
n3325 (WG14) Proposal for C2y n3325 (WG14)

Name
n3325 - New nelementsof() operator (v3)

Category
Feature (keyword; operator).

Author
Alejandro Colomar Andres; maintainer of the Linux man-pages project.

Cc
GNU Compiler Collection
Martin Uecker
Xavier Del Campo Romero
Joseph Myers
Gabriel Ravier
Jakub Jelinek
Kees Cook
Qing Zhao
Jens Gustedt
David Brown
Florian Weimer
Andreas Schwab
Timm Baeder
"A. Jiang"
Eugene Zelenko
Aaron Ballman
Paul Koning
Daniel Lundin
Nikolaos Strimpas
Fernando Borretti
JeanHeyd Meneide
Jonathan Protzenko
Chris Bazley
Ville Voutilainen
Alex Celeste
Jakub Åukasiewicz

History
n2529 v1; 2020-06-04; authored by Xavier.

New pointer-proof keyword to determine array length

n3313 v2; 2024-08-15.

New elementsof() operator (v2)

• Provide an implementation for GCC.
• Rename _Lengthof => elementsof.
• Clarify when it should result in an integer constant expression.
• Require parentheses.
• Document prior art.
• Document backwards compatibility.
• Document reasons for having this operator beyond pointer safety (which is already solved with

complex macros and/or diagnostics).
• Add specific proposed changes to the draft document (based on n3220).

n3325 v3; 202?-09-01.

New nelementsof() operator (v3)

ISO/IEC 9899 2024-09-01 1

mailto:alx@kernel.org
https://www.kernel.org/doc/man-pages/
mailto:gcc@gcc.gnu.org
mailto:uecker@tugraz.at
mailto:xavi.dcr@tutanota.com
mailto:josmyers@redhat.com
mailto:gabravier@gmail.com
mailto:jakub@redhat.com
mailto:keescook@chromium.org
mailto:qing.zhao@oracle.com
mailto:jens.gustedt@inria.fr
mailto:david.brown@hesbynett.no
mailto:fweimer@redhat.com
mailto:schwab@linux-m68k.org
mailto:tbaeder@redhat.com
mailto:de34@live.cn
mailto:eugene.zelenko@gmail.com
mailto:aaron.ballman@intel.com
mailto:paulkoning@comcast.net
mailto:daniel.lundin.mail@gmail.com
mailto:Strnik86@protonmail.com
mailto:fernando@borretti.me
mailto:phdofthehouse@gmail.com
mailto:jonathan.protzenko@ens-lyon.org
mailto:Chris.Bazley@arm.com
mailto:ville.voutilainen@gmail.com
mailto:alexg.nvfp@gmail.com
mailto:jakublukasiewicz@outlook.com

n3325 (WG14) Proposal for C2y n3325 (WG14)

• Rename elementsof => nelementsof.
• Propose an alternative shorter name: neltsof.
• Rebase on n3301.
• Document performance problem of sizeof division.
• Fix support for VLAs in example of NITEMS(). This needs GNU C’s

__builtin_types_compatible_p().
• Fix typos, and improve wording.

Synopsis
This operator yields the number of elements of an array.

Problem description
Portability

It is possible to write a macro that yields the number of elements of an array. However, it is impossible to re-
ject pointer arguments portably. Here’s an implementation using GNU C:

#define is_same_type(a, b) __builtin_types_compatible_p(a, b)
#define is_same_typeof(a, b) is_same_type(typeof(a), typeof(b))
#define decay(a) (&*(a))
#define is_array(a) (!is_same_typeof(a, decay(a)))
#define must_be(e) \
(\

0 * (int) sizeof(\
struct { \

static_assert(e); \
int ISO_C_forbids_a_struct_with_no_members; \

} \
) \

)
#define sizeof_array(a) (sizeof(a) + must_be(is_array(a)))
#define NITEMS(a) (sizeof_array(a) / sizeof((a)[0]))

While diagnostics could be better, with good helper-macro names, they are decent.

Type names
This NITEMS() macro is not ideal, since it only works with expressions but not with type names. However,
for most use cases that’s enough.

constexpr
The usual sizeof division evaluates the operand and results in a run-time value in cases where it wouldn’t be
necessary. If the number of elements of the top-level array is determined by an integer constant expression,
but an internal array is a VLA, sizeof must evaluate:

int a[7][n];
int (*p)[7][n];

p = &a;
NITEMS(*p++);

With a nelementsof operator, this would result in an integer constant expression of value 7.

Double evaluation
With the sizeof -based implementation from above, the example above causes double evaluation of *p++. It’s
possible to write a macro that is free of double-evaluation problems using a GNU statement expression and
typeof (), but then the macro cannot be used at file scope.

Diagnostics
Having more constant expressions would allow for increased diagnostics, which would result in safer code.
For example:

ISO/IEC 9899 2024-09-01 2

man:__builtin_types_compatible_p()

n3325 (WG14) Proposal for C2y n3325 (WG14)

$ cat f.c
#define NITEMS(a) (sizeof(a) / sizeof(*(a)))

void f(char (*a)[3][*], int (*b)[nelementsof(*a)]);
void g(char (*a)[3][*], int (*b)[NITEMS(*a)]);

int
main(void)
{

int i5[5];
char c35[3][5];

f(&c35, &i5);
g(&c35, &i5);

}

$ /opt/local/gnu/gcc/nelementsof/bin/gcc f.c
f.c: In function âmainâ:
f.c:12:17: error: passing argument 2 of âfâ from incompatible pointer type [-Wincompatible-pointer-types]

12 | f(&c35, &i5);
| ˆ˜˜
| |
| int (*)[5]

f.c:3:31: note: expected âint (*)[3]â but argument is of type âint (*)[5]â
3 | void f(char (*a)[3][*], int (*b)[nelementsof(*a)]);

| ˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Performance
In cases where sizeof evaluates to a run-time value, the division must be performed at run time. A new opera-
tor would yield the value directly, exposing information that the compiler already has internally, without need-
ing a division.

Exponential macro expansions
Macros that perform type checks on the arguments need to expand those several times. When such macros are
nested, the number of expansions grows exponentially, making compilation slower. See this <LWN.net> arti-
cle.

Proposal description
Add a new keyword named nelementsof which evaluates to the number of elements of an array operand, that
is, the number of elements in the array. The syntax should be similar to sizeof.

The operand must be a parenthesized complete array type or an expression of such a type. It is a constraint vi-
olation to pass something else. For example:

int a[n];

elementsof(a); // returns n
elementsof(int [7][3]); // returns 7

elementsof(int); // constraint violation
elementsof(n); // constraint violation

The result of this operator is an integer constant expression, unless the top-level array is a variable-length ar-
ray. The operand is only evaluated if the top-level array is a variable-length array. For example:

elementsof(int [7][n++]); // integer constant expression
elementsof(int [n++][7]); // run-time value; n++ is evaluated

ISO/IEC 9899 2024-09-01 3

https://lwn.net/Articles/983965/
https://lwn.net/Articles/983965/

n3325 (WG14) Proposal for C2y n3325 (WG14)

Design choices
Prior art

C
It is common in C programs to get the number of elements of an array via the usual sizeof division
and wrap it in a macro. Common names include:

• NITEMS()
• NELEM()
• NELEMS()
• NELTS()
• elementsof()
• lengthof()
• ARRAY_SIZE()

We can extract some patterns from these macros:

• The name derives from one of

number of elements

size But there’s a proposal to remove that term from the standard due to ambiguity with the number of
bytes of an array (sizeof(a)).

length This is also ambiguous in the context of strings, where length means the number of non-zero
characters.

• The name either ends in "of", to denote it being an operator-like macro, or it is in upper-case, to denote it
being a "magic" macro.

C++
In C++, there are several standard features to determine the number of elements of an array:

std::size() (since C++17)
std::ssize() (since C++20)

The usage of these is the same as the usual C macros named above.

It’s a bit different, since it’s a general purpose sizing template, which works on non-array types
too, with different semantics.

But when applied to an array, it has the same semantics as the macros above.

std::extent (since C++23)
The syntax of this is quite different. It uses a numeric index as a second parameter to determine
the dimension in which the number of elements should be counted.

C arrays are much simpler than C++’s many array-like types, and I don’t see a reason why we
would need something as complex as std::extent in C. Certainly, existing projects have not devel-
oped such a macro, even if it is technically possible:

#define DEREFERENCE_n(a, n) DEREFERENCE_ ## n (a, c)
#define DEREFERENCE_9(a) (*********(a))
#define DEREFERENCE_8(a) (********(a))
#define DEREFERENCE_7(a) (*******(a))
#define DEREFERENCE_6(a) (******(a))
#define DEREFERENCE_5(a) (*****(a))
#define DEREFERENCE_4(a) (****(a))
#define DEREFERENCE_3(a) (***(a))
#define DEREFERENCE_2(a) (**(a))
#define DEREFERENCE_1(a) (*(a))
#define DEREFERENCE_0(a) ((a))
#define extent(a, n) NITEMS(DEREFERENCE(a, n))

ISO/IEC 9899 2024-09-01 4

n3325 (WG14) Proposal for C2y n3325 (WG14)

If any project needs that syntax, they can implement their own trivial wrapper macro, as demon-
strated above.

Existing prior art in C seems to favour a design that follows the syntax of other operators like sizeof .

Naming
It is tradition in C to name operators (and operator-like macros) with an *of termination, and in lower case:

• sizeof
• alignof
• typeof
• offsetof

It seems reasonable to use a similar syntax to indicate users that they can expect similar syntax and semantics
from such an operator.

n3187 attempts to standardize the term length to refer to the number of elements in an array. However, length
might generate confusion: there’s the length of a string (number of non-zero characters) and the length of an
array (the total number of elements in the array), and both a string and an array often coexist. It is common to
use ’n’ for a variable that holds the number of elements of an array and ’len’ for a variable that holds the
length of a string. Also, the main precedent of length in C is in the term VLA, which ironically refers to ar-
rays of variable size. In C, there’s actually negligible precedent of using the term "length" for referring to the
number of elements of an array.

"Number of elements of an array" is an expression commonly used in the standard. Thus, it is a term that pro-
grammers are already familiar with.

A contraction of the proposed name would also make sense. neltsof is unused in the wild, so we could claim
the name easily. It also has a name length similar to other existing operators. There’s prior art in contracting
names for operators, such as alignof , which stands for "alignment of".

Backwards compatibility
A code search on large online platforms revealed that nelementsof is in use in a single project (that we could
find), and it is semantically compatible with our proposal, by yielding the number of elements of an array.

lengthof is in use with incompatible semantics, so it would be more difficult to own that name.

Also, while projects already use names like nelts for variable names, they don’t use names ending in of for
variable names. That’s more reason to use a name ending in of which is commonly used only for operator-
like macros and functions.

Parentheses
alignof requires that the operand is a type name. However, some compilers allow passing an expression as an
extension, and they don’t require parentheses, just like with sizeof . For example:

$ cat s.c
#include <stdalign.h>

int
main(void)
{

int *x;

return alignof *x;
}
$ gcc -Wall -Wextra s.c
$./a.out; echo $?
4

Some compilers may want to require parentheses for simplicity. It is left as a quality-of-implementation detail
if an implementation allows unparenthesized expressions. In GCC, not requiring parentheses resulted in a
simpler implementation.

ISO/IEC 9899 2024-09-01 5

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3187.htm

n3325 (WG14) Proposal for C2y n3325 (WG14)

We recommend that ISO C deprecates unparenthesized expressions from sizeof if that is not wanted in newer
operators. That would result in a simpler language. However, that’s out-of-scope for this proposal.

Uglification
C23 seems to have shifted away from uglified keywords. This proposal defaults to providing the keyword di-
rectly, since it’s semantically compatible with existing code.

Future directions
nelementsof could be extended to support function parameters declared with array notation. Here’s an exam-
ple borrowing notation from n3188:

wchar_t *
wmemset(wchar_t wcs[.n], wchar_t wc, const size_t n)
{

for (size_t i = 0; i < nelementsof(wcs); i++)
wcs[i] = wc;

return wcs;
}

Questions
• Should this new keyword accept an expression without parentheses (like sizeof does)? Or should it re-

quire parentheses?

• What name should we use for it?

• Should we use an uglyfied name plus a header providing a macro? Or just the nice name directly?

Proposed wording
6.3.3.1 Lvalues, arrays, and function designators

p3

Except when it is the operand of the sizeof operator,
+or the nelementsof operator,

or typeof operators,
or the unary & operator,
or is a string literal used to initialize an array,
an expression that has type "array of type"
is converted to an expression with type "pointer to type"
that points to the initial element of the array object
and is not an lvalue.

Forward references

prefix increment and decrement operators (6.5.4.2),
-the sizeof and alignof operators (6.5.4.5),
+the sizeof, nelementsof, and alignof operators (6.5.4.5),

structure and union members (6.5.3.4).

6.4.2 Keywords
Syntax (p1)

long
+nelementsof

nullptr

6.5.4 Unary operators
Syntax (p1)

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression

ISO/IEC 9899 2024-09-01 6

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3188.htm

n3325 (WG14) Proposal for C2y n3325 (WG14)

unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

+ nelementsof (type-name)
alignof (type-name)

6.5.4.5 The sizeof and alignof operators
Title

-The sizeof and alignof operators
+The sizeof, nelementsof, and alignof operators

Constraints (p1)

or to an expression that designates a bit-field member.
+The nelementsof operator shall not be applied to an expression that
+has an incomplete type or
+does not have array type,
+or to the parenthesized name of such a type.

The alignof operator shall not be applied to
a function type or an incomplete type.

Semantics (pX; insert as p2)

+The nelementsof operator yields the number of elements
+of its operand.
+The number of elements is determined from the type of the operand.
+The result is an integer.
+If the number of elements of the array type is variable,
+the operand is evaluated;
+otherwise,
+the operand is not evaluated
+and the result is an integer constant expression.

EXAMPLE 2 (p7)

-Another use of the sizeof operator is
+A use of the nelementsof operator is

to compute the number of elements in an array
- sizeof array / sizeof array[0]
+ nelementsof(array)

6.6 Constant expressions
Semantics (p8)

An integer constant expression115) shall have integer type
and shall only have operands that are
integer literals,
named and compound literal constants of integer type,
character constants,

-sizeof expressions
+sizeof or nelementsof expressions

whose results are integer constant expressions,
alignof expressions,
and floating, named, or compound literal constants of arithmetic type
that are the immediate operands of casts.
Cast operators in an integer constant expression
shall only convert arithmetic types to integer types,
except as part of an operand to the typeof operators,
sizeof operator,

ISO/IEC 9899 2024-09-01 7

n3325 (WG14) Proposal for C2y n3325 (WG14)

+nelementsof operator,
or alignof operator.

Footnote 113)

The operand of a
typeof (6.7.3.6),
sizeof,

+nelementsof,
or alignof operator
is usually not evaluated (6.5.4.4).

Semantics (p10)

An arithmetic constant expression
shall have arithmetic type
and shall only have operands that are
integer literals,
floating literals,
named or compound literal constants of arithmetic type,
character literals,

-sizeof expressions
+sizeof or nelementsof expressions

whose results are integer constant expressions,
and alignof expressions.
Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types,
except as part of an operand to the typeof operators,
sizeof operator,

+nelementsof operator,
or alignof operator.

6.7.2 Storage-class specifiers
Footnote 127)

The implementation can treat any register declaration simply
as an auto declaration.
However,
whether or not addressable storage is used,
the address of
any part of an object declared with storage-class specifier register
cannot be computed,
either explicitly
(by use of the unary & operator as discussed in 6.5.4.2)
or implicitly
(by converting an array name to a pointer as discussed in 6.3.2.1).
Thus,

-the only operator
+the only operators

that can be applied to
an array declared with storage-class specifier register

-is sizeof
+are sizeof,
+nelementsof,

and the typeof operators.

6.7.7.3 Array declarators

ISO/IEC 9899 2024-09-01 8

n3325 (WG14) Proposal for C2y n3325 (WG14)

Semantics (p5)

Where a size expression is part of
the operand of a typeof or sizeof operator
and changing the value of the size expression
would not affect the result of the operator,
it is unspecified whether or not the size expression is evaluated.

+Where a size expression is part of
+the operand of a nelementsof operator
+and changing the value of the size expression
+would not affect the result of the operator,
+the size expression is not evaluated.

Where a size expression is part of
the operand of an alignof operator,
that expression is not evaluated.

6.9.1 General
Constraints (p3)

• part of the operand of a sizeof operator
whose result is an integer constant expression;

+• part of the operand of a nelementsof operator
+ whose result is an integer constant expression;

• part of the operand of an alignof operator
whose result is an integer constant expression;

Semantics (p5)

An external definition is
an external declaration
that is also a definition of a function
(other than an inline definition)
or an object.
If an identifier declared with external linkage
is used in an expression
(other than as
part of the operand of a typeof operator
whose result is not a variably modified type,
part of the controlling expression of a generic selection,
part of the expression in a generic association
that is not the result expression of its generic selection,

-or part of a sizeof or alignof operator
+or part of a sizeof, nelementsof, or alignof operator

whose result is an integer constant expression),
somewhere in the entire program
there shall be exactly one external definition for the identifier;
otherwise, there shall be no more than one.190)

6.10.2 Conditional inclusion
EXAMPLE 5 (p22)

- return (int)(meow[0] + meow[(sizeof(meow) / sizeof(*meow)) - 1]);
+ return (int)(meow[0] + meow[nelementsof(meow) - 1]);

6.10.4.1 #embed preprocessing directive
EXAMPLE 1 (p16)

- have_you_any_wool(baa_baa, sizeof(baa_baa));
+ have_you_any_wool(baa_baa, nelementsof(baa_baa));

ISO/IEC 9899 2024-09-01 9

n3325 (WG14) Proposal for C2y n3325 (WG14)

EXAMPLE 4 (p19)

- const size_t f_size = sizeof(embed_data);
+ const size_t f_n = nelementsof(embed_data);
- unsigned char f_data[f_size];
+ unsigned char f_data[f_n];

FILE* f_source = fopen("data.dat", "rb");
if (f_source == nullptr)

return 1;
char* f_ptr = (char*)&f_data[0];

- if (fread(f_ptr, 1, f_size, f_source) != f_size) {
+ if (fread(f_ptr, 1, f_n, f_source) != f_n) {

fclose(f_source);
return 1;

}
fclose(f_source);

- int is_same = memcmp(&embed_data[0], f_ptr, f_size);
+ int is_same = memcmp(&embed_data[0], f_ptr, f_n);

6.10.4.2 limit parameter
EXAMPLE 1 (p5)

- static_assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4,
- "There should only be 4 elements in this array.");
+ static_assert(nelementsof(sound_signature) == 4);

EXAMPLE 2 (p6)

- static_assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4,
- "There should only be 4 elements in this array.");
+ static_assert(nelementsof(sound_signature) == 4);

6.10.4.4 prefix parameter
EXAMPLE (p4)

- int is_good = (sizeof(whl) == 1 && whl[0] == ' ')
+ int is_good = (nelementsof(whl) == 1 && whl[0] == ' ')

|| (whl[0] == '\xEF' && whl[1] == '\xBB'
- && whl[2] == '\xBF' && whl[sizeof(whl) - 1] == ' ');
+ && whl[2] == '\xBF' && whl[nelementsof(whl) - 1] == ' ');

A.2.2 Keywords
(6.4.1)

long
+nelementsof

nullptr

A.3.1 Expressions
(6.5.4.1)

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

+ nelementsof (type-name)
alignof (type-name)

ISO/IEC 9899 2024-09-01 10

n3325 (WG14) Proposal for C2y n3325 (WG14)

J.2 Undefined behavior
(50)

An expression that is required to be an integer constant expression
does not have an integer type;
has operands that are not integer literals,
named constants,
compound literal constants,
enumeration constants,
character literals,
predefined constants,

-sizeof expressions
+sizeof or nelementsof expressions

whose results are integer constant expression,
alignof expressions,
or immediately-cast floating literals;
or contains casts

-(outside operands to sizeof and alignof operators)
+(outside operands to sizeof, nelementsof, and alignof operators)

other than conversions of arithmetic types to integer types (6.6).

(52)

An arithmetic constant expression does not have arithmetic type;
has operands that are not integer literals,
floating literals,
named and compound literal constants of arithmetic type,
character literals,
predefined constants,

-sizeof expressions
+sizeof or nelementsof expressions

whose results are integer constant expressions,
or alignof expressions;
or contains casts

-(outside operands to sizeof or alignof operators)
+(outside operands to sizeof, nelementsof, or alignof operators)

other than conversions of arithmetic types to arithmetic types (6.6).

J.6.3 Particular identifiers or keywords
p2

negative_sign
+nelementsof

nextafterd128

K.3.5.4.3 The fscanf_s function
EXAMPLE 2 (p8)

- n = fscanf_s(stdin, "%s", s, sizeof s);
+ n = fscanf_s(stdin, "%s", s, nelementsof(s));

K.3.7.4.1 The strtok_s function
EXAMPLE (p10)

- rsize_t max1 = sizeof(str1);
- rsize_t max2 = sizeof(str2);
+ rsize_t max1 = nelementsof(str1);
+ rsize_t max2 = nelementsof(str2);

ISO/IEC 9899 2024-09-01 11

n3325 (WG14) Proposal for C2y n3325 (WG14)

K.3.9.4.1.2 The wcrtomb_s function
Description (p4)

- wcrtomb_s(&retval, buf, sizeof buf, Lâ â, ps)
+ wcrtomb_s(&retval, buf, nelementsof(buf), Lâ â, ps)

See also
The discussion of a patch set implementing an __nelementsof__ operator in GCC. It also discusses drafts of
this paper.

ISO/IEC 9899 2024-09-01 12

https://inbox.sourceware.org/gcc-patches/20240728141547.302478-1-alx@kernel.org/T/#t

	n3325 (WG14)
	Name
	Category
	Author
	Cc

	History
	Synopsis
	Problem description
	Portability
	Type names
	constexpr
	Double evaluation
	Diagnostics
	Performance
	Exponential macro expansions

	Proposal description
	Design choices
	Prior art
	Naming
	Backwards compatibility
	Parentheses
	Uglification

	Future directions
	Questions
	Proposed wording
	6.3.3.1 Lvalues, arrays, and function designators
	6.4.2 Keywords
	6.5.4 Unary operators
	6.5.4.5 The sizeof and alignof operators
	6.6 Constant expressions
	6.7.2 Storage-class specifiers
	6.7.7.3 Array declarators
	6.9.1 General
	6.10.2 Conditional inclusion
	6.10.4.1 #embed preprocessing directive
	6.10.4.2 limit parameter
	6.10.4.4 prefix parameter
	A.2.2 Keywords
	A.3.1 Expressions
	J.2 Undefined behavior
	J.6.3 Particular identifiers or keywords
	K.3.5.4.3 The fscanf_s function
	K.3.7.4.1 The strtok_s function
	K.3.9.4.1.2 The wcrtomb_s function

	See also

