ANSI Doc No: X3J16/92-0098
ISO Doc No: WG21/N0175
Date: September 16, 1992
Project: Programming Language C++
Ref Doc:
Reply To: Eric J. Krohn
krohn@bae.bellcore.com
+1 908 699-2708

Qualified Class Names

1. Abstract

There is valid C and C++ code which provokes C++ to allow a qualified class name in an elaborated class specifier.
This paper presents three different ways of expressing the qualified class names in elaborated class specifiers. The
paper recommends allowing the syntax struct A::B::C. One open issue is whether to allow qualified class
names in class declarations as well. The Appendices detail changes to the C-++ grammar for each of the proposals.

2. Introduction

The syntax for elaborated-class-speézjﬁer allows only an identifier after the class-key. However, there exist
circumstances where a qualified name must be used to specify the class. This paper examines some of these
circumstances and proposes changes to the working paper.

3. The Problems

Consider the following valid C and C++ code.
struct A {
struct B {
struct C {
int i;
} C;

bi
Because of the hiding of class names and enumeration names in a scope by object names in that same scope (sec.
3.2p2), mention of A: :B refers to the B object in struct A. There is no way to refer to the type struct B
from outside the enclosing class. The same is true of the type enum E.

Some compilers currently recognize struct A::B as the inner struct, even though the syntax is not valid
according to the working paper.

4. Proposals

1. Do nothing.
Pros: Leave the syntax unchanged. Less work for the committee.
Cons: This leaves a valid C structure declaration with no way to name the type of the inner struct.

2. Allow struct A::B::C.
Pros: This change would allow references to the inner struct’s type. This change allows a "natural” order:
we have the class key followed by a name, where the name may be qualified.
Cons: Some people argue that since the st ruct at the far left applies to the C on the far right it is "too
far away". One can imagine a deeply nested struct where this becomes painfully obvious:
struct A::B::C::D D_object;
Yet this statement makes clear that some sort of struct object is being declared.

424

September 16, 1992 Page 2 X3J16/92-0098
WG21/N0175

3. Allow struct A::struct B::struct C.
Pros: This change would allow references to the inner struct’s type. Some people argue that the struct
is close to the name, C, that it modifies.
Cons: This syntax is ugly, though one person argued that C compatibility "hacks” ought to be ugly. This
change now introduces "optional” class keys in new places: One might refer to the inner st ruct
C above as any of
A::B::struct C
A::struct B::struct C
struct A::struct B::struct C
struct A::B::struct C
This follows from the rule that an identifier followed immediately by :: is recognized as a class
name, even when hidden by an object of the same name.

4. Allow only A::B::struct C.

Pros: This proposal differs from the previous by allowing the class-key or enum only before the
rightmost name. As such this proposal is somewhat simpler than the previous one and it allows only
one naming variant for A: : B: :struct C above.

Cons: This syntax is still ugly.

S. Variants

In addition to the above possible changes to elaborated-type-specifiers, we also have the possibility of incorporating
related changes.

It is not clear whether a qualified name should be permitted in a class declaration, such as
struct A {
struct B;
struct B *B;
// Choose at most one of the following:

struct A::B { int i; }; // Proposal 2
struct A::struct B { int i; }; // Proposal 3
A::struct B { int i; }; // Proposal 4

i
If so, then we need grammar rules to allow one of these. If not, then we introduce an inconsistency in what may
follow a class-key.

Proposal 3 (in the previous section) shows examples where struct A:: issynonymous with A: : in elaborated
class specifiers and elaborated enum specifiers, but not elsewhere. We could write
struct A::struct B::struct C a_C_object:
but not 2
B_ptr->struct B::C = some_ value;
We can either leave the incongruity or make struct A:: synonymous with A: : in every place.

A. Allow only qualified class and enum elaborations.
Pros: This may be what we want semantically, so we may choose to have the syntax follow the semantics.
Cons: This introduces another exception to the rules.

B. Allow qualified class and enum declarations also.
Pros: Provides uniformity between class elaborations and class declarations. Likewise for enums.
Cons: No demonstrated need (yet).

C. Allow class-key class-name : : as a synonym for class-name : :.
This variant only applies to Proposal 3 above.
Pros: Uniformity: if we allow it one place, why not allow it everywhere?
Cons: This variant provides yet another way of naming things. It allows the following code.

425

September 16, 1992 Page 3 X3716/92-0098
WG21/N0175

struct R {
/7l ...
}:
struct A {
struct R mf ();
}:

struct R struct A::mf ()
{

/1l ...
}

Note too that
struct A::B
refers to the B object within A under this variant.

6. Recommendations

Proposal 1 (No Change) leaves C++ with Yet Another C Incompatibility.
Not recommended.

Proposal 2 (struct A::B::C) + Variant A fixes the C incompatibility. It already has been implemented by compilers.
Its syntax is somewhat pleasing. Appendix I shows the grammar changes needed for this proposal.
Recommended.)

Proposal 2 (struct A::B::C) + Variant B fixes the C incompatibility. Its syntax is somewhat pleasing. Appendix I
shows the grammar changes needed for this proposal. '
Recommended.

Proposal 3 (struct A::struct Bustruct C) + Variant A fixes the C incompatibility. It permits too many ways of

naming nested types. It is visually ugly. Appendix II shows the grammar changes needed for this proposal.
Not recommended.

Proposal 3 (struct A::struci Bustruct C) + Variant B fixes the C incompatibility. It permits too many ways of

naming nested types. It is visually ugly. Appendix II shows the grammar changes needed for this proposal.
Not recommended.

Proposal 3 (struct A:struct B::struct C) + Variant C fixes the C incompatibility. It permits too many ways of
naming nested types. It makes struct A:: completely synonymous with A: ;. Itis visually ugly. Appendix II
shows the grammar changes needed for this proposal.

Not recommended.

I

Proposal 4 (A:B::struct C) + Variant A fixes the C incompatibility. It is visually ugly. Appendix III shows the
grammar changes needed for this proposal.
Not recommended.

Proposal 4 (A::B::struct C) + Variant B fixes the C incompatibility. It is visually ugly. Appendix III shows the
grammar changes needed for this proposal.
Not recommended.

Proposal 2/A or 2/B cause the fewest conflicts and offer a reasonable naming scheme. Proposal 2/B introduces no
new conflicts in the grammar but it would require either prose to disallow qualified names in class and enum
declarations or prose to ascribe meaning to these declarations.

7. Notes on Appendices

Though not shown in the Appendices in all cases, this analysis had the class-head rule folded into the class-specifier
rule to lessen the number of conflicts.)

426

September 16, 1992 Page 4 X3J16/92-0098
WG21/NO175

Appendix I — Grammar Changes for Proposal 2 (struct A::B::C) + Variant A
Proposal 2 (struct A::B) requires the following grammar changes.

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name
becomes

elaborated-type-specifier:
class-key nested-class-specifier
enum nested-enum-specifier

nested-enum-specifier:
enum-name
class-name : : nested-enum-specifier

Note that the distinction in the original rules between identifier and class-name is lost in the latter rules. These rules
add one shift/reduce conflict because qualified names are not allowed in class declaration. In effect, we disallow a
parse which has no valid semantics. By Pennello’s classification in X3J16/91-0007, this is a category 3 sitation
(unwanted constraint-wise b).

Grammar Changes for Proposal 2 (struct A::B::C) + Variant B
To allow qualified names in class and enum declarations, the rules

class-head:
class-key zdennﬁer tbase -clause
class-key class-name base-clause
enum-specifier:
enum identifier

opt
should be replaced by

class-head:
class-key nested-class-specifier 0 base-clause
. Dt opt
enum-specifier:
enum nested-enum-specifier

opt
opt

{ enumerator-list

}

opt

opt { enumerator-list opt }

These rules add no new shift/reduce or reduce/reduce confiicts. In this case, we either allow a parse with no: vahd
semantics or we must ascribe semantics to the parse (Variant B).

427

September 16, 1992 Page 5 X3J16/92-0098
WG21/N0175

Appendix II — Grammar Changes for Proposal 3 (struct As:struct B::struct C) + Variant A
Proposal 3 (struct A::struct B::struct C) requires the following grammar changes.

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

becomes

elaborated-type-specifier:
elaborated-class-specifier
elaborated-enum-specifier

elaborated-class-specifier:
class-key class-name
class-key identifier
class-key o class-name : : elaborated-class-specifier
class-key z‘zoi’entiﬁer : : elaborated-class-specifier

elaborated-enum-specifier:
enum enum-name
enum identifier
class-key _ class-name : : elaborated-enum-specifier
Ol%l . .
class-key tdentifier : : elaborated-enum-specifier

These changes add 8 shift/reduce conflicts due to the ambiguity between class-key class-name and class-key class-

name: :. Choosing the shift over the reduce discards undesired parses (Pennello’s category 3: unwanted
constraint-wise b).

Grammar Changes for Proposal 3 (struct A::struct B::struct C) + Variant B
To allow qualified names in class and enum declarations, the rules

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name
class-specifier:
class-head { member-specification __, }

class-head: opt
class-key identifier _ base-clause
opt
class-key class-name base-clause opt

should be replaced by

elaborated-type-specifier:
elaborated-class-specifier
elaborated-enum-specifier

elaborated-class-specifier:
class-key class-name
class-key identifier
class-key op class-name : : elaborated-class-specifier
class-key chentiﬁer : : elaborated-class-specifier

428

September 16, 1992 Page 6 X3J16/92-0098
WG21/N0175

class-specifier:
elaborated-class-specifier base-clause _ { member-specification

}
{ opt
class-key base-clause opt 1 opt }

{ member-sp% ification

elaborated-enum-specifier:
enum enum-name
enum identifier
class-key o class-name : : elaborated-enum-specifier
class-key gennﬁer : : elaborated-enum-specifier

enum-specifier:
elaborated-enum-specifier { enumerator-list

enum { enumerator-list opt }

These changes add 4 shift/reduce conflicts due to the ambiguity between class-key class-name and class-key class-

name: :. Choosing the shift over the reduce discards undesired parses (Pennello’s category 3: unwanted
constraint-wise b).

opt !

X Grammar Changes for Proposal 3 (struct A::struct B::struct C) + Variant C
To allow class-key class-name : : as a synonym for class-name : :, use the rules above plus

qualified-id:

nested-class-specifier : : id-expression
qualified-type-specifier:

typedef-name

class-name : : qualified-type-specifier
nested-class-specifier:

class-name

class-name : : nested-class-specifier

should be replaced by

qualified-id:

class-name : : id-expression

class-key class-name : : id-expression
qualified-type-specifier:

typedef-name

class-name : : qualified-type-specifier

class-key class-name : : qualified-type-specifier
nested-class-specifier:

class-name

class-key class-name

class-name : : nested-class-specifier

class-key class-name : : nested-class-specifier

These changes add 12 shift/reduce conflicts and 112 reduce/reduce conflicts. The bulk of the reduce/reduce
conflicts arise from an ambiguity between elaborated-class-specifier and nested-class-specifier. Choosing to reduce
by either rule discards valid sentences (Pennello’s category 4: lost sentences).

A better approach might be to use the technique of Jim Roskind’s YACCable C++ grammar (release 5), where the
scope prefixes are gathered into a small set of rules which are then used everywhere that scopes are needed. This

technique effectively limits the conflicts but it alters the existing grammar extensively and is too lengthy to present
here.

429

September 16, 1992 Page 7 X3716/92-0098
WG21/N0175

Appendix ITI — Grammar Changes for Proposal 4 (A::B::struct C) + Variant A
Proposal 4 (A::B::struct C) with Variant A requires the following grammar changes.

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

becomes

elaborated-type-specifier:
elaborated-class-specifier
elaborated-enum-specifier

elaborated-class-specifier:
class-key class-name
class-key identifier
class-name : : elaborated-class-specifier

elaborated-enum-specifier:
enum enum-name
enum identifier
class-name : : elaborated-enum-specifier

These rules add 4 shift/reduce conflicts. Choosing the shift over the reduce discards undesired parses (Pennello’s
category 3: unwanted constraint-wise b).

Grammar Changes for Proposal 4 (A::B::struct C) + Variant B

Proposal 4 (A::B::struct C) with Variant B requires the following grammar changes.

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

becomes

elaborated-type-specifier:
elaborated-class-specifier
elaborated-enum-specifier

elaborated-class-specifier:
class-key class-name
class-key identifier
class-name : : elaborated-class-specifier
class-specifier:
elaborated-class-specifier base-clause opt | member-specification
class-key base-clause . { member-specification .}

opt)

opt opt

elaborated-enum-specifier:
enum enum-name
enum identifier
class-name : : elaborated-enum-specifier

430

September 16, 1992 Page 8 X3J16/92-0098
WG21/NO175

enum-specifier:
elaborated-enum-specifier { enumerator-list o

. pt
enum { enumerator-list opt }

These rules add 2 shift/reduce conflicts. Choosing the shift over the reduce discards undesired parses (Pennello’s
category 3: unwanted constraint-wise b).

}

431

