
Profiles Framework Stroustrup April 9, 2024

1

Settle
Doc. No. P3274R0

Date: 2024-5-5
Audience: SG23, EWG, LEWG

Reply to: Bjarne Stroustrup (bjarne@stroustrup.com)

A framework for Profiles development

1. Introduction
This document outlines a structured framework for developing and implementing safety profiles in ISO

standard C++. It addresses the industry's urgent need for improved safety and the challenges of

standardization.

Profiles (e.g., see P2687r0 , P2816R0 , and P3038R0) can deliver guarantees; that’s how they differ from

guidelines and from many tools for detecting errors. To deliver the strongest guarantees, such as

complete type-and-resource safety, we need analysis that may not fit into current tool chains and may

require sophistication that is not available at scale.

IMO, we can’t wait for a standard offering standardized profiles. The industry – partly because of

governmental pressures – needs to move faster for our efforts to demonstrate some forms of C++ safety

to be credible. Only verified safe systems (for some reasonable definition of “safe”) deployed at scale are

credible. We need a framework for safety (i.e., Profiles) or we will soon have a mess of incompatible

ways of enforcing incompatible versions of the notion of safety, compromising C++’s strengths in

standardization and portability.

To act in a timely manner, we must start by picking “low-hanging fruit” based on industry needs,

feasibility of implementation, and cost of introduction into existing code bases. That will give early

improvements and gain us experience for further, more complete, guarantees.

A framework is essential to enable gradual adoption of safety measures, to support incremental

improvements of guarantees and support tools, to become a tool for fighting the problems of technical

debt affecting safety, and to ensure portability of guarantees across tool chains.

Better education would of course help, and is necessary whatever we do, but on its own it cannot offer

guarantees. We need a comprehensive and tool supported approach based on analysis, libraries, and

techniques to offer guarantees: In other words, Profiles. Similarly, benefits can be achieved without

modifying source code (e.g., we definitely should offer range-checked vector, string, and span), but we

have several decades of experience that says that bugs hide in complex, low-level code, even when we

try our best to eliminate them. Any serious approach to address such technical debt must involve

simplification of code (supported by better analysis and libraries offering guarantees). Again: Profiles.

There are applications, organizations, and subsystems that don’t feel the need to make the changes

necessary for verified guarantees and others that cannot manage to make such changes just now. For

those, the possibility of optional and of gradual adoption is essential.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf

Profiles Framework Stroustrup April 9, 2024

2

Naturally, we would like to have universal guarantees, that is, guarantees the holds for every part of a

program. Unfortunately, that’s impossible for most programs. We need to call subsystems and libraries

that are not under our control, such as the operating system, a graphics system, a database, specialized

hardware support, code compiled by different compilers, code written in different languages, etc. The

best we can do is to minimize that where safety (for any definition of safety) is paramount and identify

calls to such code.

Note that we are talking about guarantees in code, rather than the security of a complete system. For

security, I worry most about subjects like spearfishing, hostile individuals placed in development

organizations, and tool-chain insecurities. Such avenues of attack are beyond the scope of this work.

Note again (P3038R0) that profiles offer guarantees, not optional conformance. In theory, the required

analysis could be done by human readers, but to scale, we need tool support, so such support is our

focus here.

Importantly, the syntax and semantics of the code accepted by a set of Profiles is ISO C++. Profiles do not

change semantics beyond possibly giving manageable meaning to UB (e.g., range checking).

Next steps:

• Work out details for individual Profiles (so that we don’t have to chase through the older papers

for detailed information) and document them in separate focused papers.

• Maintain this paper as documenting the overall design (with revisions).

• Encourage experimental and exploratory implementations.

See also §5 “Next Steps.”

1.1 Verification
Please note that complete type-and-resource safety is impossible for arbitrary C++ programs, especially

for programs indulging in complex pointer usage. This implies that any analysis must classify code

fragments into three groups:

• Verified safe (for the definition of safety offered by the profile used).

• Verified unsafe.

• Verified possibly unsafe: Too complex to classify as safe or unsafe.

By “verified” I mean proven by some sort of static analysis (possibly by the compiler). Obviously, the

third category is the troublesome one. It requires human intervention to explicitly accept code that isn’t

verified (mark some code fragments as “trusted”) or (preferably) to rewrite the code to eliminate the

problem.

One big issue for initial implementations is that static analysis won’t be perfect, so that we have to

choose between two evils:

• False positives: Should we restrict language usage, rejecting safe programs?

• Uncaught errors: Should we accept incomplete analysis, letting erroneous programs slip through

occasionally (e.g., memory leaks or type errors)?

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf

Profiles Framework Stroustrup April 9, 2024

3

I am strongly in favor of the first choice but realize that in cases we may have to – for a while – regress to

the second. Why? Imagine that we can eliminate 99% of a kind of error so that a programmer may only

encounter an uncaught error of that kind once every half year. That’s valuable, but programmers would

forget to suspect that kind of errors, thus have seriously increased trouble finding them. They may even

forget common techniques to avoid them. This will induce distrust of the tools. On the other hand, we

would have eliminated 99% of the bugs. How can we manage this dilemma? There are several ways, but

for profile directives in the code, we could simply use separate names, e.g., [[Profiles::enable(ranges)]]

to request the proper guarantee for range checking, and [[Profiles::enable(ranges, weak)]] to request a

weaker, temporary, and/or experimental version. The weaker guarantee that can still be much better

than nothing and available much sooner.

Why 99%? Well, I could have said 90% and still made the point. What might be an example? Consider

concurrency. Many, but not all, deadlocks can be handled by using scoped_lock and many, but not all,

data races can be handled by passing unique_ptrs and containers without invalidating operations (e.g.,

gsl::dyn_array rather than vector) together with the simplest static anti-aliasing checks.

Static guarantees can, and should, be achieved through local static analysis. For logical reasons and

compile-time performance, global static analysis (whole-program analysis) doesn’t scale: Most C++ users

do not have access to every line of code potentially executed, such as libraries, operating systems, and

device drivers. Also, many systems employ dynamic linking). There are applications for which these

problems and constraints don’t apply, but to serve the vast majority of users, we must accept the

limitation to local analysis.

We must exactly specify the analysis required. We cannot have the validation of a Profile depend on the

cleverness of individual implementations and vary significantly among implementations. Naturally, in

some cases, we might need to apply analysis that is beyond the ability of most analyzers for applications

with specialized needs or to accept code that can be verified safe only after massive time spent in

analysis (thus minimizing false positives caused by incomplete analysis). Tools for such analysis beyond

what can be supported by most compilers can be introduced into tool chains where needed.

Obviously, we must minimize false positives and keep analysis cost reasonable (relative to needs) if we

want our static analysis to be widely used.

One way to minimize false positives is to deploy the static analysis only when explicitly requested

(through annotations or options), rather than unconditionally putting all code through the straitjacket

imposed by the most rigorous needs. The latter would not be feasible: it wouldn’t allow gradual

adoption or scale to cope with the large systems for which guarantees are most needed. After asking for

specific guarantees, a programmer would (hopefully) consider significantly far fewer of the flagged

problems false positives. For code where a guarantee is not considered feasible, affordable, or valuable

the checking would simply not be deployed (and the resulting code would not be used where verification

is required).

Any guarantee can be suppressed. That’s essential (e.g., for some low-level programming and for the

implementation of some linked data structures), but we want to minimize that. Having large amounts of

“trusted code” is a source of errors. Profiles offer unverified sections of code for that.

Profiles Framework Stroustrup April 9, 2024

4

1.2 Annotations
My ideal is that guarantees are explicitly requested in the source code. That way the intent is obvious

and (eventually) well-defined and portable. The suggested annotations use the ISO standard attribute

syntax, e.g., [[Profiles::enable(ranges)]]. Earlier papers used syntax that wasn’t 100% standards

conforming. That was not a deliberate incompatibility nor a necessity, just a simple way of expressing the

early ideas. One of the early next steps is to settle on an annotation syntax.

In places, there is a need for guarantees for code that cannot be modified (e.g., code owned or

maintained by others) or needs to be compiled by compilers that have not yet been modified to

recognize Profile directives in code. In such cases, compiler and/or build options need to be used.

The “contemporary C++” way of doing that would be to have profile options on module compiler

directives. More traditional environments would have to use conventional, header-based TUs as the unit

of profile enforcement. In such cases, unverified code would have to be placed in separate TUs.

Without a common framework, the options from different suppliers addressing common problems (e.g.,

range errors) will be significantly different, and code relying on one cannot be relied on to work on

another or to offer the same guarantees. This serious problem can be addressed by the options

implementing specific Profiles, just as if they had been specified in-code. When options are used, we

need to restrict Profiles to be used on a per-module or per-file basis. Alternatively, we could define some

macros to specify more restricted scopes (yuck!).

I use the attribute syntax, e.g., [[Profiles::enable(ranges)]] rather than a “proper language syntax using

keywords” (possibly context dependent keywords), e.g., profiles enable(ranges); to ease

experimentation and gradual introduction. This choice of syntax does not imply that enforcement is

optional in implementations that support profiles. However, using the attribute syntax allows us to have

a single code base for code that must be compiled with a variety of compilers, some pre-profiles. In

particular, it allows us to support a likely important use case: First check your program with the best

compiler for profile support, then port the code and compile with an older compiler. I prefer that to

#ifndef hackery.

So, for each of the Profiles below, I propose that its validation can be triggered by an annotation or an

option.

1.3 Initial profiles
“Meta questions” about the profiles listed below:

• Are these the right profiles?

• Which profiles might be missing?

• Which profiles should we start defining and implementing initially?

Part of the purpose of this framework for development is to allow people to work independently on

different parts and to allow people to collaborate on specific parts. I consider this important pre-

standardization. Another purpose is to facilitate discussion and to allow people to focus on their

interests and expertise. Without a general framework, we will be left with a patchwork of incompatible

and probably incomplete safety checks.

Profiles Framework Stroustrup April 9, 2024

5

Given the current heavily published emphasis on “memory safety,” It would be wise to pick the “low-

hanging fruit” based on industry needs, feasibility of implementation, and cost of introduction into

existing code bases. I point to Initialization (§3.7), Ranges (§3.4), and Pointers (§3.5) as likely initial

targets. Personally, I’m focusing on the likely technically harder profiles: Algorithms (§3.6) and

Invalidation (§3.9). I think there is also some low-hanging fruit in Algorithms (§3.3).

As ever, we must remember that the programming language is only a part of the total safety and security

picture. Here, I say “the language” because I am concerned with C++, but of course most large systems

are built using a variety of languages and tools. We need better tool chains (including compiler support)

and better development processes, but improvements to the language and its foundational libraries are

critical areas. For example, we need range-checked container access and checking casts. Such might by

implicitly used by compilers to add safety guarantees to conventional code.

Also, we must remember “memory safety” is more than just range checking and nullptr guarantees, yet

less than complete type-and-resource safety. Complete plain “safety” is either ill-defined or impossible

for real-world code.

1.4 Profile specification format
Below, I discuss a number of potential profiles. For each, I use this format:

• Name: the name of the desired profile (we may have to use a slightly different name for an

initial/limited version).

• Definition: a specification of the guarantees offered.

• Implications: what we need to do to offer the guarantees.

• Initial version: suggestions for an initial/limited version that can be implemented relatively

simply in current tool chains.

• Observation: an additional comment, if needed.

• Question: a question about the design, if any.

• Detailed specification: where to find the detailed specification of the guarantee and the tests

required to enforce it if such has been constructed.

In all cases, I expect that description to evolve over time. However, it should allow us to focus on one

problem at a time rather than being paralyzed by the total size of the project.

I imagine that each profile will eventually get a Detailed specification document or appendix, leaving

later versions of this paper as an overview and rationale.

In many cases, further details of what I’m suggesting can be found in the papers P2687r0 , P2816R0

and P3038R0.

Note: when I say “range” I mean “a sequence of elements” rather than just the ranges from std::ranges.

2. Run-time checks
Some guarantees require run-time checks (e.g., range checks). We prefer static checks, but there has to

be a mechanism for dealing with failed run-time checks. I use “triggers error” to mean: an error

reporting mechanism will be invoked. This could result in an exception throw, termination, or even

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf

Profiles Framework Stroustrup April 9, 2024

6

something else, depending on system setup. If WG21 manages a consensus on contracts, that may be a

possible mechanism. Maybe a more specialized facility would serve better.

For example, and only to illustrate the idea rather than a specific proposal, I used this for some

applications (from https://github.com/BjarneStroustrup/flats/tree/main):

template <Error_handling action = default_error_action, class C>
constexpr void expect(C cond, Error_code x) // C++17; a bit like assert()
{
 if constexpr (action == Error_handling::ignoring)
 return;
 else if constexpr (action == Error_handling::logging) {
 if (!cond())
 std::cerr << "Flats error: " << int(x) << ' ' << error_code_name[int(x)] << '\n';
 return;
 }
 else if constexpr (action == Error_handling::testing) {
 if (!cond()) {
 std::cerr << "Flats error: " << int(x) << ' ' << error_code_name[int(x)] << '\n';
 throw x;
 }
 return;
 }
 else if constexpr (action == Error_handling::throwing) {
 if (!cond())
 throw x;
 return;
 }
 else if constexpr (action == Error_handling::terminating) {
 if (!cond())
 std::terminate();
 return;
 }
 else
 static_assert(False<>, "bad error handling option");
}

For now, what is urgently needed is a notation for indicating a violation.

A required run-time check may not be eliminated. In particular, time-travel optimization based on UB

that could eliminate run-time checks must be prevented. That could be very hard to achieve.

It must be possible to avoid stack overflow. This could be done by a hardware check. If it is possible for a

stack to overflow into space occupied by data, it must be part of type safety (because it could scramble

objects).

https://github.com/BjarneStroustrup/flats/tree/main

Profiles Framework Stroustrup April 9, 2024

7

3. Profiles
Many of the profiles listed below are relatively small, logically separate units, rather than collections of

guarantees combined for easy remembering and use. I think we need a name for such units. I suggest

the term “Profile fragments” for sets of guarantees that are primarily intended for building other profiles

than for direct use by users.

It is essential that users are presented with a manageable set of profiles, rather than a set of 50 or 100

individual checks (allowing 250 or more alternatives). Only a few combinations of checks add up to

manageable sets of guarantees.

Profiles must be designed to work in combination. In particular, we can’t have two profiles that have

contradictory requirements. Exceptions to profiles should be handled by unverified (“trusted”) sections

of code.

Different profiles will depend on the same parts. In a well-designed set of profiles, such fragments and

profiles will constitute a DAG. For example, essentially all profiles will depend on Initialization and Type

will depend on Ranges and Pointers.

3.1. Profile: Type
• Definition: every object is used only in accordance with its definition.

• Implications: This is a very strong guarantee that requires a combination of static and run-time

checks. It will almost certainly be a union of simpler profiles, such as Ranges (§3.4), Invalidation

(§3.9), Algorithms (§3.6), Casting (§3.8), RAII (§3.10), and Union (§3.11).

• Initial version: Start with Initialization (§3.7), Pointers (§3.5), and Ranges (§3.4) and add other

initial profiles as they become available.

• Observation: To achieve complete type safety, we need to eliminate subscripting of raw pointers

outside the implementation of abstractions such as span (because in general we don’t have the

information needed to range check built-in pointers), null-pointer dereferences, use of

invalidated pointers, dangling pointers, and memory leaks (leading to resource exhaustion). That

eliminates essentially all traditional C-style code, but not all that much code written following

the recommendations post-C++11 (e.g., using algorithms, resource-management pointers,

ranges, range-checked containers, RAII, and avoidance of casting).

• Observation: We can have “full traditional C++” or complete type-and-resource safety, but not

both at the same time.

• Question: Is heap exhaustion a type error? Not if it is handled, as it can and must be in some

applications where termination isn’t an option.

• Question: Is a resource leak a type error? It is because it can lead to unrecoverable constructor

failures. Systematic use of RAII takes care of most potential resource leaks.

3.2. Profile: Arithmetic
• Definition: Over and underflow trigger errors; narrowing conversions trigger errors.

• Implications: we need the compiler to use checked arithmetic.

• initial version: We might use some checked arithmetic libraries. Possibly such libraries could be

used by code generators when the arithmetic profile is used.

Profiles Framework Stroustrup April 9, 2024

8

• Observation: we need round() and truncate() functions. Checked arithmetic libraries exist but

are not standard.

• Observation: Mixing signed and unsigned in expressions is a serious source of errors. In

particular, the use of unsigned for standard-library sizes causes difficult problems.

• Questions: should “Arithmetic” imply “Cast”? Suggested answer: yes; see §3.8 Casting.

3.3. Profile: Concurrency
• Definition: no data races. No deadlocks. No races for external resources (e.g., for opening a file).

• Question: should we also deal with priority inversion, delays caused by excess contention on a

lock? Suggested initial answer: no.

• Observation: The concurrency profile is currently the least mature of the suggested profiles. It

has received essentially no work specifically related to profiles, but concurrency problems have

received intensive scrutiny in other contexts (including the Core Guidelines and MISRA++) so I

can offer a few suggestions for initial work:

o Threads: prefer jthread to thread to get fewer scope-related problems.

o Dangling pointers: consider a jthread a container and apply the usual rules for resource

lifetime (RAII) and invalidation (§3.9).

o Aliasing: statically detect if a pointer is passed to another thread. For an initial version,

that will require restrictions on pointer manipulation in non-trivial control flows. In

general, not all aliasing can be detected statically, and we need to reject too complex

code. Defining “too complex” is essential, or we will suffer portability problems because

of compiler incompatibilities. See “Flow analysis” (§4).

o Invalidation: use unique_ptr and containers without invalidation (e.g., gsl::dyn_array)

to pass information between threads.

o Mutability: Prefer to pass (and keep) pointers to const.

o Synchronization: use scoped_lock to lessen the chance of deadlock. Look into the

possibility of statically detecting aliases in more than one thread to mutable data and

enforce the use of synchronization on access through them. Use unique_ptr combined

with protecting against aliasing across treads.

We need to look at lock-free programming.

3.4. Profile: Ranges
• Definition: out-of-range subscripting using [] triggers errors

• Implication: we cannot accept subscripting of raw pointers.

• Implication: Time-travel optimizations based on UB must be eliminated to ensure that the run-

time checks are always executed.

• Initial version: Ban subscripting of raw pointers, check [] for vector, span, views, and string.

• Question: what about std::array?

• Question: Should “Algorithms” be part of ranges? Suggested answer: yes.

• Question: Should Pointers (§3.5) be part of Ranges (§3.4)? Suggested answer: no, or “partially”;

we can get range checking of library-implemented subscripting much sooner than complete

pointer guarantees.

• Observation: Just checking every subscript operation will impose unacceptable run-time costs

for many applications. Therefore, individual checks must be supported by checks of operations

Profiles Framework Stroustrup April 9, 2024

9

being in-range (by a single check). This means that rang-for and range algorithms should be

strongly encouraged. Intelligent compilation of many conventional (C-style) loops is also

possible.

3.5. Profile: Pointers
• Definition: every pointer points to an object or is the nullptr; every iterator points to an element

or the end-of-range; every access through a pointer or iterator is not through the nullptr nor

through a pointer to end-of range.

• Implication: Eliminate pointer arithmetic outside trusted regions (e.g., outside span

implementations).

• Implication: Eliminate dangling pointers (See §3.9 Invalidation).

• Initial version: require not_null, require use of range version of algorithms, require use of a

range-checked span, range-for, or algorithms when using a range.

• Observation: Whatever guarantees are offered for pointers must equally apply to objects that

are not built-in pointers but identify objects. For example, lambda captures and unique_ptr; see

P2687r0 §5.3.

• Observation: Just checking every dereference operation will impose unacceptable run-time costs

for many applications. Therefore, techniques for checking a pointer once for many uses must be

supported. not_null is one way to go, smart compilation is another. Both should become widely

used to contain the cost of this necessary guarantee.

3.6. Profile: Algorithms
• Definition: No range errors from mis-specified ranges (e.g., pairs of iterators or pointer and size).

No dereferences of invalid iterators. No dereference of iterators to one-past-the-end of a range.

• Implications: Use ranges consistently, rather than pairs of iterators to identify sequences and

single iterators to indicate output targets. Access to ranges must be range checked.

• Initial version: Provide range versions of all standard library algorithms. Provide an not_end(c,p)

check whether p is the one-past the end of c for every container (c) (that is p!=end(c)) to help

static analyzers verify that iterators used as return values are checked before any dereference

(P2687r0).

• Observation: infinite ranges (e.g., some ostreams) and automatically growing ranges (e.g.

writing to a back_inserter) do not require range checking (at this level of abstraction).

• Detailed specification: For a very early start on such a specification, see the appendix.

3.7. Profile: Initialization
• Definition: Every object is explicitly initialized (a default constructor is considered initialization).

Implication: Constructors must (recursively) be checked to ensure that every member is

initialized (once only).

• Initial version: For the initial version, simply trust that a constructor properly initialize all

members. For the final version: use static analysis to ensure that every member is initialized.

• Observation: This guarantee is essential for every profile.

• Observation: Guaranteed initialization severely cuts down UB.

• Observation: Cleverer and less restrictive schemes to guarantee initialization are possible, but

more complex to implement and for programmers to manage.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf

Profiles Framework Stroustrup April 9, 2024

10

• Observation: Avoiding explicit initialization though the implicit initialization is in itself error

prone because a default value may be a valid but wrong (leading to wrong results), because not

all user-defined types have a suitable default value, and because it can lead to double

assignment of buffer values (considered unacceptable in some high-performance applications).

• Observation: In performance critical applications, it is not feasible to initialize output buffers

before use. This must be handled through suppression, an uninitialized annotation, and/or by

specific uninitialized types.

3.8. Profile: Casting
• Definition: No cast grants access to an object in a way that disagrees with its definition. No cast

yields a result with a value that doesn’t compare equal to its source (aka, “no narrowing”).

• Initial version: Ban all casts. Provide run-time-checked casts (e.g., gsl::narrow<T>(x)) to cope

with potential narrowing and potential signed/unsigned problems.

• Observation: dynamic_cast is safe but we must enforce checking of pointer results.

• Observation: If you need an unchecked, unconditional cast, you must suppress this guarantee.

• Observation: We need casts to convert from untypes (“raw”) memory to typed objects.

3.9. Profile: Invalidation
• Definition: No access through an invalidated pointer or iterator

• Initial version: The compiler bans calls of non-const functions on a container when a pointer to

an element of the container has been taken. Needs a [[non-validating]] attribute to avoid

massive false positives. For the initial version, allow only straight-line code involving calls of

functions on a container that may invalidate a pointer to one of its elements (P2687r0).

• Observation: In its full generality, this requires serious static analysis involving both type analysis

and flow analysis. Note that “pointer” here means anything that refers to an object and

“container” refers to anything that can hold a value (P2687r0). In this context, a jthread is a

container.

3.10. Profile: RAII
• Definition: no resource leaks.

• Initial version: Every resource that must be acquired and later released must be represented by

a scoped object.

• Observation: A resource owned by a static object lives forever unless explicitly released.

Examples of resources: memory, locks, shaders.

3.11 Profile: Union
• Definition: Every field of a union is used only as set

• Initial version: Use a run-time checked variant (e.g., variant). Leave other uses to unverified

code.

• Observation: We need pattern matching. Then, the rule would be “don’t use unions, use

match.”

• Observation: there are important uses of unions that don’t involve a tag. For example, versions

of the short-string optimizations that uses the length of the string to select the implementation.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf

Profiles Framework Stroustrup April 9, 2024

11

4. Flow analysis
The hardest practical problem with early Profiles implementations is likely to be the guarantees that

require control flow analysis; e.g., see P3038R0 §8 (“dangling pointers”). Our implementations don’t

(all?) have general and fast static analysis that we can use. Consider

int* f(int x, int* p)
{

// …
if (x==0) {

p = new int{9};
 // …

 }
 // … use *p …
 return p;

}

That’s somewhat obscure code, but we have all seen worse. It may even be correct, but that assignment

to p depends on the value of x and there is no guarantee that p isn’t the nullptr upon entry to f(). In

general, such problems could be buried deep in code. Two years ago, I found a logical equivalent, but

much larger, example by applying Core Guidelines rules. I suggest (P3038R0 §8) that in an initial version

problems requiring flow analysis be flagged except for simple linear code.

Instead, alternatives with safety implications could (in initial implementations) be restricted to a subset

of C++ that a compiler can handle relatively easily and reasonably fast. For example:

int* f(int x, int* p)
{
 int* res = (x==0) ? new int{9} : p;

 // … use *p …
 return res;
}

The suggested pointer profile would ensure that p was checked for nullptr before use.

5. Next steps
To make the profiles approach credible to a wider audience, we need some of these profiles precisely

specified, implemented, and tested. I suggest starting with:

• Settle the syntax for profiles (P3038R0).

• Settle on a syntax for indicating run-time violations (§2).

• Specify Initialization (§3.7) and decide what’s feasible in the very short term

• Specify Ranges (§3.4) and decide what’s feasible in the very short term

• Specify Casting (§3.8) and decide what’s feasible in the very short term

• Devise a subset of Pointers (§3.5) that is feasible in the very short term (nullptr checking)

Separately, we need to work on the more complete validation issues:

• Document a detailed design for range-checked algorithms for Algorithms (§3.6)

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf

Profiles Framework Stroustrup April 9, 2024

12

• Document a detailed design for Invalidation (§3.6)

Crucially, once we have a syntax (and maybe even before), the work on the other suggested priorities

can proceed in parallel. Obviously, I’d like to see work on all Profiles and on all aspects of Profiles. People

will work on what interests them and are priorities for them and their organizations. The list above is just

my suggested priorities.

I suggest some urgency. We cannot wait for a couple of years while polishing standards text and we need

feedback from initial implementations and tests.

6. References
• B. Stroustrup and G. Dos Reis: Design Alternatives for Type-and-Resource Safe C++. P2687R0.

2022-10-15.

• B. Stroustrup: Concrete suggestions for initial Profiles. P3038R0. 2023-12-16.

• B. Stroustrup, G. Dos Reis: Safety Profiles: Type-and-resource Safe programming in ISO Standard

C++. P2816R0. 2023-02-16.

Further references can be found in those papers.

7. Acknowledgements
I received more constructive comments on the topic of Profiles than I could easily keep track of. Thanks
to all who contributed to this note, notably Ilya Burylov, J-Daniel Garcia, Greg Law, Christof Meerwald ,
Gabriel Dos Reis, Jonathan Wakely, Andreas Weis , J.C. van Winkel, and Mike Wong.

Jonathan Wakely and Ville Voutilainen provided useful input to the range appendix.

I apologize for the length of this note. It was intended to be just a couple of pages outlining key ideas,

but to clarify various points it grew to a full-blown paper.

Appendix: Algorithms
The description of Profiles in this paper is meant to be an overview, rather than a set of detailed

specifications. I expect most individual Profile detailed specifications to be larger than this paper,

involving a combination of static analysis, supporting library components, enforced coding guidelines,

and possibly additional support tools. This appendix points to a couple of issues that need to be

addressed for the Algorithms profile. The concrete examples are not standard-library quality, but

examples to illustrate general ideas.

Rationale
To remain useful in programs requiring range safety guarantees, STL algorithms need to be range

checked. Without that, people insisting on guarantees will have to abandon the STL. Range checking for

STL algorithms is most easily achieved by using ranges explicitly.

Algorithms with explicit ranges
We can imagine compilers checking some examples of algorithms relying on the conventional pair-of-

iterators style (e.g., sort(p,q) for iterators p and q) but such checking would be complex and lead to false

positives. For example:

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf

Profiles Framework Stroustrup April 9, 2024

13

 sort(v1.begin(),v2.end()); // almost certainly an error
 sort(v1.end(),v1.begin()); // almost certainly an error
 sort(v1.begin(),v1.begin()+n); // Range error if v1.size() < n
 sort(v.1.begin(),v1.end()); // OK

The first three examples could be caught by a static analyzer, but the third example would likely yield

many false positives.

The Algorithms profile better insist on explicit use of ranges, e.g. sort(v). Every STL algorithm should have

a version that can be used exclusively with ranges, e.g., copy(s,t) for ranges s and t.

Ideally, we should write simple and safe code like this:

void sort(forward_range auto& r)
{
 vector v(r); // initialize v from r; deduce v’s element type from r’s
 sort(v);
 copy(v,r); // copy into a range (potentially range checked)
}

But as we all know, that won’t work. Without language changes relative to C++23, we can get close:

void sort(forward_range auto& r)
{
 vector v {from_range_t, r}; // initialize v from r; deduce v’s element type
 ranges::sort(v);
 copy(v,Output_range(r)); // copy into r (range checked)
}

I consider the need for from_range, ranges:: , and Output_range ugly, distracting, a barrier to

acceptance, and probably redundant, but that seems to be a minority opinion and it is not essential for

ensuring range safety.

A checked output range class
The Output_range is a class from my personal code:

template<ranges::range R>
class Output_range {
public:
 using value_type = ranges::range_value_t<R>;
 using difference_type = int;

 Output_range(R r) : p{ r.begin() }, e{ r.end() }{}

 Output_range& operator++() { check_end(); ++p; return *this; }
 Output_range operator++(int) { check_end(); auto t{ *this }; ++p; return t; }

 value_type& operator*() const { check_end(); return *p; }

http://en.cppreference.com/w/cpp/ranges/from_range

Profiles Framework Stroustrup April 9, 2024

14

 bool operator==(const Output_range& a) const { return p == a.p; }
 bool operator!=(const Output_range& a) const { return p != a.p; }
private:
 void check_end() const { if (p == e) throw Overflow{}; }
 ranges::iterator_t<R> e;
 ranges::iterator_t<R> p;
};

It illustrates an idea, rather than being a concrete proposal. Note that Output_range is an STL iterator.

Implicit range checking
The Ranges profile requires that subscripting of vector, span, and the like using [] is implicitly range

checked. So should ranges used by the Algorithms profile be. So copy(s,t) for a range s and an iterator or

range t should mean copy(s,Output_range(t)) using range-checking class Output_range. For initial

experiments, explicit use of checking range classes would be obvious.

For many algorithms, run-time checking of individual accesses could be costly, possibly leading to the use

of unverified implementation code. Wherever possible, that must be avoided:

• For output ranges, only fixed-sized targets need to be checked.

• For random-access ranges with a fixed range, it should be possible to avoid checking of many

accesses after the initial check of the range. However, for many algorithms the heavy use of

subscripting or iterator arithmetic, that’s not going to be easy. In some cases, implementing

using span will be a solution.

One-past-the end return values
Many algorithms return an iterator to an individual element or one-past-the-end. To be dereferenced, it

must first be checked to see that it is not one-past-the-end. For each container, one-past-the-end is the

logical equivalent to the nullptr. For nullptr we can easily check (p!=nullptr) or we can use not_null(p) or

an equivalent. However, a returned iterator doesn’t have a single, simple, and conventional way of

checking. To simplify static analysis (and coding), we need one. For each container, C, we can define bool

C::not_at_end(C::iterator) and/or bool not_at_end(C&,C::iterator). This can be generalized to every

range.

