Document Number: X3J16/92-0132, WG21/N0208

Date: 11/20/92
Project: Programming Language C++
Ref Doc: X3J16/92-0082, WG21/N0159
Reply To: Michael J. Vilot
ObjectCratft, Inc.
P.O. Box 6066
Nashua NH 03063 USA
mjv@objects.mv.com

Report from the Library working group
Work done July — November 1992

This report summarizes the progress made by the Library working group between the Toronto and
Boston meetings, and the work done at the Boston meeting. Section 1 of the report provides details of the
progress between the meetings. Section 2 provides details of the activities at the latter raeeting. The final
Section 3 coneludes with a summary of work planned for the next meeting.

The main body of the report concentrates on the key discussions and consensus reached by the Library
working group. Appendices contain the detasils. Appendix A lists the open issues the working group is

actively pursuing. .Appendix B lists the pending iterns that have been identified, but not yet pursued.
Appendix C records the decisions on which the working group has reached consensus.

1 Progress Between the Meetings

Working group members volunteered to complete each of the work iters identified at the last meeting.
The results of most of these activities are documents, usually in the form of & proposal to the full X3J16

committee. Discussions on the x3j16-1ib electronic mail reflector provide feedback and comment on the
work items, as well as raise new issues.

Documents

The documents produced by working group members are intended to become proposals to X3J16 for
inclusion into the Working Paper. Most have been in preparation for several meetings, undergoing revision
after obtaining feedback from working group meetings and elsewhere.

17.1__Language Support
Mike Vilot provided a revised proposal, which clarifed the semantics of program-supplied operator

new() and operator delete () functions, as well as the new-handler, unexpected, and terminate functions
(92-0084/N0161).

17.2_ Sting

Uwe Steinmiiller provided a revised proposal that included the results of discussions at the London
meeting (92-0090/N0167).

17.3_ Input/Output

Jerry Schwarz provided version 5 of the proposal, including initial support for locales (92-0102/N017 9).
17.2_ Containers

Chuck Allison provided a revised bitset proposal (92-005 1R1I/N0128).

Electronic Mail

Comments directed at x33j16-1iberedbone.att.com and archived there represent the “conversation”

among Library working group members between meetings. Comments this time focused on evolving
propoeals.

The group discussed class and member naming style as inconsistent across current proposals, and some
suggestions for a common style (x3j16-1ib-312, 316-318, 321, 329-380). The roup discussed the topic further

at the Boston meeting, and agreed upon a standard “boilerplate” for class and function descriptions.

X8J16/92-0132, WG21/N0208
11/20/92

Tvpe boolean
The topic of a standard boolean type generated more heat than light (x3j16-1ib-313-316, 319, 326-328,

331). The group reached no consensus. The following message sums up the attitude of several participants
in the discussion:

Uwe Steinmueller is so right.

It is a pity that so much time is wasted on discussing items which can be

solved as enums or even #defines, vhere we have much more important things
to discuss!

For all those who like formal proposals:
enum boolean { FALSE, TRUE };

LI
Or did I miss something very important? 2“ ¢

Michael Dasumling 73477.23668compuserve.com
Softeam GmbH

VVVVVVVVVVVVVVYVY

Uwe Steinmiiller posted a revised version of the String class and an implementation. There were several
comments on the details of the proposal (x3j16-1ib-299, 300, 302, 305, 835, 337-344). '

$erry Schwarz answered some questions about the details of the Input/Output proposal (x3;18-1ib-298,
332-336).

Bits classes
Chuck Allison posted a revised version of the proposal (x3j16-1ib-277).

Dynarmay class

Uwe Steinmiiller posted a revised version of the DynArray class and an implementation (x3j16-1ib-308,
307).

2. Activity at the Meeting

The discussion at each meeting generally follows the topics outlined for the Library portion of the
Working Paper. Some subgroups have been formed to work in parallel with the rest of the working group
(such as for strings and iostreams).

This section of the report summarizes the key discussions, issues raised, and decisions reached during
the week.

General

The Library working group is making progress, refining proposals to the point where they can be
submitted for a vote by X3J16 and W21. The discussion of the Language Support, String, Input/Output and
Bits proposals at the Toronto meeting cleared up many details, and the discussion at the Boston meeting
continued to refine many details.

Much of the group's discussion focused on the Language Support and Input/Output proposals, since they
were ready for consideration by the full X3J16 committee. The group also discussed the strings and bits
proposals, and these should be ready for a vote at the Portland meeting. The group also discussed a
consistent naming and formatting style for the proposals, to simplify the Editor's job when incorporating
elements of the standard library into the Working Paper.

The group also discussed consistency and formatting style for the classes and functions in the standard
library. The naming convention for classes would be all lower-case, with no separators between distinct

words (e.g. fstreambuf). The naming convention for members would be all lower-case, with underscores as
separators between distinct worda (e.g. dynarray::get_at).

X3J16/62-0132, WG21/N0208
11/20/92

The group decided to describe functions in the library using a form'at similar to that of theC standard:

Synopsis

Provide a function prototype, including exception-specification, as applicable.
Description

Define pre-conditions, actions (including changes to object state), and side effects. Define post-

conditions for normal return.

Returns

Deacribe the range of result values upon normal return.
Exceptions

Describe the post-condition failure that led to the exception, and the value(s) of the exception object
thrown.

17.1 Language Support

The two issues that received the most attention in this proposal were the wording and the decision to
change the default behavior of the implementation-supplied new-kandler.

The wording changes focused on providing clear and unambiguous specifications of each function. This
turned out to be difficult, because the functions operator new() and operator delete() can be replaced
by arbitrary functions in a C++ program. Similarly, arbitrary functions can be installed as a new-handler,
terminate-function , or unexpected-function.

Jerry Schwarz discussed the issues in document 92-0058/N0135. At the Toronto meeting, the Library
working group discussed his analysis, and decided (by a vote of 13 for throwing xalloc, 0 for returning null,
and 3 for doing both) to adopt his suggestion (2), leaving the possibility that a new-expression could return
null as undefined behavior. Arkady Rabinov of Apple pointed out at that time that this was crucial for
supporting the transition from existing code to the proposed semantics.

In the discussion before the full X3J16 committee in Toronto, Martin O'Riordan of Microsoft raised the
most vocal criticism of the proposed change. At the Boston meeting, Alan Sloane of Sun repeated the
criticism. The key point of his argument was an insistence upon standardizing existing practice. The

example was a memory allocation system that made allocation requests and depended upon a null return
value, as in example (3), below.

(1) erroneous program never checks
T* p = H]
p=new T; // might fail
*p; // error
' (2) “careful” program, v.1: provide own checks and/or handling

extern void recover();
set_new_handler(recover);

p = new T;

*p; // safe if we get here

(8) “careful” program, v. 2: checka for null, but not exception
p = new T;
if (!p) do_something_clever();
else ... *p ...

(4) “careful” program, v. 3: checks for exception, but not for null
try { .
P = new T;
} catch (xalloc& x) {
// recover & goto retry, return, or call exit/abort

The main objection is the required change from a type (3) program to a type (4), with the concern that
catching all the failed attempts would be too expensive. With the revised wording to allow a null return as
implementation-defined behavior, the existing code can be retained by converting it to a type (2) program.

X3J16/92-0132, WG21/N0208
11720/92

The final resolution was to endorse the design of having the the implementation provide a default new-
handler that throws an xalloc exception if it cannot free storage. Existing behavior could be re-established
trivially with a C++ program that calls set_new_handler(0) to unset the default new-handler, and
returning null from a new-expression would be allowed as implementation-defined behavior for just such
backward compatibility.

On Friday, the X3J16 and WG21 committees voted to accept the proposal with the editorial changes
identified during the week's discussion. ’

172 String -

At the Toronto meeting, the group had decided (by a vote of 8 in favor, 2 against) to revise the proposal,
with several string classes (each focused on a specific aspect of representation) and well-defined conversions
among them. The revised proposal concentrated instead on a single class, since the suthor did not agree
with the consensus of the working group.

The discussion centered ori the details of the proposal, and reaching agreement on the facilities provided
by a text class.

The group felt that the string proposal would be ready for a vote at the Portland meeting, and a definite
text class proposal would be ready for discussion at that meeting.

173 Input/Output

Revision 5 of the iostreams proposal included most of the results of discussions at the Toronto meeting.
Most of the changes related to support for locales and wide characters.

At the Toronto meeting, the group agreed that locale processing belonged in the stream classes. The
main question was how to design the “right” behavior: should all streams use a single, global locale setting
(asin the C library), or should they each have their own? The conclusion was to do both: the defsult was for
each stream to have po locale setting enabled. Any stream in such a state would look to the global locale
setting. A program can explicitly set a stream to a specific locale setting.

In this way, C++ programs can reflect C program behavior (VO with global locale state), but also support
multiple locales in the same program (not possible in C).

Jerry also maintained that streambufs should retain their char buffer design. The difficult design issue
was how to support seeking to arbitrary positions, if such a position lands in the middle of & multibyte
sequence involving shift states. Accounting for shift states and file positions complicates the streampos
and streamoff “types.”

At the Boston meeting, P.J. Plauger raised concerns about the implementability of the proposed MSE
addendum to ISO C. His concern for the iostreams proposal was that it entailed “getting ahead” of the C
standard, and that the proposed iostreams interface might be the wrong one. After some discussion, the
group decided to take a “wait and see” approach, and voted 7-1 to remove the wording regarding locales and
shift states fror the Input/Output proposal.

Jerry Schwarz dissented from this decision, but agreed to identify the wording changes necessary.

On Friday, the X3J16 and WG21 committees voted to accept the proposal with the editorial changes
identified during the week’s discussion.

17.4 ISO C Library

The group discussed a needed revision to disallow implementations to write malloc () andior calloc)
in terms of operator new(), and free() in terms of operator delete(). This is to avoid an infinite
cycle if a C++ program implements operator new() in terms of malloc() and/or calloc), and
operator delete() in terms of free().

The specific changes are:

$17.4.10.2: malloc/calloc/relloc shall not call : :operator new()
change footnote 30

§7, page 17-8: The relationship ... is unspecified,* except that calloc, mal loc, and realloc shall not
call : soperator new(),and free shall not call : :operator delate();
* For example, : :operator new() might be written in terms of malloc. On the other hand, ...

The group did not discuss the proposed normative addendum to ISO C.

The group briefly discussed the localedaf proposal, and decided to wait to see what WG14 votes on at
their December meeting. It seems likely that a localedef class will become part of the standard C++
library.

X3J16/92-0132, WG21/N0208
11/20/92

17.5 Containers

The group discussed a number of details in the bits and bit_string classes. A key difference between
the two classes is their bit-ordering conventions. The bits class uses right-to-left ordering, consiatent with
the integral types. The bit_string class uses left-to-right ordering, consistent with arrays and strings.

The group decided against providing conversions between the two classes, since it is possible to iterate over
them and set individual bits.

The group did not discuss the DynArray proposal.

3. Work Plan

The Library working group will continue to refine proposals for submission to the full X3J16/'WG21
committee. By the next meeting, two more documents should present proposals in almost-final form.

172 String

Pete Becker agreed to revise the strings proposal, and to write up a proposal for class text.
The strings proposal should be ready for an X3J16/WG21 vote at the Portland meeting.

173 Input/Output
Jerry Schwarz agreed to revisit the proposal regarding locales and MSE shift states.

175 Containers

Chuck Allison agreed to revise the bitset proposal, and to prepare a brief description of the standard
“boilerplate” for describing classes and functions in the standard library..

The bits proposal should be ready for an X3J16/WG21 vote at the Portland meeting.

Uwe Steinmiiller agreed to revise the DynArray proposal.

A Open Issues

This appendix lists the issues the Library working group is actively trying to resolve. It also lists some
of the issues active in other working groups that are relevant to the Library portion of the Working Paper.

Other WG Issues

X3J16/92-0132, WG21/N0208
11/20/92

This section describes issues raised by the Library working group that should be addressed by other
X3J186 working groups.

New expr.

Jul 92 92-0082/N0159

Core Language WG Issues

Varargs

Nov90 90-0109

Temps' Lifetime Nov9l 77

New expr. Mar92 77

Templates Jul 92 92-0082/N01569
Environment WG [ssues

Startup Mar 92 92-0042/N0019
Statie Init. Mar 90 90-0052,0062

§5.3 should be revised to guarantes that any exception thrown
by operator new() is propagated through the new
expression.

What is the effect of passing a C++ object with a constructor
to/from a C/C++ function with an ellipsis specifier as an
argument list?

Lifetime of terporaries needs to be specified, to allow implicit
conversion of strings to char=.

{Proposal: 92-0020/N0098] :

What happens if an exception occurs in a constructor during
dynamic allocation?

eg. T* p = new T(args);

Does the memory remain allocated? Is the implementation
required to call operator delete() before propagating the
exception?

How does one specify the definition for friend functions of
templates that use only expression arguments?

e.g. template <int n> class bits {

friend int f£(bits<n>&);

}i

Isit:
template <int n>
f(bits<n>&) { ... }

or:
template <class T>
£(T&) { ...}

(see: 92-0014/N0092, §4.1.2]

Need to define the point at which library functions become
available for use, including how the implementation uses
them. For example, operator new() and operator
delete () can be provided by the implementation (the default
versions), or replaced by a C++ program. If the
implementation uses these functions for its own storage
management, it should use the program-supplied versions.
Library classes must take a consistent approach to providing
static initialization (e.g. cin, cout, cerr). Currently, the
order of initialization between thranslation units is
undefined. Providing means for explicit initialization

Mixed C/C++ Mar90 90-0052,0062

Extensions WG [ssues
Name Space Mar 90

General Library WG Issues

Conformance Mar 90

Typedefs Mar 90
Reentrant Mar 90
Design Nov 90
Spec. Nov 91
Spec. Nov 91
Terms Jul 92

90-0062,0062

90-0052,0062

90-0052,0062

90-0052,0062

90-0109

91-0134/N0067

91-0134/N0087

92-0082/N01569

17.1 Language Support Issues

Vote Nov 92

92-0084/N0O161

X3J16/92-0132, WG21/N0208
11/20/92

introduces additional mechanism, complexity, and
performance overhead.
(Proposal: 91-0143/N0078]
Need to define the interaction of C and C++ features,
including:

/O (stdio & iostreams)

signals & exceptions

longymp & exceptions

memory (malloc/new, fres/delete)
[Anslysis: 91-0011]

Need to make library facilities available, if poasible without
relying on preprocessor #include directives. Names
introduced should not conflict with names introduced from
other libraries. Rejected approaches include “funny” names
(e.g. special prefixes or naming conventions), conditional
compilation directives (#1fdef). Current approach relies on
nested classes — not viable for templates.

[Proposal: 92-0008/N0086]

[see also: 91-0041)

Need to describe ways in which an implementation of the
library can extend the classes as specified. For example, it
should be possible to add private members. Other reasonable
additions: defaulted extra arguments, private base classes.
Questionable: using virtual derivation, making specified
funetions virtual if they are not specified that way.

Use of typedefs improve readibility (e.g. for new-handler
function type), but intrude on programs’ namespace.

[But see 91-0047, p. 2]

Non-reentrant code hinders the ability to prove the standard
library in multi-threaded environmenta. Should the library
be required to be reentrant? Apparently breaks the C library.
[see also: 92-0082/N0159)

Need to document Rationale for why the library is not a
Smalltalk-like hierarchy.

[see also 91-0020]

All functions and member functions specified in the C++
library should have exception-specifications to document what
exceptions they might throw. Issue: since a conforming
implementation might use dynamic storage to implement
these functions, any function may throw an out-of-storage
exception

[see 92-0042/N0019).

The standard should be precise, using exact type definitions.

Leaving “types” unspecified is too vague. [but see iostreams
for backward compatibility]

Need to define terms used in the standard, such as “reserved”
and “region of storage,” and “C-style struct.” (?!)

APPROVED

Design Jul 92
Design Jul 92
17.2 Strings Issues
Design Nov 90
NLS Nov 90
Locales Mar 92
NLS Jul 92
Locales Jul 92
Speec. Jul 92
173 Input/Output Issues
Vote Nov 92
Design Mar 92
Locale Jul 92
Content Nov 91
174 CLibrary Issues
Vote Mar 92
Content Sep 91
17.5 Containers Issues

Design

Jul 92

92-0082/N0159

92-0082/N0159

90-0109
90-0109

92-0042/N0119

92-0082/N0169

92-0082/N01569
92-0082'N0159

92-0102/N0179
92-0039/N0118

92-0082/N0159

n

92-0024R1/N0101

91-0129/N0062

92-0082/N0159

X3J16/92-0132, WG21/N0208
11720/92

An allocation request of 0 is always supposed to return a
“unique address.” Should it simply be defined that

operator new(0) == operator new(l) ?

Should the signature of the new-handler function be changed
from void (*)() to int (*)() ? This would break all
exiating implementations.

Appropriate use of inheritance and/or templates in string
class design. Simpler is better.
Need to provide strings of National Language Set characters
(i.e. wchar_t).
[see also: 91-0027)]
Different kinds of comparisons for different kinds of strings:
1) fast, “raw” byte comparisons
2) execution character set collating order
3) fully locale-senasitive
Need to consider locale-neutral operations and locale-sensitive
operations separately (might be able to add one to the other
through an appropriate use of inheritance).
Should NULs (ASCII 0x00) be allowed anywhere in strings?
Is the additional generality worth the complexity and
performance degradation? '
Should strings depend on the global locale setting, or should
they each have their own locale state?
Exceptions should be listed in exception-specifications, not
comments. The “Exceptions” paragraph of each function
should document the conditions under which the exception
may be thrown, not simply list the exception name.

APPROVED
(see also: 92-0080/N0157]
The treatment of wechar_t and multi-byte encodings are
separate, but related, issues. The basic question is where to
provide support. wchar_t at streams interface, multi-byte in
external sources/sinks. Where to put encode/decode logic:
streams or streambufs?
Has implications for seeking, streampos type descriptions.
Might just throw an exception on an attempt to seek to an
illegal position.
Should streams depend on the global locale setting, or should
they each have their own locale state.
Suggested resolution: have their own state default to “unset.”
When “unset,” refer to global state, when “set,” use own state.
String stream

APPROVED

Request to review MSE addendum to ISO C.
The addendum is available as 92-0087/N0087.
[see also: 92-003&/N0112, 92-0036/N0113]

Provide operator[] for dynarrays

B. Pending Items

This appendix lists issues which have been raised as possible work items for the Library working group.

However, they are not being pursued at this time. The purpose of this appendix is to retain these items until
they can be explicitly considered.

Content

Content

Content

Content

Content

Content

Content

Content

Content

Content

Content

Mar 90

Mar 90

Nov 91

Nov 91

Nov 91

Nov 91

Mar 92

Mar 92

Apr 92

Jul 92

Aug 92

90-0052

90-0062

91-0124/N0057

91-0134/N0067

91-0134N0067
91-0133/N0066

92-0042/N0019

92-0042/N0019
92-0049/N0128
92-0076/N0153

92-0074/N0151

X3J16/92-0132, WG21/N0208
11/20/92

The standard C++ library should contain facilities for:

inter-process communication

network communication

parallel tasks

process table

relational database access
The standard C++ library should contain facilities for:

containers (lists, bags, sets, ...)

memory managers (zones)

garbage collection

locale (time zone, currency, language, ...)

date

time

currency

task

bit stream/bit map

math (complex, vectors, matrices, infinite precision
numbers, ...)
§17.1, Language Support, should provide default versions of
srray new and array delete functions.
(Proposals: 92-00566/N0132]
The standard C++ library should contain facilities to replace
the C assert () macro-based facility. It should be based on
templates and exceptions.
[Proposal: 92-0030/N0107]
The standard C++ library should contain facilities for:

Common Language Independent Data Types

NCEG numeric types
The standard C++ library should include facilities for
concurrency, in the form of the extended language pC++.
{Analyais: 91-0130/N0063]
The C library facilities (specifically, math, string, and MSE
functions) should be made “more convenient” by using
function overloadding.
The standard C++ library should contain a complex type.
The standard C++ library should contain template classes for
sorting and searching,
The standard C++ library should contain a template function
renew, to simulate the C library function realloc (plus
invoke the appropriate constructors).
The standard C++ library should define a standard
localedef format, based on the solution in P.J. Plauger’s
book, The Standard C Library.
The standard C++ library should contain mathematic array
abstractions, to allow implementations to optimize for
numeric-intensive environments.
§17.1, Language Support, should contain classes to support
extended run-time type information classes:

Type_info, ExtTypeInfo, MemberInfo,

DeclInfo, MemberIter, DeclIter

X3J16/92-0132, WG21/N0208
11/20/92

C. Decisions
This appendix records the decisions and rationale for the decisions on which the Library working group

has reached consensus. The decisions are listed by topie, indieating the meeting at which they were made
and the document recording the decision.

General Library Decisions

Goals Mar 90 90-0052,0062 The library portion of the standard will describe interfaces,
not implementations. For example, the iostreams classes will
document protected members, since they represent an
interface to derived classes.

Criteria Mar 90 90-0052,0062 Contents of the standard library should be based on existing
practice, to the greatest extent feasible. There is a dilemma:
addition of templates and exceptions significantly influences
library design, and present C++ library practice does not use
them.

Criteria Nov90 90-0109 Classes proposed for the standard library should have been
implemented and used before accepted. How much use

constitutes an acceptable level of “prior art” has not been
defined.

Criteria Mar 90 90-0052,0062 Contents of the standard C++ library will not provide “C++
bindings” to other standards. That is the responsibility of the
respective standards involved, '

Design Mar 91 91-0047 The classes in the standard library should not be part of a

—— —- ——— ——singly-rooted class hierarchy in the Smalltalk-tradition—Their ——
design should emphasize static type checking and
mechanisms other than inheritance (such as templates) as

appropriate.

Design Mar92 92-0042/N0019 The container classes will emphasize CDT (conerete data
type) designs, using templates as appropriate.

Design Nov9l 91-0134/N0087 The standard library will include predefined exceptions.

[see: 91-0116/N0049)

Formal Spec. Mar 90 90-0062,0062 Elements of the standard library should use formal
specification techniques where applicable.

Decision (evolved over several Proposals): use precise English
to document function actions and post conditions, Use C++
(including exception-specifications) to specify the details of the
interface.

[see: 910038, 0038, 00486)

Names Mar91 91-00030,0047 Header “Gle” names will have ng trailing suffix. The mapping
of these names onto file names is, as ever, implementation-
dependent.

Design Mar 92 92-0042/N0019 C++ headers can #include others (necessary for iostreams).
C headers will retain C library rules of not allowing such
inclusion.

Names Nov92 92-0132/N0208 The naming convention for classes would be all lower-case,
with no separators between distinct words (e.g. fstreambuf).
The naming convention for members would be all lower-case,
with underscores as separators between distinct words (e.g.
dynarray::get_at).

Format Nov92 92-0132/N0208 Use a format similar to that of theC standard:

Synopsis Provide a function prototype, including
exception-specification, as applicable.

Description Define pre-conditions, actions (including
changes to object state), and side effects. Define post -
conditions for normal return.
Returns Describe the range of result values upon

10

17.1 Language Support Decisions

Content
Error Design

Design

Content

Nov9l 91-0134/N0087
Nov9l 91-0134/N0087
Jul92 92-0082/N01569

Jul92 92-0082/N0159

172 Strings Decisions

Design

Design

Design

Design
Design

Content

Nov9l 91-0134/N0067

Mar 92 92-0042/N0019

Mar92 92-0042/N0019

Mar 92 92-0042/N0019

Jul92 92-0082N0169

Jul92 92-0082/N0189

17.3 Input/Output Decisions

Design

Mar 90 90-0052,0062

X3J16/92-0132, WG21/N0208
11/20/92

normal return.

Exceptions Describe the post-condition failure that led to
the exception, and the value(s) of the exception object thrown.

The standard library will provide predefined exceptions,
including a base class xmsg [see 91-0116/N0049].

The default new-handler should throw an out-of-memory
exception.

{Issue Mar 92 92-0042/N0019]:

Should the default behavior of operator new() be changed
to always throw an exception if it cannot satisfy the memory
request?

Decision: allow returning null as an unspecified or undefined
behavior, for backward compatibility.

The placement version of operator new() will be specified
and reserved (i.e. not replaceable, but overloadable).

The design of string class(e) will emphasize:

hiding details of storage management

providing existing operations conveniently

provide NLS support (wchar_t, locales).
List of operations supported:

construction

assignment

concatenation

insert

search, replace

select

cornpare

convert

memory management (e.g. pre-reserve)
Until there is a resolution on lifetime of temporaries from the
Core WG, the string class(es) will provide no implicit
conversion to char*,
String operations need to be overloaded on char* (and
signed/unsigned char®), to prevent ambiguities, avoid
spurious temporaries, and prevent porting problems among
incompatible implementations.
Split the string class into several, and define the conversions
between them. Each string class will concentrate on just one
“kind of” string: raw memory, char strings, locale-sensitive
strings, and wchar_t strings.
A class text will provide a higher level of abstraction. It will
use one of the more basic strings, selecting among them “as
appropriate” to the locale (probably under explicit program
control).

The design for iostreams will use AT&T Release 2.0 as a base
line, minus the use of multiple inheritance, plus the use of
templates and exceptions (as appropriate).

Classes included:

11

Static Init

Error Design
NLS

Error Design

Spec.
Others

Nov 90

Nov 90
Nov 01
Nov 91

Mar 92
Jun 92

174 C Library Decisions

Mixed C/C++

Inclusion

Design

Names

Mar 92

Nov 91

Nov 91

Nov 90

17.5 Containers Decisions

Content

Content

Design

Jul 90
Nov 91

Mar 92

90-0109

90-0109

91-0134/N0067
91-0134/N0067

92-0042/N0019
92-0059/N0136

92-0042/N0019

91-0134/N0067

91-0134/N0067

90-0109

90-0062
91-0134/N0067

92-0042/N0019

X3J16/92-0132, WG21/N0208
11/20/92

i0s, istream, ostream, strstream, fstream

manipulators

streambuf, strstreambuf, fstreambuf
Provide nested class ios: :init for explicit initialization.
Programs requiring iostream support in static consstructors
can creat an instance of this class, and subsequently use the
facilities of iostreams.
Provide both alternatives: stream state and exceptions.
Default is to use stream state (for backward compatibility),
explicit option to throw exceptions instead.
Provide stream inserters and extractors for wchar_t types.
Streambufs will have their own exceptions, distinct from
ios::failure. Streambufs will unconditionally throw
exceptions to report errors, streams will have the (program-
selectable) option of using error state or throwing/propagating
exceptions.
lostreams will specify “types” vaguely, to allow conforming
implementations to use ints (existing practice) or classes.
pp. 7 & 8 list changes in Revision 3 and Revision 4.

Made the interaction of C and C++ features “undefined”,
including: '
signals & exceptions
longjmp & exceptions
memory (malloc/new, free/delete)
Will address 'O (stdio & iostreams)in iostreams, by
describing the interaction of cin/stdin, cout/stdout,
cerr/stderr).

Alternatives (90—0109): by copy or by reference
Decision: include the relevant portions of the ISO C standard
by reference. Document with the appropriate document
number and revision identifier/date. Text in the C++
standard will define how the C++ version differs from the C
version of the same facility.
Options identified since Mar 90:

1. include “as is” (current practice)

2. minimal repairs to ensure type safety

3. revise to use available C++ features (e.g.
overloading)

4. complete rewrite/leave out for “more appropriate”
C++ solutions
Decision: (2) [See also 91-0047]
C library reserves names, C++ library reserves signatures.

The Library WG is not to consider additional classes until
proposals for 17.1-17.4 have been completed.

The standard C++ library will contain some container classes.
Initial volunteers identified for: bitset and array/vector.

[see: 91-0111/N0044]

The container class bits will focus on the concrete type, not
its use in an abstract set ADT. Work on a set classis
deferred.

12

