
How do you add one to something?

WG14 N3323

Title: How do you add one to something?

Author, affiliation: Aaron Ballman, Intel

Date: 2024-08-28

Proposal category: Bug fixes

Target audience: WG14 members, C implementers

Abstract: Clarifies what “appropriate type” means for the ++ and -- operators.

How do you add one to something?
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N3323

Revises Document No: N3297

Date: 2024-08-28

Summary of Changes

N3323

• Updated the table of adjustments in the prose

• Slight tweak to clarify the proposed wording

• Changed pointer arithmetic to use ptrdiff_t instead of int

N3297

• Initial version

Introduction and Rationale
During discussion of WG14 N3259, which allowed ++ and -- to be used on complex types, the committee

observed that “the value 1 of the appropriate type” is ambiguous. Consider an example like:

unsigned _BitInt(12) bi = 0;

bi++;

Is 1 of type int? _BitInt(1)? unsigned _BitInt(12)? Any of these answers is at least somewhat

defensible and the standard is unclear on what we want the answer to be.

Generally, we want the type for 1 to be the same type as the type of the operand. However, special

provisions should exist for:

Type Expression to yield the correct type for 1

unsigned _BitInt(N) 1wbu

signed _BitInt(N) 1wb

_Complex <type> (<type>)1

_DecimalN (_DecimalN)1

Other 1

Proposed Wording
The wording proposed is a diff from the WG14 N3301 working draft of ISO/IEC 9899. Green text is new

text, while red text is deleted text.

Add a new paragraph before the existing 6.5.3.5p2:

The adjustment used to increment or decrement the operand is the value 1 with a type and value

representation as follows: if the operand has a pointer type, the adjustment has type ptrdiff_t; if the

operand has complex type, the adjustment has the corresponding real type of the operand; if the operand

has decimal floating type, the adjustment has the same type as the operand with a quantum exponent of 0;

otherwise, the adjustment has the same type as the operand.

Modify the existing 6.5.3.5p2:

The result of the postfix ++ operator is the value of the operand. As a side effect, the value of the operand

object is incremented by the adjustment (that is, the value 1 of the appropriate type is added to it). …

Modify the existing 6.5.3.5p3:

The postfix -- operator is analogous to the postfix ++ operator, except that the value of the operand is

decremented by the adjustment (that is, the value 1 of the appropriate type is subtracted from it).

Modify 6.5.4.2p2:

The value of the operand of the prefix ++ operator is incremented. The result is the new value of the

operand after incrementation. The expression ++E is similar equivalent to (E+=1), except where the

value 1 is the adjustment (6.5.3.5) of the appropriate type. …

Acknowledgements
I would like to recognize the following people for their help in this work: Joseph Myers, Jens Gustedt,

and Alejandro Colomar.

