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Abstract

This paper proposes arange adaptor views: : nullable which adapts nullable types—suchas std: :optional
or pointer to object types—into a range of the underlying type.

It also proposes a concept maybe, that types which are contextually convertible to bool and dereferenceable
model.
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— Changes since R12,
— Removal of views::maybe in favor of range optional
— std: :maybe concept

— Free functions on maybe types such as optional and pointers.
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1 Before / After Table

auto opt = possible_value();

if (opt) { for (auto&& opt :
// a few dozen lines ... views::nullable(possible_value())) {
use(*opt); // is *opt Safe ? // a few dozen lines
} use(opt); // opt is Safe
std::optional o{7}; std::optional o{7};
if (o) { for (auto&& i
*0 = 9 : views::nullable_view<std::optional<int>&>(0)) {
std::cout << "o=" << x0 << " prints 9\n"; i=9;

std::cout << "j=" << i << " prints 9\n";
std::cout << "o=" << %0 << " prints 9\n";
std::cout << "o=" << %0 << " prints 9\n";

// if range for is too much magic
if (auto v = views::nullable_view<std::optional<int>&>(0);
std::begin(v) != std::end(v)) {
auto itr = std::begin(v);
*itr = 10;
std::cout << "xitr=" << xitr << " prints 10\n";

}
std::cout << "o=" << x0 << " prints 10\n";
std::vector<int> v{2, 3, 4, 5, 6, 7, 8, 9, 1}; std::vector<int> v{2, 3, 4, 5, 6, 7, 8, 9, 1};
auto test = [](dint i) -> std::optional<int> { auto test = []J(int i) -> std::optional<int> {
switch (i) { switch (i) {
case 1: case 1:
case 3: case 3:
case 7: case 7:
case 9: case 9:
return i; return 1i;
default: default:
return {}; return {};
} }
}; }s;
auto&& r = v | ranges::views::transform(test) | auto&& r =
ranges::views::filter( v | ranges::views::transform(test) |
[1(auto x) { return bool(x); }) | ranges::views::transform(views::nullable) |
ranges::views: :transform( ranges::views::join |
[1(auto x) { return *x; }) | ranges::views::transform([](int i) {
ranges::views: :transform([](int i) { std::cout << 1i;
std::cout << 1; return 1;
return i; DM
DN for (auto&& i : r) {
for (auto&& i : r) { 1
}s

std: :vector<int> v{2, 3, 4, 5, 6, 7, 8, 9, 1};

auto test = [](int i) -> optional<int> {
switch (i) {
case 1:
case 3:
case 7:
case 9:
return optional{i};
default:
return optional<int>{};
}
}s

auto&& r = v | ranges::views::transform(test) |
ranges::views::join |
ranges::views::transform([](int i) {
std::cout << J;
return 1i;

s
for (auto&& i : r) {
}s



2 Motivation

In writing range transformation it is useful to be able to lift a value into a view that is either empty or contains
the value. std: :optional fills this function. For nullable types, types which model maybe, constructing
an empty view for disengaged values and providing a view to the underlying value is useful as well.

int fortytwo = 42;
int sixbynine = 54;

std: :vector<intx> v{&fortytwo, nullptr, &sixbynine};
auto r = std::views::join(std::views::transform(v, views::nullable));

for (auto i : r) {
std::cout << 7 << "\t'; // prints 42 and 54 skipping the nullptr

}
std::cout << std::endl;

The maybe protocol that views: : nullab'le adapts is inherently unsafe because it models unsafe pointer
semantics. If a nullable type is disengaged, using the derefence operator operator=*() is undefined
behavior, in practice reading from a union with the wrong type engaged. The allowed operations of
views: :nullab'le are all, in themselves, safe, and using the adapter can lead to safer code.

An example is using views: : nullab'le in range based for loops, allowing the contained nullable value
to not be dereferenced within the body. This is of small value in small examples in contrast to testing the
nullable in an if statement, but with longer bodies the dereference is often far away from the test. This can
be a particular issue in doing code reviews where the test, if it exists, is not visible. Often the first line in the
body of the 1 f is naming the dereferenced nullable, and lifting the dereference into the for loop eliminates
some boilerplate code, the same way that range based for loops do.

{
auto opt = possible_value();
if (opt) {
// a few dozen lines
use(xopt); // is *opt Safe 7
}
}

for (auto&& opt
views: :nullable(possible_value())) {
// a few dozen lines
use(opt); // opt is Safe
}

Of course, if the maybe is empty, there is nothing in the view to act on.

auto oe = std::optional<int>{};
for (int i : views::nullable(oe))
std::cout << "i=" << 4
<< '"\n'; // does not print

Converting an optional type into a view can make APIs that return optional types, such as lookup operations,
easier to work with in range pipelines.



std::unordered_set<int> set{1, 3, 7, 9};

auto flt = [=](int i) -> std::optional<int> {
if (set.contains(i))

return 1i;
else
return {};
}s3
for (auto i : ranges::jota_view{l, 10} |
ranges::views: :transform(flt)) {
for (auto j : views::nullable(i)) {
for (auto k : ranges::iota_view(0, j))
std::cout << '"\a';
std::cout << '"\n';
}
}

3 Borrowed Range

A borrowed_range is one whose iterators cannot be invalidated by ending the lifetime of the range.

The reference specializations of nullable_view are borrowed. Iterators refer to the underlying object
directly.

All instantiations of nullable_view over a pointer to object are borrowed ranges. The iterator refers to
the address of the object pointed to without involving any addresss in the view.

A nullable_view<shared_ptr>, however, is not a borrowed range, as it participates in ownership of
the shared_ptr and might invalidate the iterators if upon the end of its lifetime it is the last owner.

An example of code that is enabled by borrowed ranges, if unlikely code:

num = 42;

int k = xstd::ranges::find(views::nullable(&num), num);
Providing the facility is not a significant cost, and conveys the semantics correctly, even if the simple
examples are not hugely motivating. In particular there is no real implementation impact, other than
providing template variable specializations for enable_borrowed_range.

4 Monadic Operations

It is not feasible to give nullable_view a direct monadic interface as it would require, for example,
construction of a type that dereferences to U to support transformover T -> U, but that is not in general
possible in the C++ type system. The additional level of indirection built in to nullable_view makes this
infeasible.

4.1 Reference Specialization

Having worked with the reference_wrapper support for some time, the ergonomics are somewhat
lacking. In addition, many of the Big Dumb Business Objects that are the result of lookups, or filters, and
are thus good candidates for optionality, are also not good at move operations, having dozens of individual
members that are a mix of primitives, strings, and sub-BDOs, resulting in complex move constructors. In
addition, many old and well tested functions will mutate these objects, rather than making copies, using a
more object oriented than value oriented style.

For these reasons, supporting the common case of reference semantics ergonomically is important. Fold-
ing the implementation of reference_wrapper into a template specialization for T& provides good er-
gonomics. The type nullable_view does not support assignment from the underlying type, so the
only question for semantics is assignment from another instance of the same type. The semantics of



std: :reference_wrapper are well established and correct, where the implementation pointer is reas-
signed, putting the assignee into the same state as the assigned. These are the same semantics currently
proposed for optional<T&>.

The range adaptor views: :nullab’le only produces the non-reference specialization. As range code is
strongly rooted in value semantics, providing reference semantics without ceremony seems potentially
dangerous. Having it dependent on the value category of the expression would make it far too easy to
produce reference types that would dangle. If the pattern becomes common, providing an instance of the
function object with a distinct name would be non-breaking for anyone. Using the constructor form is not a
particular burden.

This means that all of the operations on nullable_vieware directly safe. To construct a non-safe operation
is possible, but looks unsafe in code. For example:

nullable_view<int> 01{42};

J/ ...
assert(*(ol.data()) == 42));

Dereferencing the result of data () without a check for null is of course unsafe, but in a way that should be
visible to programmers, reviewers, and tools.

5 Maybe Concept and Functions

The nullable_view adapts types that model maybe. In addition to the adapter, this paper propsoses
exposing the concept and the most generally used helper functions for maybes

— value_or—The referred to value or an alternative

— reference_or—A reference to the referred to value or a reference to an alternative
— or_invoke—The referred to value or a function to invoke to return a value

— yield_if—An optional holding a value or not conditioned on a boolean

These mirror functions commonly found in optional implementations, however most of the implementations
were specified before traits like common_reference were standardised, and can not be fixed today. For
example std: :optional<T>::value_or (U) returnsaT.

The concept is very minimal, as most uses of a maybe impose few constraints.

template <class T>

concept maybe = requires(const T t) {
bool(t);
*(t);

b5

Figure 1: concept maybe

This ensures that a user type provides a conversion to bool and a derefence operator that can be used for
const qualified types.

The implementation of each of the functions is relatively straightforward, albiet somewhat anoying.

template <class T, class R = optional<decay_t<T>>>

constexpr auto yield_if(bool b, T&& t) -> R {
return b ? forward<T>(t) : R{};

}

Figure 2: yield_if



template <maybe T,
class U,
class R = common_reference_t<iter_reference_t<T>, U&&>>
constexpr auto reference_or (T&& m, U&& u) -> R {
static_assert(!reference_constructs_from_temporary_v<R, U>);
static_assert(!reference_constructs_from_temporary_v<R, T&>);
return bool(m) ? static_cast<R>(xm) : static_cast<R>((U&&)u);

Figure 3: reference_or

template <maybe T,
class U,
class R = common_type_t<iter_reference_t<T>, U&&>>
constexpr auto value_or(T&& m, U&& u) -> R {
return bool(m) ? static_cast<R>(*m) : static_cast<R>(forward<U>(u))

}

Figure 4: value_or

template <maybe T,
class I,
class R = common_type_t<iter_reference_t<T>,
invoke_result_t<I>>>
constexpr auto or_invoke(T&& m, I&& invocable) -> R {
return bool(m) ? static_cast<R>(xm) : static_cast<R>(invocable());

}

Figure 5: or_invoke

6 Design

The type nullable_view has the semantics of zero or one objects based on if the underlying nullable
object does or does not have a value, as indicated by the maybe being truthy or falsy.

7 Freestanding

The type nullable_view naturally meets the requirements for freestanding, as do the concept and pro-
posed functions.

8 Implementation

A publicly available implementation athttps://github.com/steve-downey/view_maybe, There are
no particular implementation difficulties or tricks. The declarations are essentially what is quoted in the
Wording section and the implementations are described as effects.

9 Proposal

Add a range adaptor object
views: :nullable a range adaptor over a nullable_object producing a view into the nullable object.

A maybe object is one that is both contextually convertible to bool and for which the type produced by
dereferencing is an equality preserving object. Non void pointers, std: :optional, and the proposed
std: :expected [P0323RI] types all model maybe. Function pointers do not, as functions are not objects.
Iterators do not generally model maybe, as they are not required to be contextually convertible to bool.


https://github.com/steve-downey/view_maybe

The generic type std: :nullable_view, which is produced by views: : nullable is further specialized
over reference types, such that operations on the iterators of the range modify the object the range is over,
if and only if the object exists.

10 Wording

Modify 22 General utilities library[utilities]

©.1 Maybe Types [maybe]
€91 In general [maybe.general]

Subclause describes the concept maybe that represents types that model optionality and functions that
operate on such types.

©.9.2 Header <maybe> synopsis [maybe.syn]

namespace std {
// 22, class template maybe
template <class T>
concept maybe = requires(const T t) {
bool(t);
*(t);
}s

template <maybe T, class U, class R>
constexpr auto value_or(T&& m, U&& u) -> R;

template <maybe T, class U, class R>
constexpr auto reference_or(T&& m, U&& u) -> R;

template <maybe T, class I, class R>
constexpr auto or_invoke(T&& m, I&& invocable) -> R;

}

template <maybe T, class U, class R = common_type_t<iter_reference_t<T>, U&&>>>
constexpr auto value_or(T&& m, U&& u) -> R;

Mandates: T models maybe common_type_t<iter_reference_t<T>, U&&>::type is defined

Returns: bool(m) ? static_cast<R>(*m) : static_cast<R>(forward<U>(u)).
template <maybe T, class U, class R = common_reference_t<iter_reference_t<T>, U&&>>
constexpr auto smd::reference_or(T&& m, U&& u) -> R;

Mandates: T models maybe common_reference<iter_reference_t<T>, U&&>::type is de-
fined

Constraints: ! reference_constructs_from_temporary_v<R, U> !reference_constructs_-
from_temporary_v<R, T&>

Returns: bool(m) ? static_cast<R>(*m) : static_cast<R>((U&&)u)
template <maybe T, class I,

class R = common_type_t<iter_reference_t<T>, invoke_result_t<I>>>
constexpr auto or_invoke(T&& m, I&& invocable) -> R

Mandates: Tmodelsmaybe common_type<iter_reference_t<T>, invoke_result_t<I>>::type
is defined

Returns: bool(m) ? static_cast<R>(*m) : static_cast<R>(invocable())
Modify 22.5 Optional objects[optional]
Add to 22.5.2 Header <optional> synopsis

template <class T, class R>
constexpr auto yield_if(bool b, T&& t) -> R;



Add 22.5.X

©.9.3 yield_if [optional.yield_if]
template <class T, class R = optional<decay_t<T>>>
constexpr auto yield_if(bool b, T&& t) -> R;
Returns: b ? forward<T>(t) : R.
Modify 26.2 Header <ranges> synopsis

©.2 Header <ranges> synopsis [ranges.syn]
Vi nullable view

template<typename T>
requires see below;
class nullable_view; // freestanding

template<class T>
constexpr bool
enable_borrowed_range<nullable_view<T*>> = true; //freestanding

template<class T>
constexpr bool

enable_borrowed_range<nullable_view<T&>> = true; //freestanding

namespace views {

inline constexpr unspecified nullable = unspecified; // freestanding
1
©.9.1 Nullable View [range.nullable]
9.9.1.1 Overview [range.nullable.overview]

nullable_view is a range adaptor that produces a view with cardinality 0 or 1. It adapts object types
which model the exposition only concept nullable_object_val or nullable_object_ref.

The name views: :nullable denotes a customization point object (22). Given a subexpression E, the ex-
pressionviews: :nullable (E) isexpression-equivalentto nullable_view<decay_t<decltype((E))>>(E).

9.9.1.2 Class template nullable_view [range.nullable.view]
[Example 1:

optional o{4};
for (int k : nullable_view m{o})

cout << k; // prints 4
— end example]
©.9.1.3 Class template nullable_view [range.nullable.view]

namespace std::ranges {
template<class I>
concept readable_references = see below; //exposition only

template<class I>
concept nullable_object = see below; //exposition only

template<class I>
concept nullable_object_val = see below; //exposition only

template<class I>
concept nullable_object_ref = see below; // exposition only



template <typename Nullable>
requires(copyable_object<Nullable> &&
(nullable_object_val<Nullable> || nullable_object_ref<Nullable>))
class nullable_view<Nullable>
public ranges::view_interface<nullable_view<Nullable>> {
private:
using T = remove_reference_t<
iter_reference_t<typename unwrap_reference_t<Nullable>>>;

movable-box<Nullable> value_; //exposition only (see ??)

public:
constexpr nullable_view() = default;

constexpr explicit nullable_view(Nullable const& nullable);
constexpr explicit nullable_view(Nullable&& nullable);
template <class... Args>

requires constructible_from<Nullable, Args...>
constexpr nullable_view(in_place_t, Args&&... args);

constexpr Tx begin() noexcept;
constexpr const T* begin() const noexcept;
constexpr Tx end() noexcept;

constexpr const T*x end() const noexcept;
constexpr size_t size() const noexcept;
constexpr auto data() noexcept;

constexpr const auto data() const noexcept;

friend constexpr auto operator<=>(const nullable_view& 1,
const nullable_view& r);

friend constexpr bool operator==(const nullable_view& 1,
const nullable_view& r);

s
1 The exposition-only readable_references concept is equivalent to:

template<class Ref, class ConstRef>

concept readable_references = // exposition only
is_lvalue_reference_v<Ref> &&

is_object_v<remove_reference_t<Ref>> &&

is_lvalue_reference_v<ConstRef> &&
is_object_v<remove_reference_t<ConstRef>> &&
convertible_to<add_pointer_t<ConstRef>, const remove_reference_t<Ref>x>;

2 The exposition-only nullable_object concept is equivalent to:

template<class I>

concept nullable_object = // exposition only

is_object_v<I> && requires(I& t, const I& ct) {
bool(t);
bool(ct);
*(1);
*(ct);

}s

3 When an object is contextually convertible to bool and dereferencable via operator (), the object

is said to be nullable.

4 The exposition-only nullable_object_val conceptis equivalent to:
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template<class I>
concept nullable_object_val = // exposition only
nullable_object<T>

&& readable_references<iter_reference_t<T>, iter_reference_t<const T>>;

When an object is contextually convertible to bool and dereferencable via operator =(), the object
is said to be a nullable object.

The exposition-only nullable_object_ref concept is equivalent to:
template<class I>
concept nullable_object_ref = // exposition only
is-ref-wrapper<I>
&& nullable_object_val<typename I::type>;
constexpr explicit nullable_view();

Effects: Initializes value_ with nullptr

constexpr explicit nullable_view(Nullable nullable);
Effects: Initializes value_ with addressof (nullable)
constexpr Tx begin() noexcept;
constexpr const Tx begin() const noexcept;
Returns: data();
constexpr Tx end() noexcept;
constexpr const T* end() const noexcept;

Returns: data() + size();.

static constexpr size_t size() noexcept;
Effects: Equivalent to:

if (lvalue_)

return 0;
Nullable& m = *value_;
return bool(m);

constexpr Tx data() noexcept;
constexpr const T*x data() const noexcept;

Effects: Equivalent to:

if (lvalue_)
return nullptr;
const Nullable& m = *value_;
return m ? addressof(*m) : nullptr;

©.9.1.4 Class template specialization nullable_view<T&> [range.nullable.view.ref]

template <typename Nullable>

requires(movable_object<Nullable> &&

(nullable_object_val<Nullable> || nullable_object_ref<Nullable>))
class nullable_view<Nullable&>
public ranges::view_interface<nullable_view<Nullable>> {
private:
using T = remove_reference_t<
iter_reference_t<typename unwrap_reference_t<Nullable>>>;

Valuex value_ ; //exposition only

public:
constexpr nullable_view() : value_(nullptr){};

constexpr explicit nullable_view(Nullable& nullable);

constexpr explicit nullable_view(Nullable&& nullable) = delete;

10



constexpr Tx begin() noexcept;
constexpr const Tx begin() const noexcept;
constexpr Tx end() noexcept;
constexpr const T* end() const noexcept;

constexpr size_t size() const noexcept;
constexpr Tx data() noexcept;
constexpr const Tx data() const noexcept;
}s
constexpr explicit nullable_view();

Effects: Initializes value_ with nullptr

constexpr explicit nullable_view(Nullable nullable);
Effects: Initializes value_ with addressof (nullable)

constexpr explicit nullable_view(Nullable&& nullable) = delete;
Deleted
constexpr Tx begin() noexcept;
constexpr const Tx begin() const noexcept;
Returns: data();
constexpr Tx end() noexcept;
constexpr const T*x end() const noexcept;

Returns: data() + size();.

static constexpr size_t size() noexcept;
Effects: Equivalent to:

if (lvalue_)
return 0;
return bool(xvalue_);

constexpr Tx data() noexcept;
constexpr const Tx data() const noexcept;

Effects: Equivalent to:

if (lvalue_)
return nullptr;
return *value_ ? addressof(*xvalue_) : nullptr;

©.9.2 Feature-test macro [version.syn]

Add the following macro definition to [version.syn], header <version> synopsis, with the value selected by
the editor to reflect the date of adoption of this paper:

#define cpp_Llib_ranges_nullable 20XXXXL // alsoin <ranges>, <tuple>, <utility>

11 Impacton the standard

A pure library extension, affecting no other parts of the library or language.

The proposed changes are relative to the current working draft [N4958].

Document history

— RI12,

— Paper system title issues - no text changes
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— Changes since R11,
— Expand on design and implementation details
— Monadic functions use deducing this
— Constraints, Mandates, Returns, Effects clean up
— Changes since R10,
— Complete History in history section
— exposid formatting and ampersand escaping TeX formatting nits
— Changes since R9Y,
— Fix Borrowed Ranges post naming split
— Clarify safety concerns
— Changes since RS,
— Give maybe and nullable distinct template names
— Propose T& specializations
— Propose monadic interface for maybe_view
— Wording++
— Freestanding
— Changes since D7, presented to SG9 on 2022.07.11
— Layout issues
— References include paper source
— Citation abbreviation form to ‘abstract’
— ‘nuulable’ typo fix
— Markdown backticks to tcode
— ToC depth and chapter numbers for Ranges
— No technical changes to paper — all presentation
— Changes since R7
— Update all Wording.
— Convert to standards latex macros for wording.
— Removed discussion of list comprehension desugaring - will move to yield_if paper.
— Changes since R6
— Extend to all object types in order to support list comprehension
— Track working draft changes for Ranges
— Add discussion of _borrowed_range_
— Add an example where pipelines use references.
— Add support for proxy references (explore std::pointer_traits, etc).
— Make std::views::maybe model std::ranges::borrowed_range if it’s not holding the object by value.

— Add a const propagation section discussing options, existing precedent and proposing the option
that the author suggests.

— Changes since R5
— Fix reversed before/after table entry
— Update to match C++20 style [@N4849] and changes in Ranges since [@P0896R3]
— size is now size_t, like other ranges are also
— add synopsis for adding to ‘<ranges>‘ header

— Wording clean up, formatting, typesetting
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— Add implementation notes and references
— Changes since R4

— Use std::unwrap_reference

— Remove conditional ‘noexcept‘ness

— Adopted the great concept renaming

Changes since R3
— Always Capture
— Support reference_wrapper
— Changes since R2
— Reflects current code as reviewed
— Nullable concept specification
— Remove Readable as part of the specification, use the useful requirements from Readable
— Wording for views::maybe as proposed
— Appendix A: wording for a view_maybe that always captures
— Changes since R1
— Refer to views::all
— Use wording 'range adaptor object’
— Changes since R0
— Remove customization point objects
— Concept ‘Nullable’, for exposition
— Capture rvalues by decay copy

— Remove maybe_view as a specified type
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