
async-object - aka async-RAII
Proposal

Document #: P2849R0
Date: 2024-05-21
Project: Programming Language C++
Audience: LEWG Library Evolution
Reply-to: Kirk Shoop

<kirk.shoop@gmail.com>

Contents
1 Introduction 1

1.1 What is an async-object? . 1

2 Example 2
2.1 The Foo async-object . 2
2.2 async_using some async-object s . 3
2.3 The stop_object async-object . 3
2.4 Chaining stop-source s . 4

3 Motivation 5

4 Design 6
4.1 What are the requirements for an async-object? . 6
4.2 What is the concept that an async-object must satisfy? . 7
4.3 What was the path to this design? . 14

5 Implementation Experience 16

6 References 16

1 Introduction
This paper describes concepts that would be used to create and cleanup an async-object, describes the
async_using algorithm that will construct and destruct a pack of async-object s within an async-function,
and describes the async_tuple type which is an async-object that composes the construction and destruction
of multiple async-object s.

1.1 What is an async-object?
An async-object is an object with state that has async-function s to construct and destruct the object.

Examples include:

— thread
— thread-pool
— io-pool
— buffer-pool
— mutex
— file

1

mailto:kirk.shoop@gmail.com

— socket
— counting-scope

2 Example
[async-object POC (godbolt)]

2.1 The Foo async-object
Foo is a simple async-object that has an int for state.
// Foo is an async-object that stores an int
struct Foo {
// defines an async-object
// the object must be immovable
struct object : __immovable {
object() = delete;

int v;
private:
// only allow Foo to run the constructor
friend struct Foo;
explicit object(int v) noexcept : v(v) {}

};
// the handle type for the constructed object.
// this is produced by async_construct
using handle = std::reference_wrapper<object>;
// the type that reserves storage for the object
// must be nothrow default constructible and immovable
using storage = std::optional<object>;

// async_construct returns a sender that completes with a handle to the constructed object
auto async_construct(storage& stg, int v) const noexcept {
return then(just(std::ref(stg), v),

[](storage& stg, int v) noexcept {
auto construct = [&]() noexcept { return object{v}; };
stg.emplace(__conv{construct});
printf("foo constructed, %d\n", stg.value().v);
return std::ref(stg.value());

});
}

// async_destruct returns a sender that performs the destruction the async-object
// in storage and completes after the object is destructed
auto async_destruct(storage& stg) const noexcept {
return then(just(std::ref(stg)),

[](storage& stg) noexcept {
printf("foo destructed %d\n", stg.value().v);
stg.reset();

});
}

};

static_assert(async_object<Foo>);

2

static_assert(async_object_constructible_from<Foo, int>);

2.2 async_using some async-object s
This creates two Foo async-object s and modifies the state in a sender expression
int main() {
// use async-objects
auto inner = [](Foo::handle o0, Foo::handle o1) noexcept {

return then(just(o0, o1),
[](Foo::handle o0, Foo::handle o1) noexcept {
auto& ro0 = o0.get();
auto& ro1 = o1.get();
ro0.v = ro0.v + ro0.v;
ro1.v = ro1.v + ro1.v;
printf("foo pack usage, %d, %d\n", ro0.v, ro1.v);
fflush(stdout);
return ro0.v + ro1.v;

});
};

// package async-object constructor arguments
packaged_async_object foo7{Foo{}, 7};
packaged_async_object foo12{Foo{}, 12};

// reserve storage, construct async-osbjects,
// give async-object handles to the given inner
// async-function, and destruct async-objects
// when the inner async-function completes
auto use_s = async_using(inner, foo7, foo12);

auto [v] = sync_wait(use_s).value();
printf("foo pack result %d\n\n", v);

}

2.3 The stop_object async-object
C++20 added std::stop_source and std::stop_token to represent a cancellation signal.

A std::stop_source object allocates state on the heap and shares it with the std::stop_token object.

[P2300R9] defines inplace_stop_source and inplace_stop_token. inplace_stop_source is an immovable ob-
ject that contains the state inline. inplace_stop_token has a pointer to the state inside inplace_stop_source.
This avoids an allocation, but the inplace_stop_source needs to be stored in an operation-state or some
other stable location.

It is trivial to build an async-object around inplace_stop_source that can composed with other
async-object s and async-functions s. This avoids the allocation of state and allows composition of multiple
async-object s.
struct stop_object {
using object = inplace_stop_source;
class handle {
object* source;
friend struct stop_object;
explicit handle(object& s) : source(&s) {}

3

public:
handle() = delete;
handle(const handle&) = default;
handle(handle&&) = default;
handle& operator=(const handle&) = default;
handle& operator=(handle&&) = default;

inplace_stop_token get_token() const noexcept {
return source->get_token();

}
bool stop_requested() const noexcept {

return source->stop_requested();
}
static constexpr bool stop_possible() noexcept {

return true;
}
bool request_stop() noexcept {

return source->request_stop();
}
template<class Sender>
auto chain(Sender&&);

};
using storage = std::optional<object>;

auto async_construct(storage& stg) const noexcept {
auto construct = [](storage& stg) noexcept -> handle {

stg.emplace();
return handle{stg.value()};

};
return then(just(std::ref(stg)), construct);

}
auto async_destruct(storage& stg) const noexcept {
auto destruct = [](storage& stg) noexcept {

stg.reset();
};
return then(just(std::ref(stg)), destruct);

}
};

2.4 Chaining stop-source s
When a new stop source is created, there is a need to compose stop token from a receiver to stop the new stop
source and to provide the new stop token to nested senders.

The chain() method on the stop_object handle does this composition.

This creates two new stop_objects and chains them together so that a stop request at any one of them will
request all the nested stop sources to stop as well. chain() also ensures that read_env() will get the stop token
for the innermost stop source.
enum class stop_test_result {stopped, unstopped};
void stop(stop_test_result sr) {
auto inner = [sr](stop_object::handle source0, stop_object::handle source1) noexcept {
auto body = then(read_env(get_stop_token),

[sr, source0](auto stp) mutable noexcept {

4

// prove that chain() propagates from
// env stop_token to stop source
if (sr == stop_test_result::stopped) {
// stop source0
source0.request_stop();

}
// check source1
return stp.stop_requested();

});
return source0.chain(source1.chain(body));

};

auto use_s = async_using(inner, stop_object{}, stop_object{});

auto [stop_requested] = sync_wait(use_s).value();
printf("%s - %s\n\n",

((stop_requested && sr == stop_test_result::stopped) ||
(!stop_requested && sr == stop_test_result::unstopped))
? "PASSED" : "FAILED",

stop_requested ? "stop requested" : "stop not requested");
}

3 Motivation
It is becoming apparent that all the sender/receiver features are language features being implemented in library.

Sender/Receiver itself is the implementation of an async-function. An async-function can complete asyn-
chronously with values, errors, or cancellation.

An async-object requires manual memory management in implementations because async-object s do not fit
inside any single block in the language.

A major precept of [P2300R9] is structured concurrency. The let_value() algorithm provides stable storage
for values produced by the input async-function.

It has been suggested that adding a let_stop_source(sender, sender(inplace_stop_source&)) algorithm
would allow a new inplace_stop_source to be created in a sender expression. Over time other bespoke let_..
algorithms have been suggested to create other resources within sender expressions. This explosion of suggestions
for bespoke let_.. algorithms demonstrates that a general design for composing async resources is missing.

What is missing is a way to attach an async-object to a sender expression such that the async-object is
constructed asynchronously before any nested async-function s start and is destructed asynchronously after
all nested async-function s complete.

Asynchronous lifetimes in programs often use std::shared_ptr to implement ad-hoc garbage collection of
objects used by asynchronous code. Using garbage collection for this purpose removes structure from the code,
because the shared ownership allows objects to escape the original scope in which they were created.

Using objects like this in asynchronous code results in ad-hoc solutions for async-construction and
async-destruction. No generic algorithms can compose multiple objects with asynchronous lifetimes when
the async-construction and async-destruction are ad-hoc and follow no generic design.

The C++ language has a set of rules that are applied in a code-block to describe when construction and
destruction of objects occur, and has rules that scope access to the successfully constructed objects within the
code-block. The language implements those rules.

This paper describes how to implement rules for the construction and destruction of async-object s, using

5

sender/receiver, in the library. This paper describes structured construction and destruction of objects in terms
of async-function s. The async_using() algorithm described in this paper is a library implementation of an
async code-block containing one or more local variables. The async_using() algorithm is somewhat analogous
to the using keyword in some languages.

4 Design
4.1 What are the requirements for an async-object?
async construction

Some objects have async-function s to run during construction that establish a connection, open a file, etc..

The design must allow for async-function s to be used during construction - without blocking any threads
(C++ constructors are unable to meet this requirement)

async destruction

Some objects have async-function s to run during destruction that teardown a connection, flush a file, etc..

The design must allow for async-function s to be used during destruction - without blocking any threads (C++
destructors are unable to meet this requirement)

structured and correct-by-construction

These are derived from the rules for objects in the C++ language.

An async-object :

— will not be available until async-construction has completed successfully
— may complete async-construction with an error
— may support cancellation of async-construction
— must ensure that async-destruction will be no-fail and unstoppable

The async_using algorithm:

— will always complete async-construction before invoking the inner async-function
— will always complete async-destruction before completing to the containing async-function
— will always invoke async-destruction when the inner async-function completes
— will always invoke async-destruction of multiple async-object s in the reverse order of the

async-construction of those async-object s
— will always invoke async-destruction of any async-object s that successfully completed async-construction

The async_tuple type:

— will always complete async-construction of all contained async-object s before completing the
async_construct async-function of the async_tuple

— will always invoke async-destruction of all contained async-object s in the reverse order of the
async-construction of those async-object s

— will always invoke async-destruction of any contained async-object s that successfully completed
async-construction

composition

— Multiple async-object s will be available at the same time without nesting.
— Dependencies between objects will be expressed by nesting.
— Composition will support concurrent async-construction of multiple objects.
— Composition will support concurrent async-destruction of multiple objects.

6

4.2 What is the concept that an async-object must satisfy?
4.2.0.1 The async_object Concept:

An async-object provides the async-function s async_construct and async_destruct to construct an
async-object.

An async-object provides the object type that contains the state for the constructed async-object. An
object type must be immovable so that a moveable handle can refer to the constructed object. The constructors
of the object type must only be available to the async-object implementation.

An async-object provides the handle type that is a ref-type that refers to the constructed object. A handle
type must be moveable so that it can be passed into nested async-function. A handle type is not allowed to
be empty, it is either moved-from and invalid to use or it refers to constructed object.

An async-object provides the storage type that contains storage for the object. A storage type must be
default-constructible and immovable. This allows the storage to be reserved prior to construction of the object
within and for the handle to refer to the constucted object.

A successfully constructed async-object :

— is accessed through an async-object-handle
— holds state and provides zero or more async-functions s that operate on the state async-object

/// @brief the async-object concept definition

template<class _T, class _O, class _H, class _S>
concept __async_object_members =
std::is_move_constructible_v<_T> &&
std::is_nothrow_move_constructible_v<_H> &&
!std::is_default_constructible_v<_O> &&
!std::is_move_constructible_v<_O> &&
!std::is_constructible_v<_O, const _O&> &&
std::is_nothrow_default_constructible_v<_S> &&
!std::is_move_constructible_v<_S> &&
!std::is_constructible_v<_S, const _S&>;

template<class _S>
concept __async_destruct_result_valid =

__single_typed_sender<_S> &&
sender_of<_S, set_value_t()>;

template<class _T>
concept async_object =
requires (){
typename _T::object;
typename _T::handle;
typename _T::storage;

} &&
__async_object_members<_T,
typename _T::object,
typename _T::handle,
typename _T::storage> &&

requires (const _T& __t_clv, typename _T::storage& __s_lv){
{ async_destruct_t{}(__t_clv, __s_lv) }

-> __nofail_sender;
} &&
__async_destruct_result_valid<async_destruct_result_t<_T>>;

7

template<class _T, class... _An>
concept async_object_constructible_from =
async_object<_T> &&
requires (
const _T& __t_clv,
typename _T::storage& __s_lv, _An... __an){
{ async_construct_t{}(__t_clv, __s_lv, __an...) }

-> sender_of< set_value_t(typename _T::handle)>;
};

using async_construct_t = /*implementation-defined/*;
/// @brief the async_construct() cpo provides a
/// sender that will complete with an async-object-handle.
/// @details The async-object-handle will be valid
/// until the sender provided by async_destruct()
/// is started.
/// @param obj A const l-value reference to an async-object
/// to be constructed
/// @param stg A mutable l-value reference to the
/// async-object-storage for the constructed async-object
/// @param an... The arguments to the async-object's async_construct()
/// @returns sender_of<set_value_t(async-object-handle)>
/**/
inline static constexpr async_construct_t async_construct{};

using async_destruct_t = /*implementation-defined/*;
/// @brief the async_destruct() cpo provides a
/// sender that will destroy the async-object
/// @details The async-object-handle becomes
/// invalid when the returned sender is started
/// @param obj A const l-value reference to an
/// async-object to be destructed
/// @param stg A mutable l-value reference to
/// the async-object-storage for the destructed async-object
/// @returns sender_of<set_value_t()>
/**/
inline static constexpr async_destruct_t async_destruct{};

4.2.0.2 Class diagram async-object

8

async-object classes

C construct_object_impl
? satisfies operation

«storage»storage* storage
«tuple»argn argn
«receiver»r

void start()

C construct_object
? satisfies sender

get_completion_signatures(«environment»env)
->completion_signatures<«set_value_t»(«handle»)>

connect(«receiver»r)
->«operation»construct_object_impl

C destruct_object_impl
? satisfies operation

«storage»storage* storage
«receiver»r

void start()

C destruct_object
? satisfies sender

get_completion_signatures(«environment»env)
->completion_signatures<«set_value_t»()>

connect(«receiver»r)
->«operation»construct_object_impl

C object
? satisfies immovable

C handle
? satisfies movable

«object»object* object;

C storage
? satisfies immovable

«object»object object;

C async_object
? satisfies async_object

using «object»object;
using «handle»handle;
using «storage»storage;

async_construct(«storage»storage&, Args...)
->«sender»construct_object

async_destruct(«storage»storage&)
->«sender»destruct_object

4.2.0.3 Activity diagram async-object

9

async_construct() and async_destruct() activity

async_construct(async-object, storage) [start]

asynchronous construction

constructed?

async_construct(async-object, storage) [complete]

use async-object-handle

async_destruct(async-object, storage) [start]

asynchronous destruction

async_destruct(async-object, storage) [complete]

async_destruct(async-object, storage) [start]

asynchronous destruction

async_destruct(async-object, storage) [complete]

async_construct(async-object, storage) [fail]

ready fail

4.2.0.4 The async_tuple<> Type:

The async_tuple<> type is an async-object aggregates multiple async-object s.

An async_tuple<> can be used to place multiple async-object s members in a async-object without having
to manually compose all the individual async_construct and async_destruct.
using make_async_tuple_t = /*implementation-defined/*;
/// @brief the make_async_tuple(aon...) cpo provides an
/// async_tuple<> that contains zero or more async-objects
/// @details The async_tuple<> is itself an async-object
/// that composes the async-construction and
/// async-destruction of the async-objects that
/// it contains
/// @param aon... a pack of packaged-async-objects.
/// @returns async_tuple<..>
/**/
inline static constexpr make_async_tuple_t make_async_tuple{};

4.2.0.4.1 Activity diagram async_tuple<>

10

async_tuple<>activity

async_construct(async_tuple) [start]

async_construct(async-tuple-item) [start] ...

{and}

asynchronous construction

all constructed?

async_construct(async-tuple-item) [complete] ...

{and}

async_construct(async_tuple) [complete]

use async-tuple-handle and async-tuple-item-handle...

async_destruct(async_tuple) [start]

async_destruct(async-tuple-item) [start] ...

{and}

asynchronous destruction

async_destruct(async-tuple-item) [complete] ...

{and}

async_destruct(async_tuple) [complete]

async_construct(async-tuple-item) [fail]

cancel active async_construct operations

async_construct(async-tuple-item) [complete] ...

{and}

async_destruct(async_tuple) [start]

async_destruct(async-tuple-item) [start] ...

{and}

asynchronous destruction

async_destruct(async-tuple-item) [complete] ...

{and}

async_destruct(async_tuple) [complete]

async_construct(async_tuple) [fail]

ready fail

4.2.0.5 The async_using() Algorithm:

11

The async_using() algorithm is an async-function that opens a new function scope with one or more
async-object handles available.

The async_using() operation will construct one or more async_object s and then all the async_object handles
will be given to inner-fn. The inner-fn is an async-function that uses the handles. When the inner-fn
operation completes, async_using() will destruct all the async-object s and then complete with the result of
the inner-fn operation.

This is a library implementation of opening a block in a function with an open brace, where the compiler will
construct local objects in the order that they are listed and destruct the locals in reverse order at the close brace.
using async_using_t = /*implementation-defined/*;
/// @brief the async_using(innerFn, aon...) cpo provides a
/// sender that completes with the result of the sender
/// returned from innerFn
/// @details The returned sender composes the construction
/// and destruction of the async-objects that it contains
/// and provides the async-object-handles to innerFn.
/// The innerFn returns an inner sender. The returned inner
/// sender is started.
/// When the returned inner sender
/// completes, the results are stored and async_destruct()
/// for each of the async-objects is started.
/// When all the async_destruct async-functions complete
/// then the returned sender completes with the stored
/// results of the inner sender.
/// @param innerFn A function that takes a pack of
/// async-object-handles and returns a sender.
/// @param aon... a pack of packaged-async-objects.
/// @returns async_tuple<..>
/**/
inline static constexpr async_using_t async_using{};

4.2.0.5.1 Activity diagram async_using()

12

async_using() activity

async_using(inner-fn, async-object...) [start]

async_construct(async-object) [start] ...

{and}

asynchronous construction

all constructed?

async_construct(async-object) [complete] ...

{and}

inner-fn(async-object-handle...) [start]

use async-object-handle...

inner-fn(async-object-handle...) [complete]

store inner-fn operation results

async_destruct(async-object) [start] ...

{and}

asynchronous destruction

async_destruct(async-object) [complete] ...

{and}

complete with inner-fn operation results

async_using(inner-fn, async-object...) [complete]

async_construct(async-object, storage) [fail]

cancel active async_construct operations

async_construct(async-object) [complete] ...

{and}

async_destruct(async-object) [start] ...

{and}

asynchronous destruction

async_destruct(async-object) [complete] ...

{and}

async_using(inner-fn, async-object...) [fail]

ready fail

13

4.2.0.6 The packaged_async_object<> Type:

The packaged_async_object<> type is an async-object that is always default async-constructible. The
packaged_async_object<> type stores a pack of arguments and in its defaulted async_construct, gives those
arguments to the async_constructor of the nested async-object.

async_using() and make_async_tuple() require a pack of default async-constructible async-object s. The
packaged_async_object<> type is used to make default async-constructible async-object s that can be passed
to async_using() and make_async_tuple().
using make_packaged_async_object_t = /*implementation-defined/*;
/// @brief the pack_async_object(o, an...) cpo provides a
/// packaged_async_object<> that stores arguments for the
/// async_construct() of the given async-object.
/// @details The packaged_async_object<O, An...> is itself an
/// async-object that composes the async-construction and
/// async-destruction of the given async-object.
/// The packaged_async_object provides an async_construct()
/// that takes no arguments and forwards the packaged arguments
/// to the given async-object async_constructor.
/// This is used to allow async_using() and async_tuple<> to
/// take a pack of async-objects that need no arguments.
/// @param o an async-object to package.
/// @param an... a pack of arguments to package.
/// @returns packaged_async_object<O, An...>
/**/
inline static constexpr make_packaged_async_object_t make_packaged_async_object{};

4.3 What was the path to this design?
Early designs were the result of seeing patterns in how async resources like async-scope, execution-context,
stop-source, async-mutex, socket, file, etc..

All of the following designs were implemented and used.

4.3.0.1 run() & join()

An early design had run()and join(). This had composition issues and complexity issues.

4.3.0.2 run(), open(), and close()

This led to a design that had run(), open(), and close(). the open() and close() operations were nested
inside the run() operation. The open() operation completed after the run() operation completed the async
construction of the async-object and the close() operation completed after the run() operation completed
the async destruction of the async-object.

This design was hard to communicate. The relationship between open() & close() and run() was confusing
and took time to teach and understand. The implementation of an async-object with this design was very
complicated.

4.3.0.3 async-sequence

This is hard to describe without covering async-sequence in detail.

The short form is that an async-sequence has an operation that delivers all the items in the sequence and each
item in the sequence has an operation that processes that item.

14

There was a direct map of the run(), open(), and close() design to an async-sequence with one
async-sequence-item. This meant that two separate designs - async-sequence and async-object - could be
reduced to one design.

The async-sequence operation and the run() operation were a direct map and the single async-sequence-item
operation was a direct map to the open() operation (the handle to the constructed object that the open()
operation completed with became the single async-sequence-item).

The async-sequence operation constructed the async-object and then emitted the handle to the con-
structed async-object as the single async-sequence-item, and once the operation that processed the
async-sequence-item completed, the async-sequence operation would destruct the object, and finally the
async-sequence operation would complete.

This provided users with correct-by-construction usage. The implementation of async-object s with this design
was complex.

4.3.0.4 async_construct(), async_destruct(), object, handle, and storage

This design followed from feedback that the previous designs had semantics that were difficult to explain and
required async-object implementations to be very complex and placed constraints on the usage that limited
the ways in which async-object s could be composed.

The feedback suggested that the object should be concerned with construction and destruction and not with
how those are composed during usage. It was recommended that the design of objects in the language with
independent functions to construct and destruct was the model to follow.

The result is that an implementation of an async_object is not very complex. The complexity is in the
async_using() and make_async_tuple() implementations.

Most of the previous designs had something like async_using(), but this is the first implementation of
async_using() that supported a pack of objects. This is also the first time that the async_tuple<> type was
implemented to compose multiple async-object s as members of a containing async-object.

The success in implementing the composition of async-object s to support these different use cases is an
encouraging confirmation of this design.

4.3.0.4.1 variation:

There has been discussion about another way to achieve the ability for async_using() and make_async_tuple()
to take a pack of async-object s to compose.

The async-object would drop the storage member type. The async-object would be immovable and default-
constructible (it would become the storage type). The async_construct() and async_destruct() functions
would remove the storage& arguments and use this to access the storage.

In this design, the packaged_async_object would not be an async-object. An async-object would be
immovable, but packaged_async_object must be moveable since it stores the pack of async_construct()
arguments and must be passed as part of the pack given to async_using() and make_async_tupe().
The packaged_async_object type would almost be an async_object in this design. It would have
async_construct() and async_destruct() members. It would need a storage type member that is the
actual async-object. usage would require that the caller reserve space for the storage and pass the storage
ref to async_construct() and async_destruct().

This variation would require two concepts that have a lot of overlap.

— async-object would be immoveable and have a handle type member and async_construct() and
async_destruct() members.

— packaged-async-object would be moveable and have a storage type member and async_construct()
and async_destruct() members that take a reference to the storage.

15

The design selected in this paper chooses to have one concept that can be satisfied by all async-object s,
including packaged_async_object.

5 Implementation Experience
async-object s have been built multiple times with different designs over several years. A lot of feedback has
been collected from those other implementations to arrive at this design.

The design in this paper is implemented, but is not used widely at this time (May 2024).

The design in this paper has withstood the first round of feedback and is ready for a wider audience.

6 References
[async-object POC (godbolt)] async-object POC (godbolt).

https://godbolt.org/z/rrbW6veYd

[P2300R9] Eric Niebler, Michał Dominiak, Georgy Evtushenko, Lewis Baker, Lucian Radu Teodorescu, Lee
Howes, Kirk Shoop, Michael Garland, Bryce Adelstein Lelbach. 2024-04-02. ‘std::execution‘.
https://wg21.link/p2300r9

16

https://godbolt.org/z/rrbW6veYd
https://wg21.link/p2300r9

	Introduction
	What is an async-object?

	Example
	The Foo async-object
	async_using some async-object s
	The stop_object async-object
	Chaining stop-source s

	Motivation
	Design
	What are the requirements for an async-object?
	What is the concept that an async-object must satisfy?
	What was the path to this design?

	Implementation Experience
	References

