
n3327 (WG14) Proposal for C2y n3327 (WG14)

Name
n3327 - VLA is a misnomer (rebuttal to n3187)

Category
Terminology

Author
Alejandro Colomar Andres; maintainer of the Linux man-pages project.

Cc
Martin Uecker
Jens Gustedt
"Ballman, Aaron"
Joseph Myers
Chris Bazley
Jakub Åukasiewicz
Alex Celeste
JeanHeyd Meneide
Ville Voutilainen

History
n3327 v1; 2024-09-01.

Synopsis
"length" in "variable length array" actually refers to the size in bytes. For consistency and avoiding ambiguity,
we should rename that term as "variable size array".

Problem description
An array has two properties that are related, and can be confused with one another:

• number of elements
• size in bytes

The terms above are the technical way to refer to those properties. However, the standard often uses collo-
quial terms, and often results in using them in a way that conflicts with those two technical terms.

This has ultimately resulted in standardizing the term "variable length array", which probably derivated from
colloquial use, where such arrays were mostly unidimensional, with an element of a fundamental type. Actual
arrays can have elements of aggregate types, which themselves can be arrays, and using non-standard exten-
sions, one can even declare an array of a struct type which itself contains a VLA. The term VLA englobes all
such arrays, and not only those that have a variable number of elements.

The standard definition of VLA is in N3301::6.7.7.3p4:

If the size is an integer constant expression
// size above refers to "number of elements"
and the element type has a known constant size,
the array type is not a variable length array type;
otherwise,
the array type is a variable length array type.

Which one can translate to the following code:

#define is_vla(a) (is_array(a) && !__builtin_constant_p(sizeof(a)))

Ironically, it is the variability of the size that determines if an array is a "variable length array".

This inconsistent terminology can cause confusion.

Proposal description
Rename "variable length array" to "variable size array". This proposal does not attempt to modify other uses
of size or length, as that would require an agreement on which term to use for the number of elements of an
array, which is a different (albeit related) question, and is more controversial at the moment. I plan to do that
in a separate paper after this one is accepted. This will keep this proposal small and simple.

ISO/IEC 9899 2024-09-01 1

mailto:alx@kernel.org
https://www.kernel.org/doc/man-pages/
mailto:uecker@tugraz.at
mailto:jens.gustedt@inria.fr
mailto:<aaron.ballman@intel.com>
mailto:<josmyers@redhat.com>
mailto:<Chris.Bazley@arm.com>
mailto:<jakublukasiewicz@outlook.com>
mailto:<alexg.nvfp@gmail.com>
mailto:<phdofthehouse@gmail.com>
mailto:<ville.voutilainen@gmail.com>

n3327 (WG14) Proposal for C2y n3327 (WG14)

There are a very few cases where "variable length array" is misused in the standard to actually refer to an array
whose number of elements is variable. This proposal does not attempt to fix those misuses, and will also re-
name those uses to "variable size array". It is once we fix the problematic VLA term that we will have a
chance to come up with a new term for an array whose number of elements is variable. Or maybe since those
uses are few, explicit wording can be used without a new specific term. In any case, this prososal does not at-
tempt to do that, and does just one thing.

Future directions
The very few cases where "variable length array" was being used to refer to an array with a variable number of
elements should be fixed.

The uses of "size" to refer to the number of elements of an array should be replaced by a different term. "size"
should exclusively be used to refer to the result of the sizeof operator.

The term used to refer to the number of elements of an array should be uniformized into a single term (to be
decided which).

Proposed wording
6.2.4 Storage durations of objects

p6

For such an object that does not have
-a variable length array type,
+a variable size array type,

p7

For such an object that does have
-a variable length array type,
+a variable size array type,

6.2.5 Types
p28

A type has known constant size if it is complete and
-is not a variable length array type.
-is not a variable size array type.

6.2.7 Compatible type and composite type
p3

Otherwise,
-if one type is a variable length array
+if one type is a variable size array
whose size is specified by an expression that is not evaluated,
the behavior is undefined.

Otherwise,
-if one type is a variable length array
+if one type is a variable size array
whose size is specified,
the composite type is
-a variable length array of that size.
+a variable size array of that size.

Otherwise,
-if one type is a variable length array
+if one type is a variable size array
of unspecified size,
the composite type is
-a variable length array of unspecified size.
+a variable size array of unspecified size.

ISO/IEC 9899 2024-09-01 2

n3327 (WG14) Proposal for C2y n3327 (WG14)

6.5.3.6 Compound literals
p2

The type name shall specify a complete object type or an array of unknown size,
-but not a variable length array type.
+but not a variable size array type.

6.5.4.5 The sizeof and alignof operators
p2

-If the type of the operand is a variable length array type,
+If the type of the operand is a variable size array type,
the operand is evaluated;

EXAMPLE 3 (p8)

In this example,
-the size of a variable length array
+the size of a variable size array
is computed and returned from a function:

- char b[n+3]; // variable length array
+ char b[n+3]; // variable size array

6.5.7 Additive operators
EXAMPLE (p12)

Pointer arithmetic is well defined with
-pointers to variable length array types.
+pointers to variable size array types.

6.6 Constant expressions
Footnote 115)

An integer constant expression is required in contexts such as
the size of a bit-field member of a structure,
the value of an enumeration constant,
-and the size of a non-variable length array.
-and the size of a non-variable size array.

Footnote 118)

For example, in the declaration
-int arr_or_vla[(int)+1.0];,
+int arr_or_vsa[(int)+1.0];,
while possible to be computed by some implementations
as an array with a size of one,
it is implementation-defined whether this results in
-a variable length array declaration
+a variable size array declaration
or a declaration of an array of
known constant size
of automatic storage duration.

6.7.2 Storage-class specifiers
EXAMPLE 4 (p20)

-int array[K]; // not a VLA
+int array[K]; // not a VSA

6.7.3.6 Typeof specifiers

ISO/IEC 9899 2024-09-01 3

n3327 (WG14) Proposal for C2y n3327 (WG14)

EXAMPLE 5 (p10)

-Variable length arrays
+Variable size arrays
with typeof operators
performs the operation at execution time rather than translation time.

-size_t vla_size (int n) {
+size_t vsa_size (int n) {
- typedef char vla_type[n + 3];
+ typedef char vsa_type[n + 3];
- vla_type b; // variable length array
+ vsa_type b; // variable size array

return sizeof(
typeof_unqual(b)

); // execution-time sizeof, translation-time typeof operation
}

int main () {
- return (int)vla_size(10); // vla_size returns 13
+ return (int)vsa_size(10); // vsa_size returns 13
}

6.7.7.1 General
p3

there is a declarator specifying
-a variable length array type,
+a variable size array type,

6.7.7.3 Array declarators
p2

If an identifier is declared to be an object
with static or thread storage duration,
-it shall not have a variable length array type.
+it shall not have a variable size array type.

p4

If the size is not present,
the array type is an incomplete type.
If the size is * instead of being an expression,
the array type is
-a variable length array type
+a variable size array type
of unspecified size,
which can only be used
as part of the nested sequence of declarators or abstract declarators for
a parameter declaration,
not including anything inside an array size expression
in one of those declarators; 159)
such arrays are nonetheless complete types.
If the size is an integer constant expression
and the element type has a known constant size,
-the array type is not a variable length array type;
+the array type is not a variable size array type;
-otherwise, the array type is a variable length array type.
+otherwise, the array type is a variable size array type.

ISO/IEC 9899 2024-09-01 4

n3327 (WG14) Proposal for C2y n3327 (WG14)

-(Variable length arrays with automatic storage duration
+(Variable size arrays with automatic storage duration
are a conditional feature that implementations may support;
see 6.10.10.4.)

p5

The size of each instance of
-a variable length array type
+a variable size array type
does not change during its lifetime.

EXAMPLE 4 (p10)

All valid declarations of variably modified (VM) types are
either at block scope or function prototype scope.
Array objects declared
with the thread_local, static, or extern storage-class specifier
cannot have
-a variable length array (VLA) type.
+a variable size array (VSA) type.
However,
an object declared with the static storage-class specifier
-can have a VM type (that is, a pointer to a VLA type).
+can have a VM type (that is, a pointer to a VSA type).
Finally,
only ordinary identifiers
can be declared with a VM type
and identifiers with VM type cannot, therefore,
be members of structures or unions.

extern int n;
- int A[n]; // invalid: file scope VLA
+ int A[n]; // invalid: file scope VSA

extern int (*p2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM

- void fvla(int m, int C[m][m]); // valid: VLA with prototype scope
+ void fvsa(int m, int C[m][m]); // valid: VSA with prototype scope

- void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
+ void fvsa(int m, int C[m][m]) // valid: adjusted to auto pointer to VSA

{
- typedef int VLA[m][m]; // valid: block scope typedef VLA
+ typedef int VSA[m][m]; // valid: block scope typedef VSA

struct tag {
int (*y)[n]; // invalid: y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier

};
- int D[m]; // valid: auto VLA
+ int D[m]; // valid: auto VSA
- static int E[m]; // invalid: static block scope VLA
+ static int E[m]; // invalid: static block scope VSA
- extern int F[m]; // invalid: F has linkage and is VLA
+ extern int F[m]; // invalid: F has linkage and is VSA
- int (*s)[m]; // valid: auto pointer to VLA

ISO/IEC 9899 2024-09-01 5

n3327 (WG14) Proposal for C2y n3327 (WG14)

+ int (*s)[m]; // valid: auto pointer to VSA
- extern int (*r)[m]; // invalid: r has linkage and points to VLA
+ extern int (*r)[m]; // invalid: r has linkage and points to VSA
- static int (*q)[m] = &B; // valid: q is a static block pointer to VLA
+ static int (*q)[m] = &B; // valid: q is a static block pointer to VSA

}

6.7.7.4 Function declarators
p11

If the function declarator is not part of a definition of that function,
parameters can have incomplete type
and can use the [*] notation in their sequences of declarator specifiers
-to specify variable length array types.
+to specify variable size array types.

EXAMPLE 4 (p19)

- // a is a pointer to a VLA with n*m+300 elements
+ // a is a pointer to a VSA with n*m+300 elements

6.7.8 Type names
EXAMPLE (p3)

-(e) pointer to a variable length array of an unspecified number of int s,
+(e) pointer to a variable size array of an unspecified number of int s,

6.7.9 Type definitions
p3

Any array size expressions associated with
-variable length array declarators
+variable size array declarators
and typeof operators
are evaluated each time the declaration of the typedef name is reached
in the order of execution.

EXAMPLE 5 (p8)

If a typedef name denotes
-a variable length array type,
+a variable size array type,
the length of the array is fixed at the time the typedef name is defined,
not each time it is used:

6.7.11 Initialization
p4

An entity
-of variable length array type
+of variable size array type
shall not be initialized except by an empty initializer.

6.8.7.1 General
EXAMPLE 2 (p4)

A goto statement which jumps past
any declarations of objects with variably modified types
is not conforming.
A jump within the scope, however, is valid.

- goto lab3; // invalid: going INTO scope of VLA.
+ goto lab3; // invalid: going INTO scope of VSA.

ISO/IEC 9899 2024-09-01 6

n3327 (WG14) Proposal for C2y n3327 (WG14)

{
double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;

- goto lab4; // valid: going WITHIN scope of VLA.
+ goto lab4; // valid: going WITHIN scope of VSA.

a[j] = 5.5;
lab4:

a[j] = 6.6;
}

- goto lab4; // invalid: going INTO scope of VLA.
+ goto lab4; // invalid: going INTO scope of VSA.

6.9.2 Function definitions
p6

-Variable length array types +Variable size array types
of unspecified size
shall not be used as part of
a parameter declaration in a function definition.

6.10.10.4 Conditional feature macros
p1

-__STDC_NO_VLA__
+__STDC_NO_VSA__

The integer literal 1,
intended to indicate that
the implementation does not support

- variable length arrays
+ variable size arrays

with automatic storage duration.
Parameters declared with

- variable length array types
+ variable size array types

are adjusted and then
define objects of automatic storage duration with pointer types.
Thus, support for such declarations is mandatory.

+
+__STDC_NO_VLA__
+ Synonym of __STDC_NO_VLA__ for hysterical raisins.

7.13.3.1 The longjmp function
EXAMPLE (p5)

The longjmp function that
returns control back to the point of the setjmp invocation
can cause memory associated with
-a variable length array object
+a variable size array object
to be squandered.

J.2 Undefined behavior
p1

(15)
A program requires

ISO/IEC 9899 2024-09-01 7

n3327 (WG14) Proposal for C2y n3327 (WG14)

the formation of a composite type from
-a variable length array type
+a variable size array type
whose size is specified by
an expression that is not evaluated (6.2.7).

J.6.2 Rule based identifiers
p2

__STDC_NO_VLA__
+__STDC_NO_VSA__
__STDC_UTF_16__

M.3 Fifth Edition
p1

mandated support for variably modified types -(but not variable length arrays themselves); +(but not
variable size arrays themselves);

M.6 Second Edition
p1

-variable length arrays
+variable size arrays (then called variable length arrays)

Index
__STDC_NO_VLA__

__STDC_NO_VLA__ macro, 191
+__STDC_NO_VSA__ macro, 191
__STDC_UTF_16__ macro, 190

macro

__STDC_NO_VLA__, 191
+__STDC_NO_VSA__, 191
__STDC_UTF_16__, 190

variable length array

-variable length array,
+variable size array,
129, 130, 191

ISO/IEC 9899 2024-09-01 8

	n3327 (WG14)
	Name
	Category
	Author
	Cc

	History
	Synopsis
	Problem description
	Proposal description
	Future directions
	Proposed wording
	6.2.4 Storage durations of objects
	6.2.5 Types
	6.2.7 Compatible type and composite type
	6.5.3.6 Compound literals
	6.5.4.5 The sizeof and alignof operators
	6.5.7 Additive operators
	6.6 Constant expressions
	6.7.2 Storage-class specifiers
	6.7.3.6 Typeof specifiers
	6.7.7.1 General
	6.7.7.3 Array declarators
	6.7.7.4 Function declarators
	6.7.8 Type names
	6.7.9 Type definitions
	6.7.11 Initialization
	6.8.7.1 General
	6.9.2 Function definitions
	6.10.10.4 Conditional feature macros
	7.13.3.1 The longjmp function
	J.2 Undefined behavior
	J.6.2 Rule based identifiers
	M.3 Fifth Edition
	M.6 Second Edition
	Index

