
Ordering of constraints involving fold expressions
Document #: P2963R2
Date: 2024-05-17
Programming Language C++
Audience: EWG, CWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

Fold expressions, which syntactically look deceptively like conjunctions/subjections for the
purpose of constraint ordering are in fact atomic constraints We propose rules for the nor-
malization and ordering of fold expressions over && and ||.

Revisions

R2

• Wording improvements following CWG review in Tokyio. Notablywe added a description
of how satisfaction is established.

• Clarify that subsumption checking short-circuits. Add a design discussion.

• A fold expression constraint can now only subsume another if they both have the same
fold operator. This avoid inconsistent subsumption and checking results in the presence
of empty packs.

R1

• Wording improvements: The previous version of this paper incorrectly looked at the size
of the packs involved in the fold expressions (as it forced partial ordering to look at tem-
plate arguments). The current design does not look at the template argument/parameter
mapping to establish subsumption of fold expressions.

• A complete implementation of this proposal is available on Compiler Explorer. The
implementation section was expanded.

• Add an additional example.

Motivation

This paper is an offshoot of P2841R0 [1] which described the issue with lack of subsumption
for fold expressions. This was first observed in a Concept TS issue.

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P2841R0
http://cplusplus.github.io/concepts-ts/ts-active.html#28

This question comes up ever so often on online boards and various chats.

• [StackOverflow] How are fold expressions used in the partial ordering of constraints?

• [StackOverflow] How to implement the generalized form of std::same_as?

In Urbana, core observed ”We can’t constrain variadic templates without fold-expressions”
and almost folded (!) fold expressions into the concept TS. The expectation that these features
should interoperate well then appear long-standing.

Subsumption and fold expressions over && and ||

Consider:

template <class T> concept A = std::is_move_constructible_v<T>;
template <class T> concept B = std::is_copy_constructible_v<T>;
template <class T> concept C = A<T> && B<T>;

template <class... T>
requires (A<T> && ...)
void g(T...);

template <class... T>
requires (C<T> && ...)
void g(T...);

We want to apply the subsumption rule to the normalized form of the requires clause (and its
arguments). As of C++23, the above g is ambiguous.

This is useful when dealing with algebraic-type classes. Consider a concept constraining a
(simplified) environment implementation via a type-indexed std::tuple. (In real code, the
environment is a type-tag indexed map.)

template <typename X, typename... T>
concept environment_of = (... && requires (X& x) { { get<T>(x) } -> std::same_as<T&>; });

auto f(sender auto&& s, environment_of<std::stop_token> auto env); // uses std::allocator
auto f(sender auto&& s, environment_of<std::stop_token, std::pmr::allocator> auto env); //

uses given allocator

Without the subsumption fixes to fold expressions, the above two overloads conflict, even
though they should be partially ordered.

A similar example courtesy of Barry Revzin:

template <std::ranges::bidirectional_range R> void f(R&&); // #1
template <std::ranges::random_access_range R> void f(R&&); // #2

template <std::ranges::bidirectional_range... R> void g(R&&...); // #3
template <std::ranges::random_access_range... R> void g(R&&...); // #4

2

https://stackoverflow.com/questions/34843745
https://stackoverflow.com/questions/58724459/

C++23 This Paper

f(std::vector{1, 2, 3}); // Ok
g(std::vector{1, 2, 3}); // Error: call to 'g' is ambiguous

f(std::vector{1, 2, 3}); // Ok, calls
#2

g(std::vector{1, 2, 3}); // Ok, calls
#4

[Compiler Explorer Demo]

Impact on the standard

This change makes ambiguous overload valid and should not break existing valid code.

Implementabiliy

This was implemented in Clang. Importantly, what we propose does not affect compilers’
ability to partially order functions by constraints without instantiating them, nor does it affect
the caching of subsumption, which is important to minimize the cost of concepts on compile
time: The template arguments of the constraint expressions do not need to be observed to
establish subsumption.

An implementation does need to track whether an atomic constraint that contains an un-
expanded pack was originally part of a and/or fold expression to properly implement the
subsumption rules (&& subsumes || & && and || subsumes ||).

Subsection with mixed fold operators

Consider this example provided by Hubert Tong

template <typename ...T> struct Tuple { };
template <typename T> concept P = true;

template <typename T, typename U, typename V, typename X> struct A;

template <typename ...T, typename ...U, typename V, typename X>
requires P<X> || ((P<V> || P<U>) || ...) // #A
void foo(A<Tuple<T ...>, Tuple<U ...>, V, X> *); // #1

template <typename ...T, typename ...U, typename V, typename X>
requires P<X> || ((P<V> && P<T>) && ...) // #B
void foo(A<Tuple<T ...>, Tuple<U ...>, V, X> *); // #2

void bar(A<Tuple<int>, Tuple<>, int, int> *p) { foo(p); }

3

https://compiler-explorer.com/z/xojh8eo4x

In this example, under the rule proposed in R1, of this paper, #A subsumed #B, and so
#1 would have been be a better choice. However here, U is empty. So A’s constraints are
equivalent to just P<X> which make B more constrained.

To avoid inconsistencies between constraint checking and subsumption, a fold expression
can only subsume another if they both have the same fold operator (they are both folding
over && or they are both folding over ||).

Short circuiting

To be consistent with conjunction constraint and disjection constraints, we propose that fold
expanded constrait short circuit (both their evaluation and substitution).

What this paper is not

When the pattern of the fold-expressions is a ‘concept‘ template parameter, this paper does
not apply. In that case, we need different rules which are covered in P2841R0 [1] along with
the rest of the ”concept template parameter” feature (specifically, for concept patterns we
need to decompose each concept into its constituent atomic constraints and produce a fully
decomposed sequence of conjunction/disjunction)

Design and wording strategy

To simplify the wording, we first normalize fold expressions to extract the non-pack expression
of binary folds into its own normalized form, and transform (... && A) into (A && ...) as
they are semantically identical for the purpose of subsumption. We then are left with either
(A && ...) or (A || ...), and for packs of the same size, the rules of subsumptions are the
same as for that of atomic constraints.

Wording

�? Constraints [temp.constr.constr]

�? General [temp.constr.constr.general]

A constraint is a sequence of logical operations and operands that specifies requirements on
template arguments. The operands of a logical operation are constraints. There are three
four different kinds of constraints:

• conjunctions [temp.constr.op],

• disjunctions [temp.constr.op], and

• atomic constraints [temp.constr.atomic], and

• fold expanded constraints [temp.constr.fold].

4

https://wg21.link/P2841R0

In order for a constrained template to be instantiated [temp.spec], its associated constraints
[temp.constr.decl] shall be satisfied as described in the following subclauses. [Note: Forming
the name of a specialization of a class template, a variable template, or an alias template
[temp.names] requires the satisfaction of its constraints. Overload resolution [over.match.vi-
able] requires the satisfaction of constraints on functions and function templates. —end
note]

�? Logical operations [temp.constr.op]

There are two binary logical operations on constraints: conjunction and disjunction. [Note:
These logical operations have no corresponding C++ syntax. For the purpose of exposition,
conjunction is spelled using the symbol ∧ and disjunction is spelled using the symbol ∨. The
operands of these operations are called the left and right operands. In the constraint A ∧ B,
A is the left operand, and B is the right operand. —end note]

A conjunction is a constraint taking two operands. To determine if a conjunction is satisfied,
the satisfaction of the first operand is checked. If that is not satisfied, the conjunction is not
satisfied. Otherwise, the conjunction is satisfied if and only if the second operand is satisfied.

A disjunction is a constraint taking two operands. To determine if a disjunction is satisfied,
the satisfaction of the first operand is checked. If that is satisfied, the disjunction is satisfied.
Otherwise, the disjunction is satisfied if and only if the second operand is satisfied.

[Example:

template<typename T>
constexpr bool get_value() { return T::value; }

template<typename T>
requires (sizeof(T) > 1) && (get_value<T>())
void f(T); // has associated constraint sizeof(T) > 1 ∧ get_value<T>()

void f(int);

f('a'); // OK, calls f(int)

In the satisfaction of the associated constraints[temp.constr.decl] of f, the constraint sizeof(char)
> 1 is not satisfied; the second operand is not checked for satisfaction. —end example]

[Note: A logical negation expression [expr.unary.op] is an atomic constraint; the negation
operator is not treated as a logical operation on constraints. As a result, distinct negation
constraint-expressions that are equivalent under ?? do not subsume one another under ??.
Furthermore, if substitution to determine whether an atomic constraint is satisfied [temp.con-
str.atomic] encounters a substitution failure, the constraint is not satisfied, regardless of the
presence of a negation operator. [Example:

template <class T> concept sad = false;

template <class T> int f1(T) requires (!sad<T>);

5

template <class T> int f1(T) requires (!sad<T>) && true;
int i1 = f1(42); // ambiguous, !sad<T> atomic constraint expressions

[temp.constr.atomic]
// are not formed from the same expression

template <class T> concept not_sad = !sad<T>;
template <class T> int f2(T) requires not_sad<T>;
template <class T> int f2(T) requires not_sad<T> && true;
int i2 = f2(42); // OK, !sad<T> atomic constraint expressions both come from not_sad

template <class T> int f3(T) requires (!sad<typename T::type>);
int i3 = f3(42); // error: associated constraints not satisfied due to substitution

failure

template <class T> concept sad_nested_type = sad<typename T::type>;
template <class T> int f4(T) requires (!sad_nested_type<T>);
int i4 = f4(42); // OK, substitution failure contained within sad_nested_type

Here, requires (!sad<typename T::type>) requires that there is a nested type that is not sad,
whereas requires (!sad_nested_type<T>) requires that there is no sad nested type. —end
example] —end note]

�? Atomic constraints [temp.constr.atomic]

An atomic constraint is formed from an expression E and a mapping from the template
parameters that appear within E to template arguments that are formed via substitution
during constraint normalization in the declaration of a constrained entity (and, therefore,
can involve the unsubstituted template parameters of the constrained entity), called the
parameter mapping [temp.constr.decl]. [Note: Atomic constraints are formed by constraint
normalization[temp.constr.normal]. E is never a logical and expression?? nor a logical or
expression??. —end note]

Two atomic constraints, e1 and e2, are identical if they are formed from the same appearance
of the same expression and if, given a hypothetical template A whose template-parameter-
list consists of template-parameter s corresponding and equivalent[temp.over.link] to those
mapped by the parametermappings of the expression, a template-id namingAwhose template-
argument s are the targets of the parameter mapping of e1 is the same[temp.type] as a
template-id naming A whose template-argument s are the targets of the parameter mapping
of e2. [Note: The comparison of parameter mappings of atomic constraints operates in a
manner similar to that of declaration matching with alias template substitution[temp.alias].
[Example:

template <unsigned N> constexpr bool Atomic = true;
template <unsigned N> concept C = Atomic<N>;
template <unsigned N> concept Add1 = C<N + 1>;
template <unsigned N> concept AddOne = C<N + 1>;
template <unsigned M> void f()
requires Add1<2 * M>;
template <unsigned M> int f()

6

requires AddOne<2 * M> && true;

int x = f<0>(); // OK, the atomic constraints from concept C in both fs are
Atomic<N>

// with mapping similar to N 7→ 2 * M + 1

template <unsigned N> struct WrapN;
template <unsigned N> using Add1Ty = WrapN<N + 1>;
template <unsigned N> using AddOneTy = WrapN<N + 1>;
template <unsigned M> void g(Add1Ty<2 * M> *);
template <unsigned M> void g(AddOneTy<2 * M> *);

void h() {
g<0>(nullptr); // OK, there is only one g

}

—end example] As specified in ??, if the validity or meaning of the program depends on
whether two constructs are equivalent, and they are functionally equivalent but not equivalent,
the program is ill-formed, no diagnostic required. [Example:

template <unsigned N> void f2()
requires Add1<2 * N>;
template <unsigned N> int f2()
requires Add1<N * 2> && true;
void h2() {

f2<0>(); // ill-formed, no diagnostic required:
// requires determination of subsumption between atomic constraints that are
// functionally equivalent but not equivalent

}

—end example] —end note]

To determine if an atomic constraint is satisfied, the parameter mapping and template ar-
guments are first substituted into its expression. If substitution results in an invalid type
or expression in the immediate context of the atomic constraint[temp.deduct.general], the
constraint is not satisfied. Otherwise, the lvalue-to-rvalue conversion[conv.lval] is performed
if necessary, and E shall be a constant expression of type bool. The constraint is satisfied if
and only if evaluation of E results in true. If, at different points in the program, the satisfaction
result is different for identical atomic constraints and template arguments, the program is
ill-formed, no diagnostic required. [Example:

template<typename T> concept C =
sizeof(T) == 4 && !true; // requires atomic constraints sizeof(T) == 4 and !true

template<typename T> struct S {
constexpr operator bool() const { return true; }

};

template<typename T> requires (S<T>{})

7

void f(T); // #1
void f(int); // #2

void g() {
f(0); // error: expression S<int>{} does not have type

bool
} // while checking satisfaction of deduced arguments

of #1;
// call is ill-formed even though #2 is a better match

—end example]

�? Fold expanded constraint [temp.constr.fold]

A fold expanded constraint is formed from a constraint and a fold-operator which can either be
&& or ||.

A fold expanded constraint whose fold-operator is && is a fold expanded conjunction constraint.

A fold expanded constraint whose fold-operator is || is a fold expanded disjunction constraint.

A fold expanded constraint is a pack expansion. Let N be the number of elements in the pack
expansion that would result from its instantiation [temp.variadic].

A fold expanded conjunction constraint is satisfied if N equals 0 or if for each 0 ≤ i < N in
increasing order, its constraint is satisfied when replacing each pack expansion parameter
with the corresponding ith element. No substitution takes place for any i greater than the
smallest i for which the constraint is not satisfied.

A fold expanded disjunction constraint is satisfied, if N is not 0 and for any 0 ≤ i < N in
increasing order its constraint is satisfied when replacing each pack expansion parameter
with the corresponding ith element. No substitution takes place for any i greater than the
smallest i for which the constraint is satisfied.

[Editor’s note: [...]]

�? Constraint normalization [temp.constr.normal]

The normal form of an expression E is a constraint[temp.constr.constr] that is defined as follows:

• The normal form of an expression (E) is the normal form of E.

• The normal form of an expression E1 || E2 is the disjunction[temp.constr.op] of the
normal forms of E1 and E2.

• The normal form of an expression E1 && E2 is the conjunction of the normal forms of E1
and E2.

• The normal form of a concept-id C<A1, A2, ..., An> is the normal form of the constraint-
expression of C, after substituting A1, A2, ..., An for C’s respective template parameters

8

in the parameter mappings in each atomic constraint. If any such substitution results
in an invalid type or expression, the program is ill-formed; no diagnostic is required.
[Example:

template<typename T> concept A = T::value || true;
template<typename U> concept B = A<U*>;
template<typename V> concept C = B<V&>;

Normalization of B’s constraint-expression is valid and results in T::value (with the map-
ping T 7→ U*) ∨ true (with an empty mapping), despite the expression T::value being
ill-formed for a pointer type T. Normalization of C’s constraint-expression results in the
program being ill-formed, because it would form the invalid type V&* in the parameter
mapping. —end example]

• For a fold-operator [expr.prim.fold] that is either && or ||, the normal form of an expres-
sion (... fold-operator E) is the normal form of (E fold-operator...).

• The normal form of an expression (E1 fold-operator ... fold-operator E2) is the
the normal form of

– (E1 fold-operator...) fold-operator E2 if E1 contains an unexpanded pack, or

– E1 fold-operator (E2 fold-operator...) otherwise.

• The normal formof (E && ...) is a fold expanded conjunction constraint [temp.constr.fold]
whose constraint is the normal form of E.

• The normal formof (E || ...) is a fold expandeddisjunction constraintwhose constraint
is the normal form of E.

• The normal form of any other expression E is the atomic constraint whose expression is
E and whose parameter mapping is the identity mapping.

�? Partial ordering by constraints [temp.constr.order]

A constraint P subsumes a constraint Q if and only if, for every disjunctive clause Pi in the
disjunctive normal form of P , Pi subsumes every conjunctive clause Qj in the conjunctive
normal form of Q, where

• a disjunctive clause Pi subsumes a conjunctive clause Qj if and only if there exists an
atomic constraint Pia in Pi for which there exists an atomic constraint Qjb in Qj such that
Pia subsumes Qjb, and

• an atomic constraint A subsumes another atomic constraint B if and only if A and B are
identical using the rules described in [temp.constr.atomic].

• a fold expanded constraint A subsumes another fold expanded constraint B if both A
and B have the same fold-operator and the constraint of A subsumes that of B.

[Example: Let A and B be atomic constraints [temp.constr.atomic]. The constraint A ∧ B
subsumes A, but A does not subsume A ∧ B. The constraint A subsumes A ∨ B, but A ∨ B
does not subsume A. Also note that every constraint subsumes itself. —end example]

9

Acknowledgments

Thanks to Robert Haberlach for creating the original Concept TS issue.

Thanks to Jens Mauer and Barry Revzin for their input on the wording.

References

[1] Corentin Jabot and Gašper Ažman. P2841R0: Concept template parameters. https:
//wg21.link/p2841r0, 5 2023.

[N4958] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4958

10

http://cplusplus.github.io/concepts-ts/ts-active.html#28
https://wg21.link/p2841r0
https://wg21.link/p2841r0
https://wg21.link/N4958

	1 Abstract
	2 Revisions
	2.1 R2
	2.2 R1

	3 Motivation
	3.1 Subsumption and fold expressions over && and ||
	3.2 Impact on the standard
	3.3 Implementabiliy
	3.4 Subsection with mixed fold operators
	3.5 Short circuiting
	3.6 What this paper is not
	3.7 Design and wording strategy

	4 Wording
	4.1 Constraints
	4.1.1 General
	4.1.2 Logical operations
	4.1.3 Atomic constraints
	4.1.4 Fold expanded constraint

	4.2 Constraint normalization
	4.3 Partial ordering by constraints

	5 Acknowledgments

