility (P2900) should offer
provisions for non-relaxed contracts and relaxed contracts.

Poll 3: The Contract facility (P2900) should default the current notation to
non-relaxed contracts.

5 UNDEFINED BEHAVIOR IN CONTRACTS
There are a few ways to ensure that the evaluation of contract predicates is free of undefined
behavior:

i. Redefine the C++ abstract machine to eliminate undefined behavior from the language
entirely.

ii. Forbid operators with possible undefined behavior from the (sub)language used to express
contract predicates.

iii. Tighten the specification of the abstract machine so that contract predicate evaluation never
invokes undefined behavior (even if other parts might), and appropriately restrict the contract
predicate language.

iv. …

Option (i) entirely eliminates the whole notion of undefined behavior and associated headaches but
appears too radical a change to the language to be viable in the timeframe needed. Option (ii)
preserves the abstract machine specification as is (given the nearly half century deployment of the
C and C++ abstract machines), does not poke the bear of radical changes and instabilities for the
existing massive codebases. Option (iii) seeks to strike a balance between options (i) and (ii), and
that is what is suggested in this proposal. Furthermore, this freedom from undefined behavior is
guaranteed only for expressions in non-relaxed contracts. Relaxed contracts are not subject
to any of the restrictions described below, nor do they provide any guarantees.

There are various sources of undefined behavior in the “core” language; they may be categorized into
several major buckets, not two of them are dealt with the same way. Some sources of undefined
behavior are restricted syntactically; others (e.g. signed arithmetic overflow) are dealt with by
requiring the behavior to be implementation-defined (best) or unspecified (least optimal) instead of
undefined.

5.1 LIFETIME
These sources of undefined behavior pertain to accessing an object outside its lifetime or validity of
a pointer. By their very nature, they are not directly syntactic. The approach suggested in this

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

6

proposal is to prohibit the use of certain syntactic constructs which might – under the wrong
circumstances -- lead to undefined behavior. Those restrictions are syntactic, so clearly will prohibit
cases that someone might find useful.

5.1.1 Object_address
The “built-in” operator std::object_address is intended to conservatively identify pointer
values that are irrefutably addresses of objects. In particular, when the expression
std::object_address(p) is false, it does not necessarily follow that the value p does not
designate the address of an object; that only means given the syntactic restrictions, it could not be
irrefutably determined that p is indeed the address of an object. The expression
std::object_address(x) evaluates to true if and only if:

• x is the expression this; or
• x is an expression of the form &obj where obj is a parameter or variable of object type or a

nonstatic data member, or obj is a parameter or variable of (possibly rvalue) reference type
referring to an object type; or

• x is initialized with an expression y for which std::object_address(y) holds

It is possible to extend this definition to cover more cases (including elements of arrays, conditional
addresses, etc), but for now, the specification is being kept simple in order to convey the
fundamental ideas.

5.2 ARITHMETIC OVERFLOW
The minimum to change to guarantee absence of undefined behavior in non-relaxed contract
predicates is to say that within the evaluation of arithmetic expressions, where a violation of a
precondition of a built-in arithmetic operation would lead to undefined behavior, the behavior of the
program is instead unspecified. Making the behavior unspecified, instead of undefined, removes the
hazards of unbounded behavior; but that still leaves some form of non-determinism in the evaluation
since a compiler is not required to make the same or consistent choice for an unspecified behavior.
The suggested solution here is to require the evaluation of arithmetic expression to be
implementation-defined when preconditions to the built-in operators are violated. Implementation-
defined behavior could include (but not limited to) a “wraparound” arithmetic exposing the
underlying 2-complement representation, or a saturated arithmetic also available in modern
compilers (GCC n.d.). This sort of requirement is not new since a similar restriction was added to
C++ in order to evaluate expressions such as new T[n], without exposing C++ programs to
pernicious vulnerabilities dues to underlying integer arithmetic overflow. See Core issue CWG 624
(CWG, ISO/IEC JTC1/SC22/WG21 2008).

The exception is integer division expression x / y and remainder expression x % y where it is a
compile-time error if there is no “reaching definition” of the expression y that is not either a non-zero
constant, or is not guarded by a non-zero test equivalent to “y != 0”

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

7

5.3 DATA RACES
Race conditions are formally defined as invoking undefined behavior in the C++ standards. This
proposal, at this point, does not suggest any particular solution to that problem other than reducing
the “attack surface” of such sources of undefined behavior.

5.4 ALIASING
Aliasing can hide sources of undefined behavior, although they may not themselves be sources of
undefined behavior, especially for certain operations on values of built-in types. For instance,
consider the program fragment:

int baz(int& x, int& y)
{
 x = 2 * y++ + x; // #1
 return x - y;
}
int main()
{
 int a = 76;
 return baz(a, a); // #2
}

The call on line #2 to the function bar with two references to the same variable a creates an aliasing
between the parameters x and y of baz. Therefore, the operation on line #1 formally invokes an
undefined behavior since it is both modifying and reading the same variable without intervening
sequence points. This proposal suggests that the result of operation be unspecified, instead of
invoking an undefined behavior.

There are more general lifetime problems that can be caused by aliasing, but they are not considered
in this proposal.

5.5 INCOMPLETENESS AND RESOURCE LIMITS
Undefined behavior of a program may also arise from incompleteness of standards text itself. That
sort of undefined behavior, including those arising from executing a well-formed program beyond
the resource limits of an implementation, are out of scope of this proposal.

6 SEMANTIC MODEL

6.1 CONE OF EVALUATION OF AN EXPRESSION
The evaluation of a C++ expression is a transition system, where each operation moves the execution
environment from one state to another. The cone of evaluation of an expression (or a statement) is
the set of (possible) state transitions spanning from the beginning state of the evaluation to the end
state of evaluation of that expression.

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

8

A non-relaxed contract predicate shall use only conveyor functions and operators allowed in
conveyor functions, with the additional restrictions that if a parameter is used to call a function, then
the parameter passing must be by value (not move) or by const reference; if a function parameter is
used to initialize a reference or a variable local to the predicate then that initialization shall be by
value (not move) or the reference shall be const-qualified. Furthermore, no modifying operator is
allowed on the parameters.

6.2 CONVEYOR FUNCTIONS
A conveyor function is conceptually a function that, when called with an argument list, performs no
side effects outside of its function body or argument list. Furthermore, such a function does not
perform any operation the behavior of which might invoke undefined behavior. A conveyor function
is declared with the attribute [[conveyor]], and its body is subject to syntactic restrictions as
defined below.

Violations of those syntactic restrictions result in compile-time errors. For example, the following
are perfectly good conveyor functions

[[conveyor]] int add(int x, int y) { return x + y; }
[[conveyor]] int inc(int& x) { return ++x; }

but the following definition of deref violates a conveyor restriction.

[[conveyor]] int deref(int* p)
{
 return *p; // error: ‘p’ is not known to be object address
}

It needs to be rewritten as

[[converyor]] int deref(int* p) pre(object_address(p))
{
 return *p; // OK
}

6.2.1 Syntactic Definition of a Conveyor Function
If a function is declared with the attribute [[conveyor]], then every redeclaration or reachable
declaration of it shall be declared with the [[conveyor]] attribute. A conveyor function can use
only built-in operations (as restricted below), or other functions declared [[conveyor]], or
operations inferred (at the point of use) as conveyor functions or conveyor lambda expressions. If a
conveyor function or lambda has a contract, then its contract predicate shall be non-relaxed.

Note that many of the restrictions suggested here are syntactic, and first order approximations. It is
possible to refine them to handle more complex cases, possibly at the expense of more complicated
specifications. If your favorite use scenario is not yet handled in this framework, don’t just react with
rejection. Rather think if it really should, and if so what appropriate amendments can be made while
preserving the general goal.

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

9

6.2.1.1 Variables
A conveyor function or lambda shall odr-use neither a variable with namespace or class scope
unless that variable has a const-qualified type, nor a variable with thread-local storage. If a conveyor
function or lambda odr-uses a variable with static storage duration, that variable shall have a const-
qualified type.

A conveyor function shall not use an id-expression that either designates a pseudo-destructor or a
destructor.

Variables defined in a conveyor function or lambda shall be explicitly initialized.

6.2.1.2 Lambda Expressions
A lambda expression is a conveyor lambda if its body is either empty or is of the form return e;
where the expression e is subject to the same restriction as that of inferred conveyor function.

6.2.1.3 Postfix Expressions
A conveyor function or lambda cannot contain a postfix expression that is reinterpret_cast
expression or equivalent to such an expression. The postfix expression shall not cast away const.
The postfix expression shall not static_cast from a base class to a derived class. If the postfix
expression is a conversion expression then it shall not invoke a narrowing conversion. If the postfix
expression is of the form x->n where n is a name, the x must be an expression for which the
predicate std::object_address(x) holds, and the static type of x shall not be a pointer to a
union type. If the postfix expression is of the form x.n then the static type of x shall not be a union
type. If the postfix expression is of the form x[y] and the indexing operator is built-in, then the
expression x shall designate an array object and the expression y shall be constant and be in bound
of the array object.

6.2.1.4 Unary Expressions
A conveyor function or lambda shall not contain a unary expression that is either an await-
expression, a new-expression, or a delete-expression. If the unary operator * is used then its
operand e shall be an expression for which the predicate std::object_address(e) holds.

6.2.1.5 Explicit Type Conversion
A conveyor function or lambda shall not contain a cast-expression that semantically contains a
reinterpret_cast subexpression.

6.2.1.6 Pointer-to-member Operators
If a conveyor function or lambda contains a pm-expression of the form x->*y then the expression x
shall be a pointer for which the predicate std::object_address(x) holds.

6.2.1.7 Multiplicative Operators
If a conveyor function or lambda contains a multiplicative-expression of the form x / y or x % y
then there shall be a reaching definition of a test equivalent to y != 0.

6.2.1.8 Additive Operators
If a conveyor function contains an additive-expression of the form x + y then if one of the operand is
of pointer type, then it shall designate an element lexically known to be an element of an array of a

mailto:gdr@microsoft.com

P3285R0 2024-05-15 Reply-To: gdr@microsoft.com
Audience: SG23, EWG

10

constant size and the other operand shall be an integer constant and the result shall designate either
an element of the array or one past the end of the array.

If a conveyor function contains an additive-expression of the form x – y, if both are of pointer types
then they shall designate objects lexically known to be part of an array with a constant size.

6.2.1.9 Relational Operators
A conveyor function or lambda shall not contain a relational-expression where both operands are of
pointer types.

6.2.1.10 Yielding a Value
A conveyor function or lambda shall not contain a yield-expression.

6.2.1.11 Return Statement
A non-void returning conveyor function or lambda shall contain at least one return statement. If at
least one control flow path of a conveyor function or lambda contains a return statement, then all
exit control paths shall contain a return statement.

6.2.2 Semantic Constraints on Conveyor Functions
Conveyor functions and conveyor lambdas are either syntactically restricted or semantically
restricted so that they are not themselves sources of undefined behavior (see section Error!
Reference source not found.). The semantic restrictions are obtained by either defining some
expressions in the context of conveyor function as not invoking undefined behavior. In practice, this
restriction means that logical derivations from assumption of absence of undefined behavior cannot
be propagated to drive further program transformations. The semantic restrictions enumerated in
this section follow previous census of core undefined behavior (Yaghmour 2019).

When the evaluation of an arithmetic expression in a conveyor function or lambda may overflow or
underflow, it is unspecified which value is returned – but implementation shall not invoke undefined
behavior.

A conveyor function or lambda shall not call std::unreachable. A conveyor function or lambda
shall not contain a throw-expression.

6.3 POLLS

Poll 4: The Contract facility (P2900) should guarantee absence of UB in non-
relaxed contracts as presented in this section.

mailto:gdr@microsoft.com

