
Document number: 	 P3044R1

Date: 	 2024-07-15

Project: 	 Programming Language C++

Audience:	 LEWG

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

sub-string_view from string

Abstract
This paper proposes a way to retrieve a sub-string_view from a string directly.

Tony Table

Revisions
R1: Changes after LEWG Mailing List Review in May 2024:

• Added discussion on naming and reference qualification

R0: Initial version

Motivation
Whilst the concept of a non-owning reference into a string has been established decades ago , 2

the idea only got introduced into the standard library with the adoption of string_view into C+
+17. The integration of which into string can only be classified as being limited to the role of a
sink-only type - several member functions support inputs in the form of string_view, yet none
return a string_view.

Given the "reduced" interface of string , there is exactly one member function that would most 3

likely return a string_view if we were to design this part of the standard library just now:
substr(…) const & - from the authors experience, said member function is never invoked in a
context requiring an immediate copy.

Design Space
As changing the return type of substr is not possible for obvious compatibility reasons, we
instead propose a new member function subview as accessor to sub-views of a string
(following established naming practice like span::subspan and string::substr), replicating the
interface and design of substr in all but return type and reference qualifications:

Before Proposed
string s{"Hello cruel world!"};
auto sub = string_view{s}.substr(6);
//sub == "cruel world!"
auto subsub = sub.substr(0, 5);
//subsub == "cruel"

string s{"Hello cruel world!"};
auto sub = s.subview(6);
//sub == "cruel world!"
auto subsub = sub.subview(0, 5);
//subsub == "cruel"

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

 e.g. https://help.perforce.com/sourcepro/11/html/toolsref/rwcsubstring.html dates back to the 1990s.2

 Compared to "kitchen-sink" designs in other environments.3

1

mailto:mfh.cpp@gmail.com
mailto:michael.hava@risc-software.at
https://help.perforce.com/sourcepro/11/html/toolsref/rwcsubstring.html

In order to improve generically handling both string and string_view, we further propose to
add string_view::subview as an alternate spelling of string_view::substr:

Naming Discussion
As str.subview() is valid, it has been suggested that a more appropriate name for this
functionality would be view, pointing to basic_stringbuf and basic_[io]stringstream as
existing naming practice. We push back against these suggestions as we are aiming at providing
an efficient alternative to substr and said usage is purely incidental to mirroring the existing API.

If people feel strongly there should be a convention of providing a view member function as a way
to convert a „stringy type“ to the respective string_view, this should be done with a separate
paper enumerating all missing occurrences of said function - the authors are aware of at least one
additional type to be included in said paper: basic_format_string.

Reference Qualification
It has been suggested to keep lvalue-reference qualifiers for subview to prevent some
immediately dangling constructs. We don’t consider this appropriate as it inadvertently renders
perfectly safe code ill-formed as well:

Whilst we acknowledge the dangers of dangling, we consider it something that shouldn't be
tackled in an ad-hoc way conflating lifetime and value categories, but something that should be
handled properly for all „reference types“.

Future Extension: subspan From Contiguous Containers?
A related functionality to this paper is imaginable: Adding subspan to contiguous containers
(array, inplace_vector, string, string_view, vector). This is potentially more contentious as
it would add a dependency to span/ to all these currently independent classes/headers,
whereas the proposed subview does not.

Proposed Poll: LEWG is interested in a paper on subspan for contiguous containers.

Impact on the Standard
This proposal is a pure library addition. Existing standard library classes are modified in a non-
ABI-breaking way.

Implementation Experience
The proposed design has been implemented at: https://github.com/MFHava/STL/tree/P3044.

template<typename charT, typename traits = char_traits<charT>, typename Allocator = allocator<charT>>
struct basic_string {
…
 constexpr basic_string substr(size_type pos = 0, size_type n = npos) const &;
 constexpr basic_string substr(size_type pos = 0, size_type n = npos) &&;
 constexpr basic_string_view<charT, traits> subview(size_type pos = 0, size_type n = npos) const;
…
};

template<typename charT, typename traits = char_traits<charT>>
struct basic_string_view {
…
 constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;
 constexpr basic_string_view subview(size_type pos = 0, size_type n = npos) const;
…
};

w/o reference qualifiers w/ reference qualifiers

auto s = getString().subview(…); ⚠ immediately dangling ✔ dangling prevented

getStringView(getString().subview(…)); ✔ valid code, never dangling ❌ ill-formed

2

https://github.com/MFHava/STL/tree/P3044

Proposed Wording
Wording is relative to [N4964]. Additions are presented like this, removals like this and drafting
notes like this.

[version.syn]

[string.view]

[basic.string]

#define __cpp_lib_string_subview YYYYMML //also in <string>, <string_view>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

??.?.? Class template basic_string_view [string.view.template]

??.?.?.? General [string.view.template.general]

namespace std {
 template<class charT, class traits = char_traits<charT>>
 class basic_string_view {
 public:
 …
 // [string.view.ops], string operations
 …
 constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;
 constexpr basic_string_view subview(size_type pos = 0, size_type n = npos) const;
 constexpr int compare(basic_string_view s) const noexcept;
 …
 };
}

??.?.?.? String operations [string.view.ops]

…

constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;
constexpr basic_string_view subview(size_type pos = 0, size_type n = npos) const;

7 Let rlen be the smaller of n and size() - pos.

??.?.? Class template basic_string [basic.string]

…

??.?.?.? General [basic.string.general]

namespace std {
 template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
 class basic_string {
 public:
 …
 // [string.ops], string operations
 …
 constexpr basic_string substr(size_type pos = 0, size_type n = npos) const &;
 constexpr basic_string substr(size_type pos = 0, size_type n = npos) &&;
 constexpr basic_string_view<charT, traits> subview(size_type pos = 0, size_type n = npos) const;

 template<class T>
 constexpr int compare(const T& t) const noexcept(see below);
 …
 };
}

??.?.?.?.? basic_string::substr [string.substr]

…

constexpr basic_string substr(size_type pos = 0, size_type n = npos) &&;

2 Effects: Equivalent to: return basic_string(std::move(*this), pos, n);

constexpr basic_string_view<charT, traits> subview(size_type pos = 0, size_type n = npos) const;

3 Effects: Equivalent to: return basic_string_view<charT, traits>(*this).subview(pos, n);

??.?.?.?.? basic_string::compare [string.compare]

3

http://wg21.link/N4964

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Jeff Garland for bringing this
issue to my attention. Thanks to Peter Kulczycki for proofreading revision 1 of this paper.

4

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

