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1 Scope [intro.scope]

This document specifies requirements for implementations of the C++ programming language. The first such
requirement is that they implement the language, so this document also defines C++. Other requirements
and relaxations of the first requirement appear at various places within this document.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:2011 Programming languages — C' (hereinafter referred to as the C standard). In addition to
the facilities provided by C, C++ provides additional data types, classes, templates, exceptions, namespaces,
operator overloading, function name overloading, references, free store management operators, and additional
library facilities.

Scope 1
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2 Normative references lintro.refs]

1 The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

(1.1) — Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.

(12)  — ISO/IEC 2382 (all parts), Information technology — Vocabulary

(1.3) — ISO/IEC 9899:2011, Programming languages — C

(14)  — ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

(1.5) — ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

(1.6) — ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-Point
arithmetic

(1.7) — ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the

natural sciences and technology
2 The library described in Clause 7 of ISO/IEC 9899:2011 is hereinafter called the C standard library.*
3 The operating system interface described in ISO/IEC 9945:2003 is hereinafter called POSIX.
4 The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called FCMA-262.

1) With the qualifications noted in Clause 21 through Clause 33 and in C.6, the C standard library is a subset of the C++
standard library.

Normative references 2
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3 Terms and definitions lintro.defs]

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1:1993, the terms,
definitions, and symbols given in ISO 80000-2:2009, and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at http://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/

20.3 defines additional terms that are used only in Clause 20 through Clause 33 and Annex D.

Terms that are used only in a small portion of this document are defined where they are used and italicized
where they are defined.

3.1 [defns.access]
access
(execution-time action) read or modify the value of an object

3.2 [defns.argument]
argument
(function call expression) expression in the comma-separated list bounded by the parentheses (8.2.2)

3.3 [defns.argument.macro]
argument

(function-like macro) sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
(19.3)

3.4 [defns.argument.throw]
argument
(throw expression) operand of throw (8.17)

3.5 [defns.argument.templ]
argument

(template instantiation) constant-expression, type-id, or id-expression in the comma-separated list bounded
by the angle brackets (17.3)

3.6 [defns.block]
block

wait for some condition (other than for the implementation to execute the execution steps of the thread of
execution) to be satisfied before continuing execution past the blocking operation

3.7 [defns.cond.supp]
conditionally-supported
program construct that an implementation is not required to support

[ Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not
support. — end note]

3.8 [defns.diagnostic]
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.9 [defns.dynamic.type]
dynamic type
(glvalue) type of the most derived object (4.5) to which the glvalue refers

[ Example: If a pointer (11.3.1) p whose static type is “pointer to class B” is pointing to an object of class D,
derived from B (Clause 13), the dynamic type of the expression *p is “D”. References (11.3.2) are treated
similarly. — end example |
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3.10 [defns.dynamic.type.prvalue]
dynamic type
(prvalue) static type of the prvalue expression

3.11 [defns.ill.formed]
ill-formed program
program that is not well-formed (3.29)

3.12 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents

3.13 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation

3.14 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

3.15 [defns.multibyte]
multibyte character

sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment

[ Note 1 to entry: The extended character set is a superset of the basic character set (5.3). — end note]
3.16 [defns.parameter]
parameter

(function or catch clause) object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

3.17 [defns.parameter.macro]
parameter

(function-like macro) identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

3.18 [defns.parameter.templ]
parameter
(template) member of a template-parameter-list

3.19 [defns.signature]
signature
(function) name, parameter type list (11.3.5), enclosing namespace (if any), and requires-clause (17.4.2) (if

any)

[ Note 1 to entry: Signatures are used as a basis for name mangling and linking. — end note|
3.20 [defns.signature.templ]
signature

(function template) name, parameter type list (11.3.5), enclosing namespace (if any), return type, template-
head, and requires-clause (17.4.2) (if any)

3.21 [defns.signature.spec]
signature

(function template specialization) signature of the template of which it is a specialization and its template
arguments (whether explicitly specified or deduced)

§3.21 4
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3.22 [defns.signature.member]
signature

(class member function) name, parameter type list (11.3.5), class of which the function is a member,
cu-qualifiers (if any), ref-qualifier (if any), and requires-clause (17.4.2) (if any)

3.23 [defns.signature.member.templ]
signature

(class member function template) name, parameter type list (11.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), return type (if any), template-head, and requires-clause (17.4.2) (if
any)

3.24 [defns.signature.member.spec]
signature

(class member function template specialization) signature of the member function template of which it is a
specialization and its template arguments (whether explicitly specified or deduced)

3.25 [defns.static.type]
static type
type of an expression (6.9) resulting from analysis of the program without considering execution semantics

[ Note 1 to entry: The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing. — end note |

3.26 [defns.unblock]
unblock
satisfy a condition that one or more blocked threads of execution are waiting for

3.27 [defns.undefined]
undefined behavior
behavior for which this document imposes no requirements

[ Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of
behavior or when a program uses an erroneous construct or erroneous data. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environment (with or without the issuance
of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed.

Evaluation of a constant expression never exhibits behavior explicitly specified as undefined (8.20). — end
note|
3.28 [defns.unspecified]

unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation

[ Note 1 to entry: The implementation is not required to document which behavior occurs. The range of
possible behaviors is usually delineated by this document. — end note |

3.29 [defns.well.formed]
well-formed program

C++ program constructed according to the syntax rules, diagnosable semantic rules, and the one-definition
rule (6.2)
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4 General principles lintro]

4.1 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in
“undefined behavior”.

Although this document states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this document, a conforming implementation shall,
within its resource limits, accept and correctly execute® that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this document as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this document places no
requirement on implementations with respect to that program.

[ Note: During template argument deduction and substitution, certain constructs that in other contexts
require a diagnostic are treated differently; see 17.9.2. — end note]

For classes and class templates, the library Clauses specify partial definitions. Private members (Clause 14)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (10.3). A C++ translation unit (5.2) obtains access
to these names by including the appropriate standard library header (19.2).

The templates, classes, functions, and objects in the library have external linkage (6.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (5.2).

Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. For a
hosted implementation, this document defines the set of available libraries. A freestanding implementation is
one in which execution may take place without the benefit of an operating system, and has an implementation-
defined set of libraries that includes certain language-support libraries (20.5.1.3).

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this document. Having done so, however, they can
compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.?

4.2 Structure of this document [intro.structure]

Clause 5 through Clause 19 describe the C++ programming language. That description includes detailed
syntactic specifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic
specifications.

Clause 21 through Clause 33 and Annex D (the library clauses) describe the C++ standard library. That
description includes detailed descriptions of the entities and macros that constitute the library, in a form
described in Clause 20.

Annex B recommends lower bounds on the capacity of conforming implementations.

2) “Correct execution” can include undefined behavior, depending on the data being processed; see Clause 3 and 4.6.
3) This documentation also defines implementation-defined behavior; see 4.6.

§4.2 6



©ISO/IEC N4700

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this document, each example is introduced by “[ Ezample: ” and terminated by “ — end example]”.
Each note is introduced by “[ Note: ” and terminated by “ — end note]”. Examples and notes may be nested.
4.3 Syntax notation [syntax]

In the syntax notation used in this document, syntactic categories are indicated by italic type, and literal
words and characters in constant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is marked by the phrase “one of”. If the text of an alternative is too long to
fit on a line, the text is continued on subsequent lines indented from the first one. An optional terminal or
non-terminal symbol is indicated by the subscript “,,:”, so

{ expression.p: }
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:
— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X's separated by intervening commas (e.g., identifier-list is a sequence of identifiers
separated by commas).

4.4 The C++ memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to contain
any member of the basic execution character set (5.3) and the eight-bit code units of the Unicode UTF-8
encoding form and is composed of a contiguous sequence of bits,* the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

[ Note: The representation of types is described in 6.9. — end note]

A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having
nonzero width. [ Note: Various features of the language, such as references and virtual functions, might involve
additional memory locations that are not accessible to programs but are managed by the implementation.
— end note] Two or more threads of execution (4.7) can access separate memory locations without interfering
with each other.

[ Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields,
if one is declared inside a nested struct declaration and the other is not, or if the two are separated by a
zero-length bit-field declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also bit-fields of nonzero
width. — end note]

[ Example: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

}

contains four separate memory locations: The member a and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and ¢

4) The number of bits in a byte is reported by the macro CHAR_BIT in the header <climits>.
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together constitute the fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but
b and a, for example, can be. — end example |

4.5 The C++ object model [intro.object]

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is
created by a definition (6.1), by a new-ezpression (8.3.4), when implicitly changing the active member of a
union (12.3), or when a temporary object is created (7.4, 15.2). An object occupies a region of storage in its
period of construction (15.7), throughout its lifetime (6.8), and in its period of destruction (15.7). [ Note:
A function is not an object, regardless of whether or not it occupies storage in the way that objects do.
— end note| The properties of an object are determined when the object is created. An object can have a
name (Clause 6). An object has a storage duration (6.7) which influences its lifetime (6.8). An object has a
type (6.9). Some objects are polymorphic (13.3); the implementation generates information associated with
each such object that makes it possible to determine that object’s type during program execution. For other
objects, the interpretation of the values found therein is determined by the type of the expressions (Clause 8)
used to access them.

Objects can contain other objects, called subobjects. A subobject can be a member subobject (12.2), a base
class subobject (Clause 13), or an array element. An object that is not a subobject of any other object is
called a complete object. If an object is created in storage associated with a member subobject or array
element e (which may or may not be within its lifetime), the created object is a subobject of e’s containing
object if:

— the lifetime of e’s containing object has begun and not ended, and

— the storage for the new object exactly overlays the storage location associated with e, and

— the new object is of the same type as e (ignoring cv-qualification).

[ Note: If the subobject contains a reference member or a const subobject, the name of the original subobject
cannot be used to access the new object (6.8). — end note] [ Example:

struct X { const int n; };
union U { X x; float f; };
void tong() {

Uu-={{113}

u.f = 5.f; // OK, creates new subobject of u (12.3)

X *p = new (&u.x) X {2}; // OK, creates new subobject of u

assert(p->n == 2); // OK

assert (*std::launder(&u.x.n) == 2); // OK

assert(u.x.n == 2); // undefined behavior, u.x does not name new subobject

}
— end example ]

If a complete object is created (8.3.4) in storage associated with another object e of type “array of N
unsigned char” or of type “array of N std::byte” (21.2.1), that array provides storage for the created
object if:

— the lifetime of e has begun and not ended, and
— the storage for the new object fits entirely within e, and
— there is no smaller array object that satisfies these constraints.

[ Note: If that portion of the array previously provided storage for another object, the lifetime of that object

ends because its storage was reused (6.8). — end note]| [ Ezample:
template<typename ...T>
struct AlignedUnion {
alignas(T...) unsigned char data[max(sizeof(T)...)];
3
int £O {
AlignedUnion<int, char> au;
int *p = new (au.data) int; // OK, au.data provides storage

char *c = new (au.data) char(); // OK, ends lifetime of *p
char *d = new (au.data + 1) char();
return *c + *d; // OK

§4.5 8



©ISO/IEC N4700

struct A { unsigned char a[32]; };

struct B { unsigned char b[16]; };

A a;

B *b = new (a.a + 8) B; // a.a provides storage for *b

int *p = new (b->b + 4) int; //b->b provides storage for *p
// a.a does not provide storage for *p (directly),
// but *p is nested within a (see below)

— end example ]
An object a is mested within another object b if:
— a is a subobject of b, or
— b provides storage for a, or
— there exists an object ¢ where a is nested within ¢, and c is nested within b.
For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then the complete object of x is itself.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (12.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type or of a non-class type is called a most derived object.

Unless it is a bit-field (12.2.4), a most derived object shall have a nonzero size and shall occupy one or more
bytes of storage. Base class subobjects may have zero size. An object of trivially copyable or standard-layout
type (6.9) shall occupy contiguous bytes of storage.

Unless an object is a bit-field or a base class subobject of zero size, the address of that object is the address
of the first byte it occupies. Two objects a and b with overlapping lifetimes that are not bit-fields may have
the same address if one is nested within the other, or if at least one is a base class subobject of zero size and
they are of different types; otherwise, they have distinct addresses.®

[ Example:
static const char testl = ’x’;
static const char test2 = ’x’;
const bool b = &testl != &test2; // always true

— end example]

[ Note: C++ provides a variety of fundamental types and several ways of composing new types from existing
types (6.9). — end note]

4.6 Program execution [intro.execution)]

The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This
document places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required
to emulate (only) the observable behavior of the abstract machine as explained below.%

Certain aspects and operations of the abstract machine are described in this document as implementation-
defined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects.”
Such documentation shall define the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this document as unspecified (for
example, evaluation of expressions in a new-initializer if the allocation function fails to allocate memory (8.3.4)).
Where possible, this document defines a set of allowable behaviors. These define the nondeterministic aspects

5) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an object
at all if the program cannot observe the difference (4.6).

6) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
document as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable
behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no side effects affecting the observable behavior of the program are produced.

7) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.
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of the abstract machine. An instance of the abstract machine can thus have more than one possible execution
for a given program and a given input.

Certain other operations are described in this document as undefined (for example, the effect of attempting
to modify a const object). [ Note: This document imposes no requirements on the behavior of programs that
contain undefined behavior. — end note]

A conforming implementation executing a well-formed program shall produce the same observable behavior as
one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this document places
no requirement on the implementation executing that program with that input (not even with regard to
operations preceding the first undefined operation).

An instance of each object with automatic storage duration (6.7.3) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

These collectively are referred to as the observable behavior of the program. [ Note: More stringent cor-
respondences between abstract and actual semantics may be defined by each implementation. — end
note |

[ Note: Operators can be regrouped according to the usual mathematical rules only where the operators
really are associative or commutative.® For example, in the following fragment

int a, b;

/* oL %/

a=a+ 32760 + b + 5;
the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);
due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which

overflows produce an exception and in which the range of values representable by an int is [-32768, +32767],
the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

((a + 32765) + b);

a

or

a (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note ]

A constituent expression is defined as follows:
— The constituent expression of an expression is that expression.

— The constituent expressions of a braced-init-list or of a (possibly parenthesized) expression-list are the
constituent expressions of the elements of the respective list.

8) Overloaded operators are never assumed to be associative or commutative.
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The constituent expressions of a brace-or-equal-initializer of the form = initializer-clause are the
constituent expressions of the initializer-clause.

[ Example:

struct A { int x; };
struct B { int y; struct A a; };

Bb

={5, {1+1 } };

The constituent expressions of the initializer used for the initialization of b are 5 and 1+1. — end example]

10 The immediate subexpressions of an expression e are

(10.1)
(10.2)

(10.3)

(10.4)

(10.5)

the constituent expressions of e’s operands (Clause 8),
any function call that e implicitly invokes,

if e is a lambda-expression (8.1.5), the initialization of the entities captured by copy and the constituent
expressions of the initializer of the init-captures,

if e is a function call (8.2.2) or implicitly invokes a function, the constituent expressions of each default
argument (11.3.6) used in the call, or

if e creates an aggregate object (11.6.1), the constituent expressions of each default member initializer
(12.2) used in the initialization.

A subexpression of an expression e is an immediate subexpression of e or a subexpression of an immediate
subexpression of e. [ Note: Expressions appearing in the compound-statement of a lambda-expression are not
subexpressions of the lambda-expression. — end note]

12 A full-expression is

(12.1)
(12.2)

(12.3)

(12.4)

(12.5)

an unevaluated operand (Clause 8),

a constant-expression (8.20),

an init-declarator (Clause 11) or a mem-initializer (15.6.2), including the constituent expressions of the
initializer,

an invocation of a destructor generated at the end of the lifetime of an object other than a temporary
object (15.2), or

an expression that is not a subexpression of another expression and that is not otherwise part of a
full-expression.

If a language construct is defined to produce an implicit call of a function, a use of the language construct is
considered to be an expression for the purposes of this definition. Conversions applied to the result of an
expression in order to satisfy the requirements of the language construct in which the expression appears are
also considered to be part of the full-expression. For an initializer, performing the initialization of the entity
(including evaluating default member initializers of an aggregate) is also considered part of the full-expression.

[ Ezample:
struct S {
S(int i): I() { } // full-expression is initialization of I

int& v() { return I; }
~3() noexcept(false) { }

private:
int I;
};
S s1(1); // full-expression is call of S::S(int)
void £() {
S s2 = 2; // full-expression is call of S::S(int)
if (s(3).v0)) // full-expression includes lvalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{72

bool b = noexcept(S()); // exception specification of destructor of S

// considered for noexcept

// full-expression is destruction of s2 at end of block

}
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struct B {
B(S = 5(0));
}
B b[2] = { BO, BO }; // full-expression is the entire initialization

// including the destruction of temporaries
— end example]

[ Note: The evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default arguments (11.3.6) are
considered to be created in the expression that calls the function, not the expression that defines the default
argument. — end note]

Reading an object designated by a volatile glvalue (6.10), modifying an object, calling a library I/0
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. Evaluation of an expression (or a subexpression) in general includes both
value computations (including determining the identity of an object for glvalue evaluation and fetching a
value previously assigned to an object for prvalue evaluation) and initiation of side effects. When a call to a
library I/O function returns or an access through a volatile glvalue is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/0O itself) or by the volatile
access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (4.7), which induces a partial order among those evaluations. Given any two evaluations A and B,
if A is sequenced before B (or, equivalently, B is sequenced after A), then the execution of A shall precede
the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are
unsequenced. [ Note: The execution of unsequenced evaluations can overlap. — end note] Evaluations
A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A,
but it is unspecified which. [ Note: Indeterminately sequenced evaluations cannot overlap, but either could
be executed first. — end note] An expression X is said to be sequenced before an expression Y if every
value computation and every side effect associated with the expression X is sequenced before every value
computation and every side effect associated with the expression Y.

Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.’

Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [ Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note] The value computations of the operands of
an operator are sequenced before the value computation of the result of the operator. If a side effect on a
memory location (4.4) is unsequenced relative to either another side effect on the same memory location or a
value computation using the value of any object in the same memory location, and they are not potentially
concurrent (4.7), the behavior is undefined. [ Note: The next section imposes similar, but more complex

restrictions on potentially concurrent computations. — end note|
[ Ezample:
void g(int i) {
i =7, i++, it++; // i becomes 9
i=di++ + 1; // the value of i is incremented
i= i++ + i // the behavior is undefined
i=1i+1; // the value of i is incremented

}
— end example]

When calling a function (whether or not the function is inline), every value computation and side effect
associated with any argument expression, or with the postfix expression designating the called function, is
sequenced before execution of every expression or statement in the body of the called function. For each
function invocation F, for every evaluation A that occurs within F' and every evaluation B that does not
occur within F but is evaluated on the same thread and as part of the same signal handler (if any), either A is

9) As specified in 15.2, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.
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sequenced before B or B is sequenced before A.'° [ Note: If A and B would not otherwise be sequenced then
they are indeterminately sequenced. — end note| Several contexts in C++ cause evaluation of a function call,
even though no corresponding function call syntax appears in the translation unit. [ Example: Evaluation of
a new-expression invokes one or more allocation and constructor functions; see 8.3.4. For another example,
invocation of a conversion function (15.3.2) can arise in contexts in which no function call syntax appears.
— end example] The sequencing constraints on the execution of the called function (as described above) are
features of the function calls as evaluated, whatever the syntax of the expression that calls the function might
be.

If a signal handler is executed as a result of a call to the std: :raise function, then the execution of the
handler is sequenced after the invocation of the std: :raise function and before its return. [ Note: When a
signal is received for another reason, the execution of the signal handler is usually unsequenced with respect
to the rest of the program. — end note|

4.7 Multi-threaded executions and data races [intro.multithread]

A thread of execution (also known as a thread) is a single flow of control within a program, including the initial
invocation of a specific top-level function, and recursively including every function invocation subsequently
executed by the thread. [ Note: When one thread creates another, the initial call to the top-level function of
the new thread is executed by the new thread, not by the creating thread. — end note] Every thread in a
program can potentially access every object and function in a program.!! Under a hosted implementation, a
C++ program can have more than one thread running concurrently. The execution of each thread proceeds as
defined by the remainder of this document. The execution of the entire program consists of an execution of
all of its threads. [ Note: Usually the execution can be viewed as an interleaving of all its threads. However,
some kinds of atomic operations, for example, allow executions inconsistent with a simple interleaving, as
described below. — end note] Under a freestanding implementation, it is implementation-defined whether a
program can have more than one thread of execution.

For a signal handler that is not executed as a result of a call to the std: :raise function, it is unspecified
which thread of execution contains the signal handler invocation.

4.7.1 Data races [intro.races]

The value of an object visible to a thread T at a particular point is the initial value of the object, a value
assigned to the object by T, or a value assigned to the object by another thread, according to the rules
below. [ Note: In some cases, there may instead be undefined behavior. Much of this section is motivated by
the desire to support atomic operations with explicit and detailed visibility constraints. However, it also
implicitly supports a simpler view for more restricted programs. — end note]

Two expression evaluations conflict if one of them modifies a memory location (4.4) and the other one reads
or modifies the same memory location.

The library defines a number of atomic operations (Clause 32) and operations on mutexes (Clause 33) that are
specially identified as synchronization operations. These operations play a special role in making assignments
in one thread visible to another. A synchronization operation on one or more memory locations is either a
consume operation, an acquire operation, a release operation, or both an acquire and release operation. A
synchronization operation without an associated memory location is a fence and can be either an acquire
fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic operations,
which are not synchronization operations, and atomic read-modify-write operations, which have special
characteristics. [ Note: For example, a call that acquires a mutex will perform an acquire operation on
the locations comprising the mutex. Correspondingly, a call that releases the same mutex will perform a
release operation on those same locations. Informally, performing a release operation on A forces prior side
effects on other memory locations to become visible to other threads that later perform a consume or an
acquire operation on A. “Relaxed” atomic operations are not synchronization operations even though, like
synchronization operations, they cannot contribute to data races. — end note]

All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M. [ Note: There is a separate order for each atomic object. There is no requirement that these can
be combined into a single total order for all objects. In general this will be impossible since different threads
may observe modifications to different objects in inconsistent orders. — end note|

10) In other words, function executions do not interleave with each other.
11) An object with automatic or thread storage duration (6.7) is associated with one specific thread, and can be accessed by a
different thread only indirectly through a pointer or reference (6.9.2).
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A release sequence headed by a release operation A on an atomic object M is a maximal contiguous sub-
sequence of side effects in the modification order of M, where the first operation is A, and every subsequent
operation

— is performed by the same thread that performed A, or
— is an atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. For example, an
atomic store-release synchronizes with a load-acquire that takes its value from the store (32.4). [ Note: Except
in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation. — end note] [ Note: The specifications
of the synchronization operations define when one reads the value written by another. For atomic objects,
the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition
“reads the value written” by the last mutex release. — end note|

An evaluation A carries a dependency to an evaluation B if
— the value of A is used as an operand of B, unless:
— B is an invocation of any specialization of std::kill_dependency (32.4), or

— A is the left operand of a built-in logical AND (&&, see 8.14) or logical OR (||, see 8.15) operator,
or

— A is the left operand of a conditional (?:, see 8.16) operator, or
— A is the left operand of the built-in comma (,) operator (8.19);
or

— A writes a scalar object or bit-field M, B reads the value written by A from M, and A is sequenced
before B, or

— for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

ote: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread.
Note: “Carri d d to” i bset of “i d before”, and is similarly strictly intra-thread
— end note]

An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M, and, in another thread, B performs a consume
operation on M and reads a value written by any side effect in the release sequence headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[ Note: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/-
consume in place of release/acquire. — end note]

An evaluation A inter-thread happens before an evaluation B if
— A synchronizes with B, or
— A is dependency-ordered before B, or
— for some evaluation X
— A synchronizes with X and X is sequenced before B, or
— A is sequenced before X and X inter-thread happens before B, or
— A inter-thread happens before X and X inter-thread happens before B.

[ Note: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception
is that a concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced
before”. The reason for this limitation is that a consume operation participating in a “dependency-ordered
before” relationship provides ordering only with respect to operations to which this consume operation
actually carries a dependency. The reason that this limitation applies only to the end of such a concatenation
is that any subsequent release operation will provide the required ordering for a prior consume operation.
The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”. The
reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2)
the “happens before” relation, defined below, provides for relationships consisting entirely of “sequenced
before”. — end note|
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An evaluation A happens before an evaluation B (or, equivalently, B happens after A) if:
— A is sequenced before B, or
— A inter-thread happens before B.

The implementation shall ensure that no program execution demonstrates a cycle in the “happens before”
relation. [ Note: This cycle would otherwise be possible only through the use of consume operations. — end
note |

An evaluation A strongly happens before an evaluation B if either
— A is sequenced before B, or
— A synchronizes with B, or
— A strongly happens before X and X strongly happens before B.

[ Note: In the absence of consume operations, the happens before and strongly happens before relations are
identical. Strongly happens before essentially excludes consume operations. — end note ]

A wisible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies
the conditions:

— A happens before B and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-field M, as determined by evaluation B, shall be the value
stored by the visible side effect A. [ Note: If there is ambiguity about which side effect to a non-atomic object
or bit-field is visible, then the behavior is either unspecified or undefined. — end note| [Note: This states
that operations on ordinary objects are not visibly reordered. This is not actually detectable without data
races, but it is necessary to ensure that data races, as defined below, and with suitable restrictions on the use
of atomics, correspond to data races in a simple interleaved (sequentially consistent) execution. — end note]

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some side effect
A that modifies M, where B does not happen before A. [ Note: The set of such side effects is also restricted
by the rest of the rules described here, and in particular, by the coherence requirements below. — end note ]

If an operation A that modifies an atomic object M happens before an operation B that modifies M, then
A shall be earlier than B in the modification order of M. [ Note: This requirement is known as write-write
coherence. — end note |

If a value computation A of an atomic object M happens before a value computation B of M, and A takes
its value from a side effect X on M, then the value computed by B shall either be the value stored by X or
the value stored by a side effect Y on M, where Y follows X in the modification order of M. [ Note: This
requirement is known as read-read coherence. — end note|

If a value computation A of an atomic object M happens before an operation B that modifies M, then A
shall take its value from a side effect X on M, where X precedes B in the modification order of M. [ Note:
This requirement is known as read-write coherence. — end note]

If a side effect X on an atomic object M happens before a value computation B of M, then the evaluation B
shall take its value from X or from a side effect Y that follows X in the modification order of M. [ Note: This
requirement is known as write-read coherence. — end note|

[ Note: The four preceding coherence requirements effectively disallow compiler reordering of atomic operations
to a single object, even if both operations are relaxed loads. This effectively makes the cache coherence
guarantee provided by most hardware available to C++ atomic operations. — end note ]

[ Note: The value observed by a load of an atomic depends on the “happens before” relation, which depends
on the values observed by loads of atomics. The intended reading is that there must exist an association of
atomic loads with modifications they observe that, together with suitably chosen modification orders and
the “happens before” relation derived as described above, satisfy the resulting constraints as imposed here.
— end note ]

Two actions are potentially concurrent if
— they are performed by different threads, or

— they are unsequenced, at least one is performed by a signal handler, and they are not both performed
by the same signal handler invocation.
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The execution of a program contains a data race if it contains two potentially concurrent conflicting actions,
at least one of which is not atomic, and neither happens before the other, except for the special case for
signal handlers described below. Any such data race results in undefined behavior. [ Note: It can be shown
that programs that correctly use mutexes and memory_order_seq_cst operations to prevent all data races
and use no other synchronization operations behave as if the operations executed by their constituent threads
were simply interleaved, with each value computation of an object being taken from the last side effect on that
object in that interleaving. This is normally referred to as “sequential consistency”. However, this applies only
to data-race-free programs, and data-race-free programs cannot observe most program transformations that
do not change single-threaded program semantics. In fact, most single-threaded program transformations
continue to be allowed, since any program that behaves differently as a result must perform an undefined
operation. — end note]

Two accesses to the same object of type volatile std::sig_atomic_t do not result in a data race if
both occur in the same thread, even if one or more occurs in a signal handler. For each signal handler
invocation, evaluations performed by the thread invoking a signal handler can be divided into two groups A
and B, such that no evaluations in B happen before evaluations in A, and the evaluations of such volatile
std::sig_atomic_t objects take values as though all evaluations in A happened before the execution of the
signal handler and the execution of the signal handler happened before all evaluations in B.

[ Note: Compiler transformations that introduce assignments to a potentially shared memory location that
would not be modified by the abstract machine are generally precluded by this document, since such an
assignment might overwrite another assignment by a different thread in cases in which an abstract machine
execution would not have encountered a data race. This includes implementations of data member assignment
that overwrite adjacent members in separate memory locations. Reordering of atomic loads in cases in which
the atomics in question may alias is also generally precluded, since this may violate the coherence rules.
— end note]

[ Note: Transformations that introduce a speculative read of a potentially shared memory location may not
preserve the semantics of the C++ program as defined in this document, since they potentially introduce a
data race. However, they are typically valid in the context of an optimizing compiler that targets a specific
machine with well-defined semantics for data races. They would be invalid for a hypothetical machine that is
not tolerant of races or provides hardware race detection. — end note]

4.7.2 Forward progress [intro.progress|
The implementation may assume that any thread will eventually do one of the following:

— terminate,

— make a call to a library I/O function,

— perform an access through a volatile glvalue, or

— perform a synchronization operation or an atomic operation.

[ Note: This is intended to allow compiler transformations such as removal of empty loops, even when
termination cannot be proven. — end note]

Executions of atomic functions that are either defined to be lock-free (32.8) or indicated as lock-free (32.5)
are lock-free executions.

— If there is only one thread that is not blocked (3.6) in a standard library function, a lock-free execution in
that thread shall complete. [ Note: Concurrently executing threads may prevent progress of a lock-free
execution. For example, this situation can occur with load-locked store-conditional implementations.
This property is sometimes termed obstruction-free. — end note|

— When one or more lock-free executions run concurrently, at least one should complete. [ Note: It
is difficult for some implementations to provide absolute guarantees to this effect, since repeated
and particularly inopportune interference from other threads may prevent forward progress, e.g., by
repeatedly stealing a cache line for unrelated purposes between load-locked and store-conditional
instructions. Implementations should ensure that such effects cannot indefinitely delay progress under
expected operating conditions, and that such anomalies can therefore safely be ignored by programmers.
Outside this document, this property is sometimes termed lock-free. — end note]

During the execution of a thread of execution, each of the following is termed an execution step:

— termination of the thread of execution,
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— performing an access through a volatile glvalue, or
— completion of a call to a library I/O function, a synchronization operation, or an atomic operation.

An invocation of a standard library function that blocks (3.6) is considered to continuously execute execution
steps while waiting for the condition that it blocks on to be satisfied. [ Ezample: A library I/O function that
blocks until the I/O operation is complete can be considered to continuously check whether the operation
is complete. Each such check might consist of one or more execution steps, for example using observable
behavior of the abstract machine. — end example]

[ Note: Because of this and the preceding requirement regarding what threads of execution have to perform
eventually, it follows that no thread of execution can execute forever without an execution step occurring.
— end note ]

A thread of execution makes progress when an execution step occurs or a lock-free execution does not complete
because there are other concurrent threads that are not blocked in a standard library function (see above).

For a thread of execution providing concurrent forward progress guarantees, the implementation ensures
that the thread will eventually make progress for as long as it has not terminated. [ Note: This is required
regardless of whether or not other threads of executions (if any) have been or are making progress. To
eventually fulfill this requirement means that this will happen in an unspecified but finite amount of time.
— end note]

It is implementation-defined whether the implementation-created thread of execution that executes main (6.6.1)
and the threads of execution created by std: :thread (33.3.2) provide concurrent forward progress guarantees.
[ Note: General-purpose implementations should provide these guarantees. — end note ]

For a thread of execution providing parallel forward progress guarantees, the implementation is not required
to ensure that the thread will eventually make progress if it has not yet executed any execution step; once
this thread has executed a step, it provides concurrent forward progress guarantees.

[ Note: This does not specify a requirement for when to start this thread of execution, which will typically be
specified by the entity that creates this thread of execution. For example, a thread of execution that provides
concurrent forward progress guarantees and executes tasks from a set of tasks in an arbitrary order, one after
the other, satisfies the requirements of parallel forward progress for these tasks. — end note]

For a thread of execution providing weakly parallel forward progress guarantees, the implementation does not
ensure that the thread will eventually make progress.

[ Note: Threads of execution providing weakly parallel forward progress guarantees cannot be expected to
make progress regardless of whether other threads make progress or not; however, blocking with forward
progress guarantee delegation, as defined below, can be used to ensure that such threads of execution make
progress eventually. — end note]

Concurrent forward progress guarantees are stronger than parallel forward progress guarantees, which in
turn are stronger than weakly parallel forward progress guarantees. [ Note: For example, some kinds of
synchronization between threads of execution may only make progress if the respective threads of execution
provide parallel forward progress guarantees, but will fail to make progress under weakly parallel guarantees.
— end note]

When a thread of execution P is specified to block with forward progress guarantee delegation on the completion
of a set S of threads of execution, then throughout the whole time of P being blocked on S, the implementation
shall ensure that the forward progress guarantees provided by at least one thread of execution in S is at least
as strong as P’s forward progress guarantees. [ Note: It is unspecified which thread or threads of execution
in S are chosen and for which number of execution steps. The strengthening is not permanent and not
necessarily in place for the rest of the lifetime of the affected thread of execution. As long as P is blocked,
the implementation has to eventually select and potentially strengthen a thread of execution in S. — end
note] Once a thread of execution in S terminates, it is removed from S. Once S is empty, P is unblocked.

[ Note: A thread of execution B thus can temporarily provide an effectively stronger forward progress
guarantee for a certain amount of time, due to a second thread of execution A being blocked on it with
forward progress guarantee delegation. In turn, if B then blocks with forward progress guarantee delegation
on C| this may also temporarily provide a stronger forward progress guarantee to C. — end note|

[ Note: If all threads of execution in S finish executing (e.g., they terminate and do not use blocking
synchronization incorrectly), then P’s execution of the operation that blocks with forward progress guarantee
delegation will not result in P’s progress guarantee being effectively weakened. — end note]
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[ Note: This does not remove any constraints regarding blocking synchronization for threads of execution
providing parallel or weakly parallel forward progress guarantees because the implementation is not required
to strengthen a particular thread of execution whose too-weak progress guarantee is preventing overall
progress. — end note]

An implementation should ensure that the last value (in modification order) assigned by an atomic or
synchronization operation will become visible to all other threads in a finite period of time.

4.8 Acknowledgments [intro.ack]

The C++ programming language as described in this document is based on the language as described in
Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition, Addison-
Wesley Publishing Company, ISBN 0-201-53992-6, copyright ©1991 AT&T). That, in turn, is based on the C
programming language as described in Appendix A of Kernighan and Ritchie: The C' Programming Language
(Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright ©1978 AT&T).

Portions of the library Clauses of this document are based on work by P.J. Plauger, which was published as
The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright ©1995 P.J. Plauger).

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.
ECMAScript® is a registered trademark of Ecma International.

All rights in these originals are reserved.
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5 Lexical conventions [lex]

5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with
all the headers (20.5.1.2) and source files included (19.2) via the preprocessing directive #include, less any
source lines skipped by any of the conditional inclusion (19.1) preprocessing directives, is called a translation
unit. [ Note: A C++ program need not all be translated at the same time. — end note|

2 [ Note: Previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (6.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program (6.5). — end note|

5.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.'?

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of physical
source file characters accepted is implementation-defined. Any source file character not in the basic
source character set (5.3) is replaced by the universal-character-name that designates that character.
An implementation may use any internal encoding, so long as an actual extended character encountered
in the source file, and the same extended character expressed in the source file as a universal-character-
name (e.g., using the \uXXXX notation), are handled equivalently except where this replacement is
reverted (5.4) in a raw string literal.

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical source
line shall be eligible for being part of such a splice. Except for splices reverted in a raw string literal, if
a splice results in a character sequence that matches the syntax of a universal-character-name, the
behavior is undefined. A source file that is not empty and that does not end in a new-line character,
or that ends in a new-line character immediately preceded by a backslash character before any such
splicing takes place, shall be processed as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (5.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial
comment.'® Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or replaced
by one space character is unspecified. The process of dividing a source file’s characters into preprocessing
tokens is context-dependent. [ Example: See the handling of < within a #include preprocessing directive.
— end example ]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name
is produced by token concatenation (19.3.3), the behavior is undefined. A #include preprocessing
directive causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each source character set member in a character literal or a string literal, as well as each escape
sequence and universal-character-name in a character literal or a non-raw string literal, is converted to
the corresponding member of the execution character set (5.13.3, 5.13.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.'4

12) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

13) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

14) An implementation need not convert all non-corresponding source characters to the same execution character.
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6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token is converted
into a token (5.6). The resulting tokens are syntactically and semantically analyzed and translated
as a translation unit. [ Note: The process of analyzing and translating the tokens may occasionally
result in one token being replaced by a sequence of other tokens (17.2). —end note] [ Note: Source
files, translation units and translated translation units need not necessarily be stored as files, nor need
there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [ Note: Some or all of
these may be supplied from a library. — end note| Each translated translation unit is examined to
produce a list of required instantiations. [ Note: This may include instantiations which have been
explicitly requested (17.8.2). — end note] The definitions of the required templates are located.
It is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [ Note: An implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. — end note] All the required
instantiations are performed to produce instantiation units. [ Note: These are similar to translated
translation units, but contain no references to uninstantiated templates and no template definitions.
— end note] The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

5.3 Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control characters representing
horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:'®

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789

SAYIT# ) <>y o7 x4+ -/ 78]~ L=, "7

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:

\u hez-quad
\U hez-quad hex-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN
is that character whose character short name in ISO/TEC 10646 is O000NNNN. If the hexadecimal value for a
universal-character-name corresponds to a surrogate code point (in the range 0xD800-0xDFFF, inclusive),
the program is ill-formed. Additionally, if the hexadecimal value for a universal-character-name outside the
c-char-sequence, s-char-sequence, or r-char-sequence of a character or string literal corresponds to a control
character (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the basic
source character set, the program is ill-formed.'%

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose value is 0. For each basic execution
character set, the values of the members shall be non-negative and distinct from one another. In both the
source and execution basic character sets, the value of each character after 0 in the above list of decimal
digits shall be one greater than the value of the previous. The ezxecution character set and the execution
wide-character set are implementation-defined supersets of the basic execution character set and the basic

15) The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC
10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the source
character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to document
how the basic source characters are represented in source files.

16) A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a universal-
character-name.
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execution wide-character set, respectively. The values of the members of the execution character sets and the
sets of additional members are locale-specific.

5.4 Preprocessing tokens [lex.pptoken)]

preprocessing-token:

header-name

identifier

pp-number

character-literal

user-defined-character-literal

string-literal

user-defined-string-literal

preprocessing-op-or-punc

each non-white-space character that cannot be one of the above
Each preprocessing token that is converted to a token (5.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals
(including user-defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a > or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (5.7), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in Clause
19, in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more
than preprocessing token separation. White space can appear within a preprocessing token only as part of a
header name or between the quotation characters in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character:

— If the next character begins a sequence of characters that could be the prefix and initial double quote
of a raw string literal, such as R", the next preprocessing token shall be a raw string literal. Between
the initial and final double quote characters of the raw string, any transformations performed in phases
1 and 2 (universal-character-names and line splicing) are reverted; this reversion shall apply before any
d-char, r-char, or delimiting parenthesis is identified. The raw string literal is defined as the shortest
sequence of characters that matches the raw-string pattern

encoding-prefitop: R raw-string

— Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >, the <
is treated as a preprocessing token by itself and not as the first character of the alternative token <:.

— Otherwise, the next preprocessing token is the longest sequence of characters that could constitute
a preprocessing token, even if that would cause further lexical analysis to fail, except that a header-
name (5.8) is only formed within a #include directive (19.2).

[ Example:

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

— end example]

[ Example: The program fragment Oxe+foo is parsed as a preprocessing number token (one that is not a
valid floating or integer literal token), even though a parse as three preprocessing tokens Oxe, +, and foo
might produce a valid expression (for example, if foo were a macro defined as 1). Similarly, the program
fragment 1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not
E is a macro name. — end ezample ]

[ Example: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have integral types,
violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct
expression. — end example|
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5.5 Alternative tokens [lex.digraph)]

1 Alternative token representations are provided for some operators and punctuators.'”

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.'® The set of alternative tokens is defined in Table 1.

Table 1 — Alternative tokens

’ Alternative Primary \ Alternative Primary \ Alternative Primary ‘

<h { and && and_eq &=
u%> } bitor | or_eq |=
<: [ or [ xor_eq ~=
> ] xor - not !
% # compl ~ not_eq 1=
% ## bitand &
5.6 Tokens [lex.token)]
token:

identifier

keyword

literal

operator

punctuator

L There are five kinds of tokens: identifiers, keywords, literals,'? operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [ Note: Some white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. — end note]

5.7 Comments [lex.comment]

1 The characters /* start a comment, which terminates with the characters */. These comments do not nest.
The characters // start a comment, which terminates immediately before the next new-line character. If
there is a form-feed or a vertical-tab character in such a comment, only white-space characters shall appear
between it and the new-line that terminates the comment; no diagnostic is required. | Note: The comment
characters //, /*, and */ have no special meaning within a // comment and are treated just like other
characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.
— end note]

5.8 Header names [lex.header]
header-name:

< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char
h-char:
any member of the source character set except new-line and >

g-char-sequence:
q-char
q-char-sequence q-char

g-char:
any member of the source character set except new-line and "

17) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not
perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

18) Thus the “stringized” values (19.3.2) of [ and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

19) Literals include strings and character and numeric literals.
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L [ Note: Header name preprocessing tokens only appear within a #include preprocessing directive (see 5.4).
—end note] The sequences in both forms of header-names are mapped in an implementation-defined manner
to headers or to external source file names as specified in 19.2.

2 The appearance of either of the characters > or \ or of either of the character sequences /* or // in a
g-char-sequence or an h-char-sequence is conditionally-supported with implementation-defined semantics, as

is the appearance of the character " in an h-char-sequence.”
5.9 Preprocessing numbers [lex.ppnumber]
pp-number:
digit
. digit

pp-number digit

pp-number identifier-nondigit
pp-number ° digit
pp-number ’ nondigit
pp-number e sign

pp-number E sign

pp-number p sign

pp-number P sign

pp-number .

1 Preprocessing number tokens lexically include all integer literal tokens (5.13.2) and all floating literal
tokens (5.13.4).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integer literal token or a floating literal token.

5.10 Identifiers [lex.name]
identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
nondigit: one of
abcdefghijklm
nopgqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWIXYZ _
digit: one of
0123456789
1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Table 2. The initial element shall not be a universal-character-name designating a character whose encoding
falls into one of the ranges specified in Table 3. Upper- and lower-case letters are different. All characters are
significant.?!

2 The identifiers in Table 4 have a special meaning when appearing in a certain context. When referred to
in the grammar, these identifiers are used explicitly rather than using the identifier grammar production.
Unless otherwise specified, any ambiguity as to whether a given identifier has a special meaning is resolved
to interpret the token as a regular identifier.

3 In addition, some identifiers are reserved for use by C++ implementations and shall not be used otherwise; no
diagnostic is required.

20) Thus, a sequence of characters that resembles an escape sequence might result in an error, be interpreted as the character
corresponding to the escape sequence, or have a completely different meaning, depending on the implementation.

21) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to
encode the \u in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not
place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered
different for all identifiers, including external identifiers.
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Table 2 — Ranges of characters allowed

00AS8 00AA O0OAD OOAF 00B2-00B5
00B7-00BA 0OBC-00BE 00C0-00D6 00D8-00F6 OOF8-00FF
0100-167F 1681-180D 180F-1FFF

200B-200D 202A-202E 203F-2040 2054 2060-206F
2070-218F 2460-24FF 2776-2793 2C00-2DFF 2E80-2FFF
3004-3007 3021-302F 3031-D7FF

F900-FD3D FD40-FDCF FDFO-FE44 FE47-FFFD

10000-1FFFD 20000-2FFFD 30000-3FFFD 40000-4FFFD 50000-5FFFD
60000-6FFFD 70000-7FFFD 80000-8FFFD 90000-9FFFD AO0OOO-AFFFD
BOOOO-BFFFD COOOO-CFFFD DOOOO-DFFFD EOOOO-EFFFD

Table 3 — Ranges of characters disallowed initially (combining characters)

’ 0300-036F 1DCO-1DFF 20DO-20FF FE20-FE2F

Table 4 — Identifiers with special meaning

’ override final ‘

(3.1) — Each identifier that contains a double underscore __ or begins with an underscore followed by an
uppercase letter is reserved to the implementation for any use.

(3.2) — Each identifier that begins with an underscore is reserved to the implementation for use as a name in
the global namespace.

5.11 Keywords [lex.key]

L The identifiers shown in Table 5 are reserved for use as keywords (that is, they are unconditionally treated as
keywords in phase 7) except in an attribute-token (10.6.1):

Table 5 — Keywords

alignas const_cast for public thread_local
alignof continue friend register throw
asm decltype goto reinterpret_cast true
auto default if requires try

bool delete inline return typedef
break do int short typeid
case double long signed typename
catch dynamic_cast mutable sizeof union
char else namespace static unsigned
charl6_t enum new static_assert using
char32_t explicit noexcept static_cast virtual
class export nullptr struct void
concept extern operator switch volatile
const false private template wchar_t
constexpr float protected this while

[ Note: The export and register keywords are unused but are reserved for future use. — end note|

2 Furthermore, the alternative representations shown in Table 6 for certain operators and punctuators (5.5)
are reserved and shall not be used otherwise:

Table 6 — Alternative representations

and and_eq bitand Dbitor compl not
not_eq or or_eq  Xor xor_eq
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5.12 Operators and punctuators [lex.operators]

The lexical representation of C++ programs includes a number of preprocessing tokens which are used in the
syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of

{ } [ ] # ## ( )

<: > <h %> %t hih: ; :

new delete ? H . X

+ - * / % - & | ~
! = < > += -= *= = Y%=
~= &= |= << >> >>= <<= == 1=
<= >= && | ++ - s =>% ->
and and_eq bitand bitor compl not not_eq

or or_eq xor xor_eq

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (5.2).

5.13 Literals [lex.literal]
5.13.1 Kinds of literals [lex.literal.kinds]

There are several kinds of literals.?2

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

5.13.2 Integer literals [lex.icon]

integer-literal:
binary-literal integer-suffizop:
octal-literal integer-suffizop:
decimal-literal integer-suffizop:
hexadectmal-literal integer-suffizopt

binary-literal:

0b binary-digit

0B binary-digit

binary-literal ? op¢ binary-digit
octal-literal:

0
octal-literal ° ,p; octal-digit

decimal-literal:

nonzero-digit

decimal-literal ? opy digit
hexadecimal-literal:

hezxadecimal-prefix heradecimal-digit-sequence
binary-digit:

0

1

octal-digit: one of
01234567

nonzero-digit: one of
123456789

hexadecimal-prefix: one of
0x 0X

22) The term “literal” generally designates, in this document, those tokens that are called “constants” in ISO C.
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hexadecimal-digit-sequence:
hexadecimal-digit
hezadecimal-digit-sequence ’ op: hexadecimal-digit

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF
integer-suffix:
unsigned-suffix long-suffizop:
unsigned-suffiz long-long-suffizop:
long-suffiz unsigned-suffizop:
long-long-suffiz unsigned-suffizop:
unsigned-suffix: one of
ul

long-suffiz: one of
1L

long-long-suffix: one of
11 LL

1 An integer literal is a sequence of digits that has no period or exponent part, with optional separating single
quotes that are ignored when determining its value. An integer literal may have a prefix that specifies its base
and a suffix that specifies its type. The lexically first digit of the sequence of digits is the most significant. A
binary integer literal (base two) begins with Ob or OB and counsists of a sequence of binary digits. An octal
integer literal (base eight) begins with the digit 0 and consists of a sequence of octal digits.?® A decimal
integer literal (base ten) begins with a digit other than 0 and consists of a sequence of decimal digits. A
hezadecimal integer literal (base sixteen) begins with 0x or 0X and consists of a sequence of hexadecimal
digits, which include the decimal digits and the letters a through £ and A through F with decimal values ten
through fifteen. [ Ezample: The number twelve can be written 12, 014, 0XC, or 0b1100. The integer literals
1048576, 1°048°576, 0X100000, 0x10?0000, and 0’004’000°000 all have the same value. — end example]

2 The type of an integer literal is the first of the corresponding list in Table 7 in which its value can be
represented.

Table 7 — Types of integer literals

] Suffix Decimal literal Binary, octal, or hexadecimal literal |
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorl long int long int
long long int unsigned long int
long long int
unsigned long long int
Bothuoru unsigned long int unsigned long int
and 1 or L unsigned long long int | unsigned long long int
11l or LL long long int long long int
unsigned long long int
BothuorU unsigned long long int | unsigned long long int
and 11 or LL

23) The digits 8 and 9 are not octal digits.
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If an integer literal cannot be represented by any type in its list and an extended integer type (6.9.1) can
represent its value, it may have that extended integer type. If all of the types in the list for the integer literal
are signed, the extended integer type shall be signed. If all of the types in the list for the integer literal are
unsigned, the extended integer type shall be unsigned. If the list contains both signed and unsigned types,
the extended integer type may be signed or unsigned. A program is ill-formed if one of its translation units
contains an integer literal that cannot be represented by any of the allowed types.

5.13.3 Character literals [lex.ccon]
character-literal:
encoding-prefizop: ° c-char-sequence ’
encoding-prefix: one of
u8 u U L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of

VA N\

\a \b \Mf \o \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hezxadecimal-digit

hezxadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by u8,
u, U, or L, as in u8’w’, u’x’, U’y’, or L’z’, respectively.

A character literal that does not begin with u8, u, U, or L is an ordinary character literal. An ordinary
character literal that contains a single c-char representable in the execution character set has type char,
with value equal to the numerical value of the encoding of the ¢-char in the execution character set. An
ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharacter
literal, or an ordinary character literal containing a single c-char not representable in the execution character
set, is conditionally-supported, has type int, and has an implementation-defined value.

A character literal that begins with u8, such as u8’w’, is a character literal of type char, known as a UTF-8
character literal. The value of a UTF-8 character literal is equal to its ISO 10646 code point value, provided
that the code point value is representable with a single UTF-8 code unit (that is, provided it is in the C0
Controls and Basic Latin Unicode block). If the value is not representable with a single UTF-8 code unit,
the program is ill-formed. A UTF-8 character literal containing multiple c-chars is ill-formed.

A character literal that begins with the letter u, such as u’x’, is a character literal of type char16_t. The
value of a char16_t character literal containing a single c-char is equal to its ISO 10646 code point value,
provided that the code point is representable with a single 16-bit code unit. (That is, provided it is a basic
multi-lingual plane code point.) If the value is not representable within 16 bits, the program is ill-formed. A
char16_t character literal containing multiple c-chars is ill-formed.

A character literal that begins with the letter U, such as U’y?’, is a character literal of type char32_t. The
value of a char32_t character literal containing a single c-char is equal to its ISO 10646 code point value. A
char32_t character literal containing multiple c-chars is ill-formed.
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6 A character literal that begins with the letter L, such as L’z’, is a wide-character literal. A wide-character
literal has type wchar_t.2* The value of a wide-character literal containing a single c-char has value equal
to the numerical value of the encoding of the c-char in the execution wide-character set, unless the c-char
has no representation in the execution wide-character set, in which case the value is implementation-defined.
[ Note: The type wchar_t is able to represent all members of the execution wide-character set (see 6.9.1).
— end note] The value of a wide-character literal containing multiple c-chars is implementation-defined.

7 Certain non-graphic characters, the single quote ’, the double quote ", the question mark ?,2° and the
backslash \, can be represented according to Table 8. The double quote " and the question mark ?, can
be represented as themselves or by the escape sequences \" and \? respectively, but the single quote °’
and the backslash \ shall be represented by the escape sequences \’ and \\ respectively. Escape sequences
in which the character following the backslash is not listed in Table 8 are conditionally-supported, with
implementation-defined semantics. An escape sequence specifies a single character.

Table 8 — Escape sequences

new-line NL(LF) \n
horizontal tab ~ HT \t
vertical tab VT \v
backspace BS \b
carriage return  CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark 7 \7?
single quote ’ \’
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

8 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify
the value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by
the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character
literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for
character literals with no prefix) or wchar_t (for character literals prefixed by L). [ Note: If the value of a
character literal prefixed by u, u8, or U is outside the range defined for its type, the program is ill-formed.

— end note]

9 A universal-character-name is translated to the encoding, in the appropriate execution character set, of the
character named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [ Note: In translation phase 1, a universal-character-name is introduced whenever an actual
extended character is encountered in the source text. Therefore, all extended characters are described in
terms of universal-character-names. However, the actual compiler implementation may use its own native
character set, so long as the same results are obtained. — end note]|

5.13.4 Floating literals [lex.fcon]

floating-literal:
decimal-floating-literal
hezxadecimal-floating-literal

decimal-floating-literal:
fractional-constant exponent-partop: floating-suffizop:
digit-sequence exponent-part floating-suffiz,p:

hezxadecimal-floating-literal:
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-suffizop:
hezadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-suffizop:

24) They are intended for character sets where a character does not fit into a single byte.
25) Using an escape sequence for a question mark is supported for compatibility with ISO C++ 2014 and ISO C.
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fractional-constant:
digit-sequenceop: . digit-sequence
digit-sequence .
hexadecimal-fractional-constant:
hezadecimal-digit-sequenceop: . hexadecimal-digit-sequence
hezxadecimal-digit-sequence .

exponent-part:
e signep digit-sequence
E signop: digit-sequence
binary-exponent-part:
P Stgnopt digit-sequence
P signop: digit-sequence
sitgn: one of
+ -
digit-sequence:
digit
digit-sequence ° ,p; digit
floating-suffix: one of
f1FL

1 A floating literal consists of an optional prefix specifying a base, an integer part, a radix point, a fraction
part, an e, E, p or P, an optionally signed integer exponent, and an optional type suffix. The integer and
fraction parts both consist of a sequence of decimal (base ten) digits if there is no prefix, or hexadecimal
(base sixteen) digits if the prefix is 0x or 0X. The floating literal is a decimal floating literal in the former
case and a hezxadecimal floating literal in the latter case. Optional separating single quotes in a digit-sequence
or hezadecimal-digit-sequence are ignored when determining its value. [ Ezample: The floating literals
1.602°176°565e-19 and 1.602176565e-19 have the same value. — end ezample] Either the integer part or
the fraction part (not both) can be omitted. Either the radix point or the letter e or E and the exponent (not
both) can be omitted from a decimal floating literal. The radix point (but not the exponent) can be omitted
from a hexadecimal floating literal. The integer part, the optional radix point, and the optional fraction part,
form the significand of the floating literal. In a decimal floating literal, the exponent, if present, indicates
the power of 10 by which the significand is to be scaled. In a hexadecimal floating literal, the exponent
indicates the power of 2 by which the significand is to be scaled. [ Ezample: The floating literals 49.625 and
0xC.68p+2 have the same value. — end example] If the scaled value is in the range of representable values
for its type, the result is the scaled value if representable, else the larger or smaller representable value nearest
the scaled value, chosen in an implementation-defined manner. The type of a floating literal is double unless
explicitly specified by a suffix. The suffixes £ and F specify float, the suffixes 1 and L specify long double.
If the scaled value is not in the range of representable values for its type, the program is ill-formed.

5.13.5 String literals [lex.string]

string-literal:
encoding-prefizop: " s-char-sequenceop; "
encoding-prefizop: R raw-string

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequenceop; ( r-char-sequenceop: ) d-char-sequenceop; "
r-char-sequence:

r-char
r-char-sequence r-char
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r-char:
any member of the source character set, except
a right parenthesis ) followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".
d-char-sequence:
d-char
d-char-sequence d-char
d-char:
any member of the basic source character set except:
space, the left parenthesis (, the right parenthesis ), the backslash \,
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

A string-literal is a sequence of characters (as defined in 5.13.3) surrounded by double quotes, optionally
prefixed by R, u8, u8R, u, uR, U, UR, L, or LR, as in "...", R"(...)", u8"..." u8R"**x(...)*x" u"..."
uR"*~ (... )x~" U"..." UR"zzz(...)zzz",L"..." or LR"(...)", respectively.

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter. The
terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-sequence.
A d-char-sequence shall consist of at most 16 characters.

[ Note: The characters ’ (> and ’)’ are permitted in a raw-string. Thus, R"delimiter((alb))delimiter"
is equivalent to "(alb)". — end note]

[ Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string
literal. Assuming no whitespace at the beginning of lines in the following example, the assert will succeed:
const char* p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);
— end note]
[ Example: The raw string

R"a(
N

a"
)au

is equivalent to "\n)\\\na\"\n". The raw string
R" (X = ll\lly\ll n) n
is equivalent to "x = \"\\\"y\\\"\"". —end ezample|]

After translation phase 6, a string-literal that does not begin with an encoding-prefix is an ordinary string
literal, and is initialized with the given characters.

A string-literal that begins with u8, such as u8"asdf", is a UTF-8 string literal.

Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow
string literal has type “array of n const char”, where n is the size of the string as defined below, and has
static storage duration (6.7).

For a UTF-8 string literal, each successive element of the object representation (6.9) has the value of the
corresponding code unit of the UTF-8 encoding of the string.

A string-literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal
has type “array of n const char16_t”, where n is the size of the string as defined below; it is initialized
with the given characters. A single c¢-char may produce more than one char16_t character in the form of
surrogate pairs.

A string-literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal
has type “array of n const char32_t”, where n is the size of the string as defined below; it is initialized
with the given characters.

A string-literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type
“array of n const wchar_t”, where n is the size of the string as defined below; it is initialized with the given
characters.
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In translation phase 6 (5.2), adjacent string-literals are concatenated. If both string-literals have the same
encoding-prefiz, the resulting concatenated string literal has that encoding-prefiz. If one string-literal has
no encoding-prefiz, it is treated as a string-literal of the same encoding-prefiz as the other operand. If a
UTF-8 string literal token is adjacent to a wide string literal token, the program is ill-formed. Any other
concatenations are conditionally-supported with implementation-defined behavior. [ Note: This concatenation
is an interpretation, not a conversion. Because the interpretation happens in translation phase 6 (after
each character from a string literal has been translated into a value from the appropriate character set), a
string-literal’s initial rawness has no effect on the interpretation or well-formedness of the concatenation.
—end note] Table 9 has some examples of valid concatenations.

Table 9 — String literal concatenations

Source Means Source Means Source Means
ullall ullbll ullabll Ullall Ullbll Ullabll Lllall Lllbll Lllabll
ullall llbll ullabll Ullall llbll Ullabll Lllall ||bl| Lllabll
llall ullb" ullabll ||a" Ullbll Ullabll ||al| L"bll Lllabll

Characters in concatenated strings are kept distinct.
[ Example:
n \XA" IIBII

contains the two characters >\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’). — end example]

After any necessary concatenation, in translation phase 7 (5.2), >\0’ is appended to every string literal so
that programs that scan a string can find its end.

Escape sequences and universal-character-names in non-raw string literals have the same meaning as in
character literals (5.13.3), except that the single quote ’ is representable either by itself or by the escape
sequence \’, and the double quote " shall be preceded by a \, and except that a universal-character-name in
a char16_t string literal may yield a surrogate pair. In a narrow string literal, a universal-character-name
may map to more than one char element due to multibyte encoding. The size of a char32_t or wide string
literal is the total number of escape sequences, universal-character-names, and other characters, plus one
for the terminating U’\0’ or L’\0’. The size of a char16_t string literal is the total number of escape
sequences, universal-character-names, and other characters, plus one for each character requiring a surrogate
pair, plus one for the terminating u’\0’. [ Note: The size of a char16_t string literal is the number of
code units, not the number of characters. — end note] Within char32_t and char16_t string literals, any
universal-character-names shall be within the range 0x0 to 0x10FFFF. The size of a narrow string literal is
the total number of escape sequences and other characters, plus at least one for the multibyte encoding of
each universal-character-name, plus one for the terminating >\0’.

Evaluating a string-literal results in a string literal object with static storage duration, initialized from
the given characters as specified above. Whether all string literals are distinct (that is, are stored in
nonoverlapping objects) and whether successive evaluations of a string-literal yield the same or a different
object is unspecified. [ Note: The effect of attempting to modify a string literal is undefined. — end note]

5.13.6 Boolean literals [lex.bool]
boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals are prvalues and have type bool.

5.13.7 Pointer literals [lex.nullptr|
pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It is a prvalue of type std: :nullptr_t. [ Note: std::nullptr_t
is a distinct type that is neither a pointer type nor a pointer to member type; rather, a prvalue of this type is
a null pointer constant and can be converted to a null pointer value or null member pointer value. See 7.11
and 7.12. — end note]
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5.13.8 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffix
hezxadecimal-literal ud-suffix
binary-literal ud-suffix
user-defined-floating-literal:
fractional-constant exponent-part,p: ud-suffic
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffiz
hezxadecimal-prefix hexadecimal-digit-sequence binary-erponent-part ud-suffiz

user-defined-string-literal:
string-literal ud-suffiz

user-defined-character-literal:
character-literal ud-suffiz

ud-suffiz:
identifier

If a token matches both user-defined-literal and another literal kind, it is treated as the latter. [ Ezample:
123_km is a user-defined-literal, but 12LL is an integer-literal. — end ezample] The syntactic non-terminal
preceding the ud-suffix in a user-defined-literal is taken to be the longest sequence of characters that could
match that non-terminal.

A wuser-defined-literal is treated as a call to a literal operator or literal operator template (16.5.8). To
determine the form of this call for a given user-defined-literal L with ud-suffiz X, the literal-operator-id whose
literal suffix identifier is X is looked up in the context of L using the rules for unqualified name lookup (6.4.1).
Let S be the set of declarations found by this lookup. S shall not be empty.

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X (nULL)

Otherwise, S shall contain a raw literal operator or a literal operator template (16.5.8) but not both. If S
contains a raw literal operator, the literal L is treated as a call of the form

operator "" X("n")
Otherwise (S contains a literal operator template), L is treated as a call of the form
operator "" X<’ci’, ’c2’, ... ’cx’>(0)

where n is the source character sequence cjca...ci. [ Note: The sequence c¢jca...ci can only contain characters
from the basic source character set. — end note]

If L is a user-defined-floating-literal, let f be the literal without its ud-suffiz. If S contains a literal operator
with parameter type long double, the literal L is treated as a call of the form

operator "" X (fL)

Otherwise, S shall contain a raw literal operator or a literal operator template (16.5.8) but not both. If S
contains a raw literal operator, the literal L is treated as a call of the form

operator nn X (Ilf u)
Otherwise (S contains a literal operator template), L is treated as a call of the form
operator "" X<’ci’, ’c2’, ... ’cx’>Q0)

where f is the source character sequence cjcs...ck. [ Note: The sequence ¢jca...c can only contain characters
from the basic source character set. — end note]

If L is a user-defined-string-literal, let str be the literal without its ud-suffiz and let len be the number of
code units in str (i.e., its length excluding the terminating null character). The literal L is treated as a call
of the form
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operator "" X(str, len)

If L is a user-defined-character-literal, let ch be the literal without its ud-suffiz. S shall contain a literal
operator (16.5.8) whose only parameter has the type of ch and the literal L is treated as a call of the form
operator "" X(ch)

[ Example:
long double operator "" _w(long double);
std::string operator "" _w(const charl6_t*, std::size_t);
unsigned operator "" _w(const charx);
int main() {
1.2 _w; // calls operator "" _w(1.2L)
u"one"_w;  // calls operator "" _w(u"one", 3)
12_w; // calls operator "" _w("12")
"two" _w; // error: no applicable literal operator
}

— end ezample ]

In translation phase 6 (5.2), adjacent string literals are concatenated and user-defined-string-literals are
considered string literals for that purpose. During concatenation, ud-suffizes are removed and ignored and the
concatenation process occurs as described in 5.13.5. At the end of phase 6, if a string literal is the result of a
concatenation involving at least one user-defined-string-literal, all the participating user-defined-string-literals
shall have the same ud-suffiz and that suffix is applied to the result of the concatenation.

[ Example:

int main() {
L"A" "B" "C"_x; // OK: same as L"ABC" _x

"P"_x "Q" "R"_y;// error: two different ud-suffizes
}

— end example]
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6 Basic concepts [basic]

[ Note: This Clause presents the basic concepts of the C++ language. It explains the difference between an
object and a name and how they relate to the value categories for expressions. It introduces the concepts
of a declaration and a definition and presents C++’s notion of type, scope, linkage, and storage duration.
The mechanisms for starting and terminating a program are discussed. Finally, this Clause presents the
fundamental types of the language and lists the ways of constructing compound types from these. — end
note |

[ Note: This Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

An entity is a value, object, reference, function, enumerator, type, class member, bit-field, template, template
specialization, namespace, or parameter pack.

A name is a use of an identifier (5.10), operator-function-id (16.5), literal-operator-id (16.5.8), conversion-
function-id (15.3.2), or template-id (17.2) that denotes an entity or label (9.6.4, 9.1).

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is
introduced either by a goto statement (9.6.4) or a labeled-statement (9.1).

A wariable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name, if any, denotes the reference or object.

Some names denote types or templates. In general, whenever a name is encountered it is necessary to
determine whether that name denotes one of these entities before continuing to parse the program that
contains it. The process that determines this is called name lookup (6.4).

Two names are the same if
— they are identifiers composed of the same character sequence, or
— they are operator-function-ids formed with the same operator, or
— they are conversion-function-ids formed with the same type, or
— they are template-ids that refer to the same class, function, or variable (17.5), or
— they are the names of literal operators (16.5.8) formed with the same literal suffix identifier.
A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (6.5) of the name specified in each translation unit.
6.1 Declarations and definitions [basic.def]

A declaration (Clause 10) may introduce one or more names into a translation unit or redeclare names
introduced by previous declarations. If so, the declaration specifies the interpretation and attributes of these
names. A declaration may also have effects including:

— a static assertion (Clause 10),
— controlling template instantiation (17.8.2),
— guiding template argument deduction for constructors (17.10),
— use of attributes (Clause 10), and
— nothing (in the case of an empty-declaration).
A declaration is a definition unless
— it declares a function without specifying the function’s body (11.4),

— it contains the extern specifier (10.1.1) or a linkage-specification®® (10.5) and neither an initializer nor
a function-body,

— it declares a non-inline static data member in a class definition (12.2, 12.2.3),

26) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.
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it declares a static data member outside a class definition and the variable was defined within the class

with the constexpr specifier (this usage is deprecated; see D.1),

definition,

it is a using-directive (10.3.4),

it is a class name declaration (12.1),
it is an opagque-enum-declaration (10.2),
it is a template-parameter (17.1),

it is a parameter-declaration (11.3.5) in a function declarator that is not the declarator of a function-

it is a typedef declaration (10.1.3),

it is an alias-declaration (10.1.3),

it is a using-declaration (10.3.3),

it is a deduction-guide (17.10),

it is a static__assert-declaration (Clause 10),
it is an attribute-declaration (Clause 10),

it is an empty-declaration (Clause 10),

it is an explicit instantiation declaration (17.8.2), or

it is an explicit specialization (17.8.3) whose declaration is not a definition.

[ Ezample: All but one of the following are definitions:

int a;
extern const int c = 1;
int f(int x) { return x+a; }
struct S { int a; int b; };
struct X {

int x;

static int y;

XO: x(0) {3}
};
int X::y = 1;
enum { up, down };
namespace N { int d4; }
namespace N1 = N;
X anX;

whereas these are just declarations:

extern int a;
extern const int c;
int f(int);

struct S;

typedef int Int;
extern X anotherX;
using N::d;

— end example ]

// defines a
// defines ¢
// defines £ and defines x

// defines S, S::a, and S::b

// defines X

// defines non-static data member x
// declares static data member y
// defines a constructor of X

// defines X::y

// defines up and down
// defines N and N::d
// defines N1

// defines anX

// declares a

// declares ¢

// declares £

// declares 8

// declares Int

// declares anotherX
// declares d

[ Note: In some circumstances, C++ implementations implicitly define the default constructor (15.1), copy
constructor (15.8), move constructor (15.8), copy assignment operator (15.8), move assignment operator (15.8),
or destructor (15.4) member functions. — end note] [ Ezample: Given

#include <string>

struct C {
std::string s;

};
int main() {

C a;
Cb=a;

§6.1
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the implementation will implicitly define functions to make the definition of C equivalent to

struct C {
std::string s;
cO :s0O {72
C(const C& x): s(x.s) { }
C(C&& x): s(static_cast<std::string&&>(x.s)) { }
// ¢ s(std::move(x.s)) { }
C& operator=(const C& x) { s = x.s; return *this; }
C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }
//{ s = std::move(x.s); return *this; }
~CcO {32
}
— end example]
4 [Note: A class name can also be implicitly declared by an elaborated-type-specifier (10.1.7.3). — end note]

5 A program is ill-formed if the definition of any object gives the object an incomplete type (6.9).

6.2 One-definition rule [basic.def.odr]

1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type, or template.

2 An expression is potentially evaluated unless it is an unevaluated operand (Clause 8) or a subexpression
thereof. The set of potential results of an expression e is defined as follows:

(21)  — If e is an id-expression (8.1.4), the set contains only e.

(2.2) — If e is a subscripting operation (8.2.1) with an array operand, the set contains the potential results of
that operand.

(23)  — If e is a class member access expression (8.2.5), the set contains the potential results of the object
expression.

(2.4) — If e is a pointer-to-member expression (8.5) whose second operand is a constant expression, the set
contains the potential results of the object expression.

(2.5) — If e has the form (el), the set contains the potential results of el.

(2.6) — If e is a glvalue conditional expression (8.16), the set is the union of the sets of potential results of the
second and third operands.

(27— If e is a comma expression (8.19), the set contains the potential results of the right operand.

(2.8) — Otherwise, the set is empty.

[ Note: This set is a (possibly-empty) set of id-ezpressions, each of which is either e or a subexpression of e.
[ Ezample: In the following example, the set of potential results of the initializer of n contains the first S: :x
subexpression, but not the second S: :x subexpression.

struct S { static const int x = 0; };
const int &f(const int &r);
int n = b ? (1, S::x) //S::x is not odr-used here
: £(S::x);  //S::x is odr-used here, so a definition is required

— end example] — end note]

3 A variable x whose name appears as a potentially-evaluated expression ex is odr-used by ex unless applying the
lvalue-to-rvalue conversion (7.1) to x yields a constant expression (8.20) that does not invoke any non-trivial
functions and, if x is an object, ex is an element of the set of potential results of an expression e, where
either the lvalue-to-rvalue conversion (7.1) is applied to e, or e is a discarded-value expression (Clause 8).
this is odr-used if it appears as a potentially-evaluated expression (including as the result of the implicit
transformation in the body of a non-static member function (12.2.2)). A virtual member function is odr-used
if it is not pure. A function whose name appears as a potentially-evaluated expression is odr-used if it is
the unique lookup result or the selected member of a set of overloaded functions (6.4, 16.3, 16.4), unless it
is a pure virtual function and either its name is not explicitly qualified or the expression forms a pointer
to member (8.3.1). [ Note: This covers calls to named functions (8.2.2), operator overloading (Clause 16),
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user-defined conversions (15.3.2), allocation functions for placement new-expressions (8.3.4), as well as
non-default initialization (11.6). A constructor selected to copy or move an object of class type is odr-used
even if the call is actually elided by the implementation (15.8). — end note] An allocation or deallocation
function for a class is odr-used by a new-ezxpression appearing in a potentially-evaluated expression as
specified in 8.3.4 and 15.5. A deallocation function for a class is odr-used by a delete expression appearing in
a potentially-evaluated expression as specified in 8.3.5 and 15.5. A non-placement allocation or deallocation
function for a class is odr-used by the definition of a constructor of that class. A non-placement deallocation
function for a class is odr-used by the definition of the destructor of that class, or by being selected by the
lookup at the point of definition of a virtual destructor (15.4).2” An assignment operator function in a class is
odr-used by an implicitly-defined copy-assignment or move-assignment function for another class as specified
in 15.8. A constructor for a class is odr-used as specified in 11.6. A destructor for a class is odr-used if it is
potentially invoked (15.4).

Every program shall contain exactly one definition of every non-inline function or variable that is odr-used in
that program outside of a discarded statement (9.4.1); no diagnostic required. The definition can appear
explicitly in the program, it can be found in the standard or a user-defined library, or (when appropriate) it is
implicitly defined (see 15.1, 15.4 and 15.8). An inline function or variable shall be defined in every translation
unit in which it is odr-used outside of a discarded statement.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [ Ezample: The following complete translation unit is well-formed, even though it
never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end example]| [ Note: The rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

— an object of type T is defined (6.1), or

— a non-static class data member of type T is declared (12.2), or

— T is used as the allocated type or array element type in a new-expression (8.3.4), or

— an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (7.1), or

— an expression is converted (either implicitly or explicitly) to type T (Clause 7, 8.2.3, 8.2.7, 8.2.9, 8.4), or

— an expression that is not a null pointer constant, and has type other than cv voidx, is converted to the
type pointer to T or reference to T using a standard conversion (Clause 7), a dynamic_cast (8.2.7) or a
static_cast (8.2.9), or

— a class member access operator is applied to an expression of type T (8.2.5), or
— the typeid operator (8.2.8) or the sizeof operator (8.3.3) is applied to an operand of type T, or
— a function with a return type or argument type of type T is defined (6.1) or called (8.2.2), or
— a class with a base class of type T is defined (Clause 13), or
— an lvalue of type T is assigned to (8.18), or
— the type T is the subject of an alignof expression (8.3.6), or
— an exception-declaration has type T, reference to T, or pointer to T (18.3).
— end note]

There can be more than one definition of a class type (Clause 12), enumeration type (10.2), inline function
with external linkage (10.1.6), inline variable with external linkage (10.1.6), class template (Clause 17),
non-static function template (17.6.6), concept (17.6.8), static data member of a class template (17.6.1.3),
member function of a class template (17.6.1.1), or template specialization for which some template parameters
are not specified (17.8, 17.6.5) in a program provided that each definition appears in a different translation
unit, and provided the definitions satisfy the following requirements. Given such an entity named D defined
in more than one translation unit, then

— each definition of D shall consist of the same sequence of tokens; and

27) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.
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— in each definition of D, corresponding names, looked up according to 6.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (16.3) and after
matching of partial template specialization (17.9.3), except that a name can refer to

— a non-volatile const object with internal or no linkage if the object
— has the same literal type in all definitions of D,
— is initialized with a constant expression (8.20),
— is not odr-used in any definition of D, and
— has the same value in all definitions of D,
or

— a reference with internal or no linkage initialized with a constant expression such that the reference
refers to the same entity in all definitions of D;

and
— in each definition of D, corresponding entities shall have the same language linkage; and

— in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function, or
to a function defined within the definition of D; and

— in each definition of D, a default argument used by an (implicit or explicit) function call is treated as if
its token sequence were present in the definition of D; that is, the default argument is subject to the
requirements described in this paragraph (and, if the default argument has subexpressions with default
arguments, this requirement applies recursively)?®; and

— if D is a class with an implicitly-declared constructor (15.1), it is as if the constructor was implicitly
defined in every translation unit where it is odr-used, and the implicit definition in every translation
unit shall call the same constructor for a subobject of D. [ Ezample:

// translation unit 1:
struct X {

X(int, int);

X(int, int, int);
};
X::X(int, int = 0) { }
class D {

X x =0;

D di; // X(int, int) called by D()

// translation unit 2:
struct X {
X(int, int);
X(int, int, int);
};
X::X(int, int = 0, int =0) { }
class D {
X x =0;

D d2; // X(int, int, int) called by DQO);
// DO ’s implicit definition violates the ODR

— end example ]

If D is a template and is defined in more than one translation unit, then the preceding requirements shall
apply both to names from the template’s enclosing scope used in the template definition (17.7.3), and also to
dependent names at the point of instantiation (17.7.2). If the definitions of D satisfy all these requirements,
then the behavior is as if there were a single definition of D. If the definitions of D do not satisfy these
requirements, then the behavior is undefined.

28) 11.3.6 describes how default argument names are looked up.
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6.3 Scope [basic.scope]
6.3.1 Declarative regions and scopes [basic.scope.declarative]

Every name is introduced in some portion of program text called a declarative region, which is the largest part
of the program in which that name is valid, that is, in which that name may be used as an unqualified name
to refer to the same entity. In general, each particular name is valid only within some possibly discontiguous
portion of program text called its scope. To determine the scope of a declaration, it is sometimes convenient
to refer to the potential scope of a declaration. The scope of a declaration is the same as its potential scope
unless the potential scope contains another declaration of the same name. In that case, the potential scope of
the declaration in the inner (contained) declarative region is excluded from the scope of the declaration in
the outer (containing) declarative region.

[ Example: In
int j = 24;
int main() {
int i = j, j;
Jj = 42;
}
the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potential scope of the first j begins immediately after that j and extends to the end
of the program, but its (actual) scope excludes the text between the , and the }. The declarative region of
the second declaration of j (the j immediately before the semicolon) includes all the text between { and },
but its potential scope excludes the declaration of i. The scope of the second declaration of j is the same as
its potential scope. — end example]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (14.3), certain uses of the elaborated-type-specifier (10.1.7.3), and
using-directives (10.3.4) alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,
— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name
and the other declarations shall all refer to the same variable, non-static data member, or enumerator,
or all refer to functions and function templates; in this case the class name or enumeration name is
hidden (6.3.10). [ Note: A namespace name or a class template name must be unique in its declarative
region (10.3.2, Clause 17). — end note]

[ Note: These restrictions apply to the declarative region into which a name is introduced, which is not
necessarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers
(10.1.7.3) and friend declarations (14.3) may introduce a (possibly not visible) name into an enclosing
namespace; these restrictions apply to that region. Local extern declarations (6.5) may introduce a name
into the declarative region where the declaration appears and also introduce a (possibly not visible) name

into an enclosing namespace; these restrictions apply to both regions. — end note ]
[ Note: The name lookup rules are summarized in 6.4. — end note]
6.3.2 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (Clause 11) and before its
ingtializer (if any), except as noted below. [ Ezample:

unsigned char x = 12;
{ unsigned char x = x; }

Here the second x is initialized with its own (indeterminate) value. — end example ]

[ Note: A name from an outer scope remains visible up to the point of declaration of the name that hides it.
[ Example:

const int i = 2;
{ int i[il; }
declares a block-scope array of two integers. — end example] — end note]

The point of declaration for a class or class template first declared by a class-specifier is immediately after
the identifier or simple-template-id (if any) in its class-head (Clause 12). The point of declaration for
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an enumeration is immediately after the identifier (if any) in either its enum-specifier (10.2) or its first
opaque-enum-declaration (10.2), whichever comes first. The point of declaration of an alias or alias template
immediately follows the type-id to which the alias refers.

The point of declaration of a using-declarator that does not name a constructor is immediately after the
using-declarator (10.3.3).

The point of declaration for an enumerator is immediately after its enumerator-definition. [ Example:

const int x = 12;
{enum {x=x3%} }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end ezample ]

After the point of declaration of a class member, the member name can be looked up in the scope of its class.
[ Note: This is true even if the class is an incomplete class. For example,

struct X {
enum E { z = 16 };
int b[X::2]; // OK
};
— end note]
The point of declaration of a class first declared in an elaborated-type-specifier is as follows:
— for a declaration of the form
class-key attribute-specifier-seqop: identifier ;
the identifier is declared to be a class-name in the scope that contains the declaration, otherwise
— for an elaborated-type-specifier of the form

class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the
smallest namespace or block scope that contains the declaration. [ Note: These rules also apply within
templates. — end note| [Note: Other forms of elaborated-type-specifier do not declare a new name,
and therefore must refer to an existing type-name. See 6.4.4 and 10.1.7.3. — end note]

The point of declaration for an injected-class-name (Clause 12) is immediately following the opening brace of
the class definition.

The point of declaration for a function-local predefined variable (11.4) is immediately before the function-body
of a function definition.

The point of declaration for the variable or the structured bindings declared in the for-range-declaration of a
range-based for statement (9.5.4) is immediately after the for-range-initializer.

The point of declaration for a template parameter is immediately after its complete template-parameter.
[ Example:
typedef unsigned char T;
template<class T
=T // lookup finds the typedef name of unsigned char
, T // lookup finds the template parameter
N = 0> struct A { };

— end example ]

[ Note: Friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (10.3.1.2). Function declarations at block scope
and variable declarations with the extern specifier at block scope refer to declarations that are members of
an enclosing namespace, but they do not introduce new names into that scope. — end note|

[ Note: For point of instantiation of a template, see 17.7.4.1. — end note ]

6.3.3 Block scope [basic.scope.block]

A name declared in a block (9.3) is local to that block; it has block scope. Its potential scope begins at its
point of declaration (6.3.2) and ends at the end of its block. A variable declared at block scope is a local
variable.
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2 The potential scope of a function parameter name (including one appearing in a lambda-declarator) or
of a function-local predefined variable in a function definition (11.4) begins at its point of declaration. If
the function has a function-try-block the potential scope of a parameter or of a function-local predefined
variable ends at the end of the last associated handler, otherwise it ends at the end of the outermost block of
the function definition. A parameter name shall not be redeclared in the outermost block of the function
definition nor in the outermost block of any handler associated with a function-try-block.

3 The name declared in an exception-declaration is local to the handler and shall not be redeclared in the
outermost block of the handler.

4 Names declared in the init-statement, the for-range-declaration, and in the condition of if, while, for, and
switch statements are local to the if, while, for, or switch statement (including the controlled statement),
and shall not be redeclared in a subsequent condition of that statement nor in the outermost block (or, for
the if statement, any of the outermost blocks) of the controlled statement; see 9.4.

6.3.4 Function prototype scope [basic.scope.proto]

1 In a function declaration, or in any function declarator except the declarator of a function definition (11.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

6.3.5 Function scope [basic.funscope]

L TLabels (9.1) have function scope and may be used anywhere in the function in which they are declared. Only
labels have function scope.

6.3.6 Namespace scope [basic.scope.namespace]

1 The declarative region of a namespace-definition is its namespace-body. Entities declared in a namespace-body
are said to be members of the namespace, and names introduced by these declarations into the declarative
region of the namespace are said to be member names of the namespace. A namespace member name has
namespace scope. Its potential scope includes its namespace from the name’s point of declaration (6.3.2)
onwards; and for each using-directive (10.3.4) that nominates the member’s namespace, the member’s potential
scope includes that portion of the potential scope of the using-directive that follows the member’s point of
declaration. [ Example:

namespace N {
int i;
int g(int a) { return a; }
int jO;
void q();
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration to the end of the translation unit

namespace N {
int g(char a) { // overloads N::g(int)

return l+a; // 1 is from unnamed namespace
}
int i; // error: duplicate definition
int jO; // OK: duplicate function declaration
int jO { // OK: definition of N::3()
return g(i); // calls N: :g(int)
}
int qQO); // error: different return type

}
— end example]

2 A namespace member can also be referred to after the :: scope resolution operator (8.1) applied to the name
of its namespace or the name of a namespace which nominates the member’s namespace in a using-directive;
see 6.4.3.2.

3 The outermost declarative region of a translation unit is also a namespace, called the global namespace. A
name declared in the global namespace has global namespace scope (also called global scope). The potential
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scope of such a name begins at its point of declaration (6.3.2) and ends at the end of the translation unit
that is its declarative region. A name with global namespace scope is said to be a global name.

6.3.7 Class scope [basic.scope.class]

The potential scope of a name declared in a class consists not only of the declarative region following the
name’s point of declaration, but also of all function bodies, default arguments, noexcept-specifiers, and
brace-or-equal-initializers of non-static data members in that class (including such things in nested classes).

A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in the
completed scope of S. No diagnostic is required for a violation of this rule.

A name declared within a member function hides a declaration of the same name whose scope extends to or
past the end of the member function’s class.

The potential scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if the members are defined lexically outside the class (this
includes static data member definitions, nested class definitions, and member function definitions, including
the member function body and any portion of the declarator part of such definitions which follows the
declarator-id, including a parameter-declaration-clause and any default arguments (11.3.6)).

[ Ezample:

typedef int c;
enum { i =1 };

class X {
char vl[i]l; // error: i refers to ::i but when reevaluated is X: :i
int £() { return sizeof(c); } // OK: X::c
char «c;
enum { i = 2 };

};

typedef char* T;

struct Y {
T a; // error: T refers to ::T but when reevaluated is Y::T
typedef long T;
T b;

};

typedef int I;
class D {
typedef I I; // error, even though no reordering involved

}’

— end example]

6 The name of a class member shall only be used as follows:

(6.1)

(6.2)

(6.3)

(6.4)

— in the scope of its class (as described above) or a class derived (Clause 13) from its class,

— after the . operator applied to an expression of the type of its class (8.2.5) or a class derived from its
class,

— after the -> operator applied to a pointer to an object of its class (8.2.5) or a class derived from its
class,

— after the :: scope resolution operator (8.1) applied to the name of its class or a class derived from its
class.
6.3.8 Enumeration scope [basic.scope.enum]
The name of a scoped enumerator (10.2) has enumeration scope. Its potential scope begins at its point of
declaration and terminates at the end of the enum-specifier.
6.3.9 Template parameter scope [basic.scope.temp]

The declarative region of the name of a template parameter of a template template-parameter is the smallest
template-parameter-list in which the name was introduced.
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The declarative region of the name of a template parameter of a template is the smallest template-declaration
in which the name was introduced. Only template parameter names belong to this declarative region; any
other kind of name introduced by the declaration of a template-declaration is instead introduced into the
same declarative region where it would be introduced as a result of a non-template declaration of the same
name. [ Example:

namespace N {

template<class T> struct A { }; /) #1
template<class U> void £(U) { } /) #2
struct B {

template<class V> friend int g(struct Cx); // #3
};

}

The declarative regions of T, U and V are the template-declarations on lines #1, #2, and #3, respectively.
But the names A, £, g and C all belong to the same declarative region — namely, the namespace-body of N.
(g is still considered to belong to this declarative region in spite of its being hidden during qualified and
unqualified name lookup.) — end ezample ]

The potential scope of a template parameter name begins at its point of declaration (6.3.2) and ends
at the end of its declarative region. [Note: This implies that a template-parameter can be used in the
declaration of subsequent template-parameters and their default arguments but cannot be used in preceding
template-parameters or their default arguments. For example,

template<class T, T* p, class U =T> class X { /* ... */ };
template<class T> void f(T* p = new T);

This also implies that a template-parameter can be used in the specification of base classes. For example,

template<class T> class X : public Array<T> { /* ... */ };
template<class T> class Y : public T { /* ... %/ };

The use of a template parameter as a base class implies that a class used as a template argument must be
defined and not just declared when the class template is instantiated. — end note]

The declarative region of the name of a template parameter is nested within the immediately-enclosing
declarative region. [ Note: As a result, a template-parameter hides any entity with the same name in an
enclosing scope (6.3.10). [ Ezample:

typedef int N;
template<N X, typename N, template<N Y> class T> struct A;

Here, X is a non-type template parameter of type int and Y is a non-type template parameter of the same
type as the second template parameter of A. — end example] — end note]

[ Note: Because the name of a template parameter cannot be redeclared within its potential scope (17.7.1), a
template parameter’s scope is often its potential scope. However, it is still possible for a template parameter
name to be hidden; see 17.7.1. — end note]

6.3.10 Name hiding [basic.scope.hiding)]

A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (13.2).

A class name (12.1) or enumeration name (10.2) can be hidden by the name of a variable, data member,
function, or enumerator declared in the same scope. If a class or enumeration name and a variable, data
member, function, or enumerator are declared in the same scope (in any order) with the same name, the class
or enumeration name is hidden wherever the variable, data member, function, or enumerator name is visible.

In a member function definition, the declaration of a name at block scope hides the declaration of a member
of the class with the same name; see 6.3.7. The declaration of a member in a derived class (Clause 13) hides
the declaration of a member of a base class of the same name; see 13.2.

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see 6.4.3.2.

If a name is in scope and is not hidden it is said to be wvisible.
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6.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (10.1.3), namespace-names
(10.3), and class-names (12.1)) wherever the grammar allows such names in the context discussed by a
particular rule. Name lookup associates the use of a name with a set of declarations (6.1) of that name. The
declarations found by name lookup shall either all declare the same entity or shall all declare functions; in the
latter case, the declarations are said to form a set of overloaded functions (16.1). Overload resolution (16.3)
takes place after name lookup has succeeded. The access rules (Clause 14) are considered only once name
lookup and function overload resolution (if applicable) have succeeded. Only after name lookup, function
overload resolution (if applicable) and access checking have succeeded are the attributes introduced by the
name’s declaration used further in expression processing (Clause 8).

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

The injected-class-name of a class (Clause 12) is also considered to be a member of that class for the purposes
of name hiding and lookup.

[ Note: 6.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed
in 6.3. — end note]

6.4.1 Unqualified name lookup [basic.lookup.unqual]

In all the cases listed in 6.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing
the using-directive; see 10.3.4. For the purpose of the unqualified name lookup rules described in 6.4.1, the
declarations from the namespace nominated by the using-directive are considered members of that enclosing
namespace.

The lookup for an unqualified name used as the postfiz-ezpression of a function call is described in 6.4.2. [ Note:
For purposes of determining (during parsing) whether an expression is a postfiz-expression for a function call,
the usual name lookup rules apply. The rules in 6.4.2 have no effect on the syntactic interpretation of an
expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = £(a); // £ is the typedef, not the friend function: equivalent to int(a)
}
};
}

Because the expression is not a function call, the argument-dependent name lookup (6.4.2) does not apply
and the friend function £ is not found. — end note|

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

A name used in a user-declared namespace outside of the definition of any function or class shall be declared
before its use in that namespace or before its use in a namespace enclosing its namespace.

In the definition of a function that is a member of namespace N, a name used after the function’s declarator-id°
shall be declared before its use in the block in which it is used or in one of its enclosing blocks (9.3) or shall
be declared before its use in namespace N or, if N is a nested namespace, shall be declared before its use in
one of N’s enclosing namespaces. [ Ezample:

namespace A {

namespace N {
void £();

29) This refers to unqualified names that occur, for instance, in a type or default argument in the parameter-declaration-clause
or used in the function body.
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}
}
void A::N::f() {
i = 5;
// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N
// 8) scope of namespace A
// 4) global scope, before the definition of A::N::f
}

— end example]

A name used in the definition of a class X outside of a member function body, default argument, noexcept-
specifier, brace-or-equal-ingtializer of a non-static data member, or nested class definition®® shall be declared
in one of the following ways:

— before its use in class X or be a member of a base class of X (13.2), or

— if X is a nested class of class Y (12.2.5), before the definition of X in Y, or shall be a member of a base
class of Y (this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing
class),?! or

— if X is a local class (12.4) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the definition of class X
in namespace N or in one of N’s enclosing namespaces.

[ Example:

namespace M {
class B { };
}

namespace N {
class Y : public M::B {
class X {
int aflil;
3
};
}

// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i

// 2) scope of class N::Y, before the definition of N::Y::X
// 8) scope of N::Y’s base class M: :B

// 4) scope of namespace N, before the definition of N::Y
// 5) global scope, before the definition of N

— end example]| [Note: When looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 10.3.1.2.
—end note] [ Note: 6.3.7 further describes the restrictions on the use of names in a class definition. 12.2.5
further describes the restrictions on the use of names in nested class definitions. 12.4 further describes the
restrictions on the use of names in local class definitions. — end note

For the members of a class X, a name used in a member function body, in a default argument, in a noexcept-
specifier, in the brace-or-equal-initializer of a non-static data member (12.2), or in the definition of a class
member outside of the definition of X, following the member’s declarator-id>?, shall be declared in one of the
following ways:

— before its use in the block in which it is used or in an enclosing block (9.3), or

30) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in
the class definition.

31) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a
namespace scope enclosing Y’s definition (12.2.5).

32) That is, an unqualified name that occurs, for instance, in a type in the parameter-declaration-clause or in the noexcept-
specifier.
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— shall be a member of class X or be a member of a base class of X (13.2), or

— if X is a nested class of class Y (12.2.5), shall be a member of Y, or shall be a member of a base class of
Y (this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),3* or

— if X is a local class (12.4) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the use of the name, in
namespace N or in one of N’s enclosing namespaces.

[ Ezample:

class B { };
namespace M {
namespace N {
class X : public B {

void f();
};
}
}
void M::N::X::f() {
i = 16;
}

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of M::N::X::£, before the use of i
// 2) scope of class M: :N: :X

// 8) scope of M::N::X’s base class B

// 4) scope of namespace M: :N

// 5) scope of namespace M

// 6) global scope, before the definition of M::N::X::f

— end example] [ Note: 12.2.1 and 12.2.3 further describe the restrictions on the use of names in member
function definitions. 12.2.5 further describes the restrictions on the use of names in the scope of nested
classes. 12.4 further describes the restrictions on the use of names in local class definitions. — end note|

Name lookup for a name used in the definition of a friend function (14.3) defined inline in the class granting
friendship shall proceed as described for lookup in member function definitions. If the friend function is
not defined in the class granting friendship, name lookup in the friend function definition shall proceed as
described for lookup in namespace member function definitions.

In a friend declaration naming a member function, a name used in the function declarator and not part of a
template-argument in the declarator-id is first looked up in the scope of the member function’s class (13.2). If
it is not found, or if the name is part of a template-argument in the declarator-id, the look up is as described
for unqualified names in the definition of the class granting friendship. [ Ezample:

struct A {

typedef int AT;

void £1(AT);

void f2(float);

template <class T> void £3();
};
struct B {

typedef char AT;

typedef float BT;

friend void A::f1(AT); // parameter type is A: :AT

friend void A::f2(BT); // parameter type is B: :BT

friend void A::f3<AT>(); // template argument is B: : AT
};

— end example]

During the lookup for a name used as a default argument (11.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (15.6.2), the function parameter names are

33) This lookup applies whether the member function is defined within the definition of class X or whether the member function
is defined in a namespace scope enclosing X’s definition.
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visible and hide the names of entities declared in the block, class or namespace scopes containing the function
declaration. [ Note: 11.3.6 further describes the restrictions on the use of names in default arguments. 15.6.2
further describes the restrictions on the use of names in a ctor-initializer. — end note ]

During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared
enumerators of the enumeration are visible and hide the names of entities declared in the block, class, or
namespace scopes containing the enum-specifier.

A name used in the definition of a static data member of class X (12.2.3.2) (after the qualified-id of the
static member) is looked up as if the name was used in a member function of X. [ Note: 12.2.3.2 further
describes the restrictions on the use of names in the definition of a static data member. — end note]

If a variable member of a namespace is defined outside of the scope of its namespace then any name that
appears in the definition of the member (after the declarator-id) is looked up as if the definition of the
member occurred in its namespace. [ Ezample:

namespace N {
int i = 4;
extern int j;

¥
int i = 2;

int N::j = i; J/Niij ==
— end example]
A name used in the handler for a function-try-block (Clause 18) is looked up as if the name was used in
the outermost block of the function definition. In particular, the function parameter names shall not be

redeclared in the exception-declaration nor in the outermost block of a handler for the function-try-block.
Names declared in the outermost block of the function definition are not found when looked up in the scope

of a handler for the function-try-block. [ Note: But function parameter names are found. — end note]
[ Note: The rules for name lookup in template definitions are described in 17.7. — end note|
6.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When the postfiz-expression in a function call (8.2.2) is an unqualified-id, other namespaces not considered
during the usual unqualified lookup (6.4.1) may be searched, and in those namespaces, namespace-scope friend
function or function template declarations (14.3) not otherwise visible may be found. These modifications to
the search depend on the types of the arguments (and for template template arguments, the namespace of
the template argument). [ Ezample:

namespace N {
struct S { };

void £(S);
}
void g() {

N::S s;

£(s); // OK: calls N: :f

(£) (s); // error: N::f not considered; parentheses prevent argument-dependent lookup
}

— end example]

For each argument type T in the function call, there is a set of zero or more associated namespaces and a
set of zero or more associated classes to be considered. The sets of namespaces and classes are determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type (including unions), its associated classes are: the class itself; the class of which it is
a member, if any; and its direct and indirect base classes. Its associated namespaces are the innermost
enclosing namespaces of its associated classes. Furthermore, if T is a class template specialization,
its associated namespaces and classes also include: the namespaces and classes associated with the
types of the template arguments provided for template type parameters (excluding template template
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parameters); the namespaces of which any template template arguments are members; and the classes
of which any member templates used as template template arguments are members. [ Note: Non-type
template arguments do not contribute to the set of associated namespaces. — end note ]

— If T is an enumeration type, its associated namespace is the innermost enclosing namespace of its
declaration. If it is a class member, its associated class is the member’s class; else it has no associated
class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those
associated with the function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

If an associated namespace is an inline namespace (10.3.1), its enclosing namespace is also included in the set.
If an associated namespace directly contains inline namespaces, those inline namespaces are also included in
the set. In addition, if the argument is the name or address of a set of overloaded functions and/or function
templates, its associated classes and namespaces are the union of those associated with each of the members
of the set, i.e., the classes and namespaces associated with its parameter types and return type. Additionally,
if the aforementioned set of overloaded functions is named with a template-id, its associated classes and
namespaces also include those of its type template-arguments and its template template-arguments.

3 Let X be the lookup set produced by unqualified lookup (6.4.1) and let Y be the lookup set produced by

(3.1)
(3.2)

(3.3)

(4.3)

argument dependent lookup (defined as follows). If X contains
— a declaration of a class member, or
— a block-scope function declaration that is not a using-declaration, or
— a declaration that is neither a function nor a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the argument
types as described below. The set of declarations found by the lookup of the name is the union of X and Y.
[ Note: The namespaces and classes associated with the argument types can include namespaces and classes
already considered by the ordinary unqualified lookup. — end note] [ Ezample:

namespace NS {
class T { };
void f(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {

f (parm) ; // OK: calls NS: : £
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)

}
— end example ]

When considering an associated namespace, the lookup is the same as the lookup performed when the
associated namespace is used as a qualifier (6.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates declared in associated classes are
visible within their respective namespaces even if they are not visible during an ordinary lookup (14.3).

— All names except those of (possibly overloaded) functions and function templates are ignored.

6.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class or namespace member or enumerator can be referred to after the :: scope resolution
operator (8.1) applied to a nested-name-specifier that denotes its class, namespace, or enumeration. If a ::
scope resolution operator in a nested-name-specifier is not preceded by a decltype-specifier, lookup of the
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name preceding that :: considers only namespaces, types, and templates whose specializations are types. If
the name found does not designate a namespace or a class, enumeration, or dependent type, the program is
ill-formed. [ Example:

class A {
public:
static int n;
};
int main() {
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
}

— end example]

[ Note: Multiply qualified names, such as N1::N2::N3::n, can be used to refer to members of nested
classes (12.2.5) or members of nested namespaces. — end note|

In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared
are looked up in the defining namespace scope; names following the qualified-id are looked up in the scope of
the member’s class or namespace. [ Example:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
+;
X C::arr[numberl; // ill-formed:
// equivalent to ::X C::arr[C::number];
// and not to C::X C::arr[C: :number] ;

— end example ]

A name prefixed by the unary scope operator :: (8.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declaration
is visible in global scope because of a using-directive (6.4.3.2). The use of :: allows a global name to be
referred to even if its identifier has been hidden (6.3.10).

A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumerator
of that enumeration.

If a pseudo-destructor-name (8.2.4) contains a nested-name-specifier, the type-names are looked up as types
in the scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

nested-name-specifierqp; class-name :: ~ class-name
the second class-name is looked up in the same scope as the first. [ Ezample:

struct C {
typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;

p—>C::I::~I0); // T is looked up in the scope of C
q->I1::~120); // 12 is looked up in the scope of the postfiz-expression
struct A {
~A0);
};

typedef A AB;
int main() {

AB* p;
p->AB::~AB(); // explicitly calls the destructor for A
}
— end example] [ Note: 6.4.5 describes how name lookup proceeds after the . and -> operators. — end note |
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6.4.3.1 Class members [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (13.2), except for the cases listed below. The name shall
represent one or more members of that class or of one of its base classes (Clause 13). [ Note: A class member
can be referred to using a qualified-id at any point in its potential scope (6.3.7). — end note] The exceptions
to the name lookup rule above are the following:

— the lookup for a destructor is as specified in 6.4.3;

— a conversion-type-id of a conversion-function-id is looked up in the same manner as a conversion-type-id
in a class member access (see 6.4.5);

— the names in a template-argument of a template-id are looked up in the context in which the entire
postfiz-expression occurs.

— the lookup for a name specified in a using-declaration (10.3.3) also finds class or enumeration names
hidden within the same scope (6.3.10).

In a lookup in which function names are not ignored®* and the nested-name-specifier nominates a class C:

— if the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name of
C (Clause 12), or

— in a using-declarator of a using-declaration (10.3.3) that is a member-declaration, if the name specified
after the nested-name-specifier is the same as the identifier or the simple-template-id’s template-name
in the last component of the nested-name-specifier,

the name is instead considered to name the constructor of class C. [ Note: For example, the constructor is not
an acceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place of
the injected-class-name. — end note] Such a constructor name shall be used only in the declarator-id of a
declaration that names a constructor or in a using-declaration. [ Example:

struct A { AQ; };
struct B: public A { BO; };

A::a0 {3}

B::BO { }

B::A ba; // object of type A

A::A a; // error, A: :A is not a type name
struct A::A a2; // object of type A

— end example]

A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the :: operator.

6.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifier of a qualified-id nominates a namespace (including the case where the nested-
name-specifier is : :, i.e., nominating the global namespace), the name specified after the nested-name-specifier
is looked up in the scope of the namespace. The names in a template-argument of a template-id are looked
up in the context in which the entire postfiz-expression occurs.

For a namespace X and name m, the namespace-qualified lookup set S(X,m) is defined as follows: Let
S’(X,m) be the set of all declarations of m in X and the inline namespace set of X (10.3.1). If S’(X,m) is not
empty, S(X,m) is S’(X, m); otherwise, S(X,m) is the union of S(V;,m) for all namespaces N; nominated
by wusing-directives in X and its inline namespace set.

Given X::m (where X is a user-declared namespace), or given ::m (where X is the global namespace), if
S(X,m) is the empty set, the program is ill-formed. Otherwise, if S(X, m) has exactly one member, or if
the context of the reference is a using-declaration (10.3.3), S(X, m) is the required set of declarations of m.
Otherwise if the use of m is not one that allows a unique declaration to be chosen from S(X,m), the program
is ill-formed. [ Ezample:

int x;

34) Lookups in which function names are ignored include names appearing in a nested-name-specifier, an elaborated-type-specifier,
or a base-specifier.
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namespace Y {
void f(float);
void h(int);

}

namespace Z {
void h(double);
}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;

void g(O);
}
void h()
{
AB::g(); // & is declared directly in AB, therefore S is {AB::g()} and AB::g() is chosen
AB::f(1); // £ is not declared directly in AB so the rules are applied recursively to A and B;
// mamespace Y is not searched and Y: :f(float) is not considered;
// 8 is {A::£(int),B::f(char) } and overload resolution chooses A: :f (int)
AB::f(’c?); // as above but resolution chooses B: : £ (char)
AB: :x++; // x is not declared directly in AB, and is not declared in A or B, so the rules
// are applied recursively to Y and Z, S is {} so the program is ill-formed
AB: :i++; // i is not declared directly in AB so the rules are applied recursively to A and B,
// S s {A::1,B::1} so the use is ambiguous and the program is ill-formed
AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules
// are applied recursively to Y and Z, S is {Y::h(int),Z: :h(double)} and
// overload resolution chooses Z::h(double)
}

— end example ]

4 [ Note: The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
[ Example:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}
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namespace BC {
using namespace B;
using namespace C;

}
void f£()
{
BC: :a++; // OK: S is {A::a,A::a}
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}
void g()
{
BD::a++; // OK: S is {A::a,A::a}
}
— end example] — end note]

5 [ Ezample: Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void £()

{
A:zat+; // OK: a declared directly in A, S is {A::a}
B::at++; // OK: both A and B searched (once), S is {A::a}
A: b+ // OK: both A and B searched (once), S is {B::b}
B::bt+; // OK: b declared directly in B, S is {B::b}

}

— end example ]

6 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same variable, the same enumerator or a set of functions, the non-type name hides
the class or enumeration name if and only if the declarations are from the same namespace; otherwise (the
declarations are from different namespaces), the program is ill-formed. [ Ezample:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y { };
}
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namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y
}
— end example]

In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the qualified-id
for the namespace member has the form

nested-name-specifier unqualified-id

the unqualified-id shall name a member of the namespace designated by the nested-name-specifier or of an
element of the inline namespace set (10.3.1) of that namespace. [ Ezample:

namespace A {
namespace B {
void f1(int);
}
using namespace B;

}
void A::f1(int){ } // ill-formed, £1 is not a member of A

— end ezample] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier. [ Example:

namespace A {
namespace B {
void f1(int);
}
}

namespace C {
namespace D {
void f1(int);
}
}

using namespace A;
using namespace C::D;
void B::f1(int){ } // OK, defines A::B::f1(int)

— end example]

6.4.4 Elaborated type specifiers [basic.lookup.elab]

An elaborated-type-specifier (10.1.7.3) may be used to refer to a previously declared class-name or enum-name
even though the name has been hidden by a non-type declaration (6.3.10).

If the elaborated-type-specifier has no nested-name-specifier, and unless the elaborated-type-specifier appears
in a declaration with the following form:

class-key attribute-specifier-seqop: tdentifier ;

the identifier is looked up according to 6.4.1 but ignoring any non-type names that have been declared. If
the elaborated-type-specifier is introduced by the enum keyword and this lookup does not find a previously
declared type-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is introduced by
the class-key and this lookup does not find a previously declared type-name, or if the elaborated-type-specifier
appears in a declaration with the form:

class-key attribute-specifier-seqop: identifier ;
the elaborated-type-specifier is a declaration that introduces the class-name as described in 6.3.2.

If the elaborated-type-specifier has a nested-name-specifier, qualified name lookup is performed, as described
in 6.4.3, but ignoring any non-type names that have been declared. If the name lookup does not find a
previously declared type-name, the elaborated-type-specifier is ill-formed. [ Ezample:

struct Node {
struct Nodex Next; // OK: Refers to Node at global scope
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struct Data* Data; // OK: Declares type Data
// at global scope and member Data
};
struct Data {
struct Node* Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared, cannot introduce a qualified type (10.1.7.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob at global scope.
VAT V]
};
struct Base {
struct Data; // OK: Declares nested Data
struct ::Datax thatData; // OK: Refers to ::Data
struct Base::Data* thisData; // OK: Refers to nested Data
friend class ::Data; // OK: global Data is a friend
friend class Data; // OK: nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data
};
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (10.1.7.3)
struct Base::Data; // error: cannot introduce a qualified type (10.1.7.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

— end example ]

6.4.5 Class member access [basic.lookup.classref]

In a class member access expression (8.2.5), if the . or -> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template
argument list (17.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfiz-expression
and shall name a class template.

If the id-expression in a class member access (8.2.5) is an unqualified-id, and the type of the object expression
is of a class type C, the unqualified-id is looked up in the scope of class C. For a pseudo-destructor call (8.2.4),
the unqualified-id is looked up in the context of the complete postfiz-expression.

If the unqualified-id is ~type-name, the type-name is looked up in the context of the entire postfiz-expression.
If the type T of the object expression is of a class type C, the type-name is also looked up in the scope of class
C. At least one of the lookups shall find a name that refers to cv T. [ Ezample:

struct A { };

struct B {
struct A { };
void f(::Ax a);
};

void B::f(::A* a) {
a->~A(); // OK: lookup in *a finds the injected-class-name
}

— end example ]

If the id-expression in a class member access is a qualified-id of the form

the class-name-or-namespace-name following the . or -> operator is first looked up in the class of the
object expression and the name, if found, is used. Otherwise it is looked up in the context of the entire
postfiz-expression. [ Note: See 6.4.3, which describes the lookup of a name before : :, which will only find a
type or namespace name. — end note |

If the qualified-id has the form
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the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

If the nested-name-specifier contains a simple-template-id (17.2), the names in its template-arguments are
looked up in the context in which the entire postfix-expression occurs.

If the id-expression is a conversion-function-id, its conversion-type-id is first looked up in the class of the
object expression and the name, if found, is used. Otherwise it is looked up in the context of the entire
postfiz-expression. In each of these lookups, only names that denote types or templates whose specializations
are types are considered. [ Ezample:

struct A { };
namespace N {
struct A {
void g() { }
template <class T> operator T();
};
}

int main() {

N::A a;

a.operator A(Q); // calls N::A: :operator N::A
}

— end example]

6.4.6 Using-directives and namespace aliases [basic.lookup.udir]
In a wusing-directive or namespace-alias-definition, during the lookup for a namespace-name or for a name in
a nested-name-specifier only namespace names are considered.

6.5 Program and linkage [basic.link]

A program consists of one or more translation units (Clause 5) linked together. A translation unit consists of
a sequence of declarations.

translation-unit:
declaration-seqopt

A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.
A name having namespace scope (6.3.6) has internal linkage if it is the name of
— a variable, function or function template that is explicitly declared static; or,

— a non-inline variable of non-volatile const-qualified type that is neither explicitly declared extern nor
previously declared to have external linkage; or

— a data member of an anonymous union.

An unnamed namespace or a namespace declared directly or indirectly within an unnamed namespace has
internal linkage. All other namespaces have external linkage. A name having namespace scope that has not
been given internal linkage above has the same linkage as the enclosing namespace if it is the name of

— a variable; or
— a function; or

— a named class (Clause 12), or an unnamed class defined in a typedef declaration in which the class has
the typedef name for linkage purposes (10.1.3); or

— a named enumeration (10.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (10.1.3); or

— a template.
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In addition, a member function, static data member, a named class or enumeration of class scope, or an
unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration
has the typedef name for linkage purposes (10.1.3), has the same linkage, if any, as the name of the class of
which it is a member.

The name of a function declared in block scope and the name of a variable declared by a block scope extern
declaration have linkage. If there is a visible declaration of an entity with linkage having the same name and
type, ignoring entities declared outside the innermost enclosing namespace scope, the block scope declaration
declares that same entity and receives the linkage of the previous declaration. If there is more than one such
matching entity, the program is ill-formed. Otherwise, if no matching entity is found, the block scope entity
receives external linkage. If, within a translation unit, the same entity is declared with both internal and
external linkage, the program is ill-formed. [ Example:

static void fQ);

static int i = 0; /) #1
void g() {
extern void f(); // internal linkage
int i; // #2: 1 has no linkage
{
extern void £(); // internal linkage
extern int i; // #3: external linkage, ill-formed
}
}

Without the declaration at line #2, the declaration at line #3 would link with the declaration at line #1.
Because the declaration with internal linkage is hidden, however, #3 is given external linkage, making the
program ill-formed. — end example|

When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [ Ezample:

namespace X {

void p() {
qQO; // error: q not yet declared
extern void qQ); // 4 is a member of namespace X
}
void middle() {
q0); // error: q not yet declared
}
void qO) { /* ... */ } // definition of X::q
}
void qO) { /* ... */ } // some other, unrelated q

— end example]

8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared at block

(8.1)

(8.2)
(8.3)
(8.4)

(8.5)

(8.6)

scope (6.3.3) has no linkage. A type is said to have linkage if and only if:

it is a class or enumeration type that is named (or has a name for linkage purposes (10.1.3)) and the
name has linkage; or

it is an unnamed class or unnamed enumeration that is a member of a class with linkage; or
it is a specialization of a class template (Clause 17)3; or
it is a fundamental type (6.9.1); or

it is a compound type (6.9.2) other than a class or enumeration, compounded exclusively from types
that have linkage; or

— it is a cv-qualified (6.9.3) version of a type that has linkage.

A type without linkage shall not be used as the type of a variable or function with external linkage unless

— the entity has C language linkage (10.5), or

35) A class template has the linkage of the innermost enclosing class or namespace in which it is declared.
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— the entity is declared within an unnamed namespace (10.3.1), or
— the entity is not odr-used (6.2) or is defined in the same translation unit.

[ Note: In other words, a type without linkage contains a class or enumeration that cannot be named outside
its translation unit. An entity with external linkage declared using such a type could not correspond to any
other entity in another translation unit of the program and thus must be defined in the translation unit if it
is odr-used. Also note that classes with linkage may contain members whose types do not have linkage, and
that typedef names are ignored in the determination of whether a type has linkage. — end note]

[ Example:

template <class T> struct B {
void g(T) { }

void h(T);
friend void i(B, T) { }
};
void £() {
struct A { int x; }; // no linkage
Aa={113;
B<A> ba; // declares B<A>::g(A) and B<A>::h(A)
ba.g(a); // OK
ba.h(a); // error: B<A>::h(A) not defined in the translation unit
i(ba, a); // OK
}

— end example]

Two names that are the same (Clause 6) and that are declared in different scopes shall denote the same
variable, function, type, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the parameter-type-lists of the functions (11.3.5) are identical; and
— when both names denote function templates, the signatures (17.6.6.1) are the same.

After all adjustments of types (during which typedefs (10.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given variable or function shall be identical, except that declarations
for an array object can specify array types that differ by the presence or absence of a major array bound (11.3.4).
A violation of this rule on type identity does not require a diagnostic.

[ Note: Linkage to non-C++ declarations can be achieved using a linkage-specification (10.5). — end note]
6.6 Start and termination [basic.start]
6.6.1 main function [basic.start.main]

A program shall contain a global function called main. FExecuting a program starts a main thread of
execution (4.7, 33.3) in which the main function is invoked, and in which variables of static storage duration
might be initialized (6.6.2) and destroyed (6.6.4). It is implementation-defined whether a program in a
freestanding environment is required to define a main function. [ Note: In a freestanding environment, start-up
and termination is implementation-defined; start-up contains the execution of constructors for objects of
namespace scope with static storage duration; termination contains the execution of destructors for objects
with static storage duration. — end note |

An implementation shall not predefine the main function. This function shall not be overloaded. Its type
shall have C++ language linkage and it shall have a declared return type of type int, but otherwise its type
is implementation-defined. An implementation shall allow both

— a function of () returning int and
— a function of (int, pointer to pointer to char) returning int

as the type of main (11.3.5). In the latter form, for purposes of exposition, the first function parameter is
called argc and the second function parameter is called argv, where argc shall be the number of arguments
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passed to the program from the environment in which the program is run. If argc is nonzero these arguments
shall be supplied in argv[0] through argv[argc-1] as pointers to the initial characters of null-terminated
multibyte strings (NTMBss) (20.4.2.1.5.2) and argv[0] shall be the pointer to the initial character of a NTMBS

that represents the name used to invoke the program or "". The value of argc shall be non-negative. The
value of argv[argc] shall be 0. [ Note: It is recommended that any further (optional) parameters be added
after argv. — end note|

3 The function main shall not be used within a program. The linkage (6.5) of main is implementation-defined. A
program that defines main as deleted or that declares main to be inline, static, or constexpr is ill-formed.
The main function shall not be declared with a linkage-specification (10.5). A program that declares a variable
main at global scope or that declares the name main with C language linkage (in any namespace) is ill-formed.
The name main is not otherwise reserved. | Example: Member functions, classes, and enumerations can be
called main, as can entities in other namespaces. — end ezample]

4 Terminating the program without leaving the current block (e.g., by calling the function std: :exit (int)
(21.5)) does not destroy any objects with automatic storage duration (15.4). If std::exit is called to end a
program during the destruction of an object with static or thread storage duration, the program has undefined
behavior.

5 A return statement in main has the effect of leaving the main function (destroying any objects with automatic
storage duration) and calling std: :exit with the return value as the argument. If control flows off the end
of the compound-statement of main, the effect is equivalent to a return with operand 0 (see also 18.3).

6.6.2 Static initialization [basic.start.static]

1 Variables with static storage duration are initialized as a consequence of program initiation. Variables with
thread storage duration are initialized as a consequence of thread execution. Within each of these phases of
initiation, initialization occurs as follows.

2 A constant initializer for a variable or temporary object o is an initializer whose full-expression is a constant
expression, except that if o is an object, such an initializer may also invoke constexpr constructors for o
and its subobjects even if those objects are of non-literal class types. [Note: Such a class may have a
non-trivial destructor. — end note] Constant initialization is performed if a variable or temporary object
with static or thread storage duration is initialized by a constant initializer for the entity. If constant
initialization is not performed, a variable with static storage duration (6.7.1) or thread storage duration (6.7.2)
is zero-initialized (11.6). Together, zero-initialization and constant initialization are called static initialization;
all other initialization is dynamic initialization. All static initialization strongly happens before (4.7.1) any
dynamic initialization. [ Note: The dynamic initialization of non-local variables is described in 6.6.3; that of
local static variables is described in 9.7. — end note]

3 An implementation is permitted to perform the initialization of a variable with static or thread storage
duration as a static initialization even if such initialization is not required to be done statically, provided that

(3.1) — the dynamic version of the initialization does not change the value of any other object of static or
thread storage duration prior to its initialization, and

(3:2) — the static version of the initialization produces the same value in the initialized variable as would be
produced by the dynamic initialization if all variables not required to be initialized statically were
initialized dynamically.

[ Note: As a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace scope
potentially requiring dynamic initialization and defined later in the same translation unit, it is unspecified
whether the value of obj2 used will be the value of the fully initialized obj2 (because obj2 was statically
initialized) or will be the value of obj2 merely zero-initialized. For example,
inline double fd() { return 1.0; }
extern double di;
double d2 = di; // unspecified:
// may be statically initialized to 0.0 or
// dynamically initialized to 0.0 if d1 is
// dynamically initialized, or 1.0 otherwise
double d1 = £fd(); // may be initialized statically or dynamically to 1.0

— end note]
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6.6.3 Dynamic initialization of non-local variables [basic.start.dynamic]

Dynamic initialization of a non-local variable with static storage duration is unordered if the variable is an
implicitly or explicitly instantiated specialization, is partially-ordered if the variable is an inline variable that
is not an implicitly or explicitly instantiated specialization, and otherwise is ordered. [ Note: An explicitly
specialized non-inline static data member or variable template specialization has ordered initialization. — end
note |

Dynamic initialization of non-local variables V and W with static storage duration are ordered as follows:

— If V and W have ordered initialization and V is defined before W within a single translation unit, the
initialization of V is sequenced before the initialization of W.

— If V has partially-ordered initialization, W does not have unordered initialization, and V is defined before
W in every translation unit in which W is defined, then

— if the program starts a thread (4.7) other than the main thread (6.6.1), the initialization of V
strongly happens before the initialization of W;

— otherwise, the initialization of V is sequenced before the initialization of W.

— Otherwise, if the program starts a thread other than the main thread before either V or W is initialized,
it is unspecified in which threads the initializations of V and W occur; the initializations are unsequenced
if they occur in the same thread.

— Otherwise, the initializations of V and W are indeterminately sequenced.

[ Note: This definition permits initialization of a sequence of ordered variables concurrently with another
sequence. — end note

A non-initialization odr-use is an odr-use (6.2) not caused directly or indirectly by the initialization of a
non-local static or thread storage duration variable.

It is implementation-defined whether the dynamic initialization of a non-local non-inline variable with static
storage duration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly
happens before any non-initialization odr-use of any non-inline function or non-inline variable defined in the
same translation unit as the variable to be initialized.?¢ It is implementation-defined in which threads and
at which points in the program such deferred dynamic initialization occurs. [ Note: Such points should be
chosen in a way that allows the programmer to avoid deadlocks. — end note] [ Ezample:

// - File 1 -

#include "a.h"

#include "b.h"

B b;

A::AQOA

b.Use();
}

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the
initializations are delayed until a is first odr-used in main. In particular, if a is initialized before main is
entered, it is not guaranteed that b will be initialized before it is odr-used by the initialization of a, that is,

36) A non-local variable with static storage duration having initialization with side effects is initialized in this case, even if it is
not itself odr-used (6.2, 6.7.1).
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before A: : A is called. If, however, a is initialized at some point after the first statement of main, b will be
initialized prior to its use in A::A. — end ezample]

It is implementation-defined whether the dynamic initialization of a non-local inline variable with static
storage duration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly
happens before any non-initialization odr-use of that variable. It is implementation-defined in which threads
and at which points in the program such deferred dynamic initialization occurs.

It is implementation-defined whether the dynamic initialization of a non-local non-inline variable with thread
storage duration is sequenced before the first statement of the initial function of a thread or is deferred. If it is
deferred, the initialization associated with the entity for thread ¢ is sequenced before the first non-initialization
odr-use by t of any non-inline variable with thread storage duration defined in the same translation unit
as the variable to be initialized. It is implementation-defined in which threads and at which points in the
program such deferred dynamic initialization occurs.

If the initialization of a non-local variable with static or thread storage duration exits via an exception,
std: :terminate is called (18.5.1).

6.6.4 Termination [basic.start.term]

Destructors (15.4) for initialized objects (that is, objects whose lifetime (6.8) has begun) with static storage
duration, and functions registered with std::atexit, are called as part of a call to std: :exit (21.5). The
call to std::exit is sequenced before the invocations of the destructors and the registered functions. [ Note:
Returning from main invokes std::exit (6.6.1). — end note]

Destructors for initialized objects with thread storage duration within a given thread are called as a result
of returning from the initial function of that thread and as a result of that thread calling std: :exit. The
completions of the destructors for all initialized objects with thread storage duration within that thread
strongly happen before the initiation of the destructors of any object with static storage duration.

If the completion of the constructor or dynamic initialization of an object with static storage duration
strongly happens before that of another, the completion of the destructor of the second is sequenced before
the initiation of the destructor of the first. If the completion of the constructor or dynamic initialization of an
object with thread storage duration is sequenced before that of another, the completion of the destructor of
the second is sequenced before the initiation of the destructor of the first. If an object is initialized statically,
the object is destroyed in the same order as if the object was dynamically initialized. For an object of array
or class type, all subobjects of that object are destroyed before any block-scope object with static storage
duration initialized during the construction of the subobjects is destroyed. If the destruction of an object
with static or thread storage duration exits via an exception, std: :terminate is called (18.5.1).

If a function contains a block-scope object of static or thread storage duration that has been destroyed and the
function is called during the destruction of an object with static or thread storage duration, the program has
undefined behavior if the flow of control passes through the definition of the previously destroyed block-scope
object. Likewise, the behavior is undefined if the block-scope object is used indirectly (i.e., through a pointer)
after its destruction.

If the completion of the initialization of an object with static storage duration strongly happens before a call
to std::atexit (see <cstdlib>, 21.5), the call to the function passed to std::atexit is sequenced before
the call to the destructor for the object. If a call to std: :atexit strongly happens before the completion of
the initialization of an object with static storage duration, the call to the destructor for the object is sequenced
before the call to the function passed to std::atexit. If a call to std: :atexit strongly happens before
another call to std: :atexit, the call to the function passed to the second std::atexit call is sequenced
before the call to the function passed to the first std: :atexit call.

If there is a use of a standard library object or function not permitted within signal handlers (21.10) that
does not happen before (4.7) completion of destruction of objects with static storage duration and execution
of std::atexit registered functions (21.5), the program has undefined behavior. [ Note: If there is a use of
an object with static storage duration that does not happen before the object’s destruction, the program
has undefined behavior. Terminating every thread before a call to std::exit or the exit from main is
sufficient, but not necessary, to satisfy these requirements. These requirements permit thread managers as
static-storage-duration objects. — end note]

Calling the function std: :abort () declared in <cstdlib> terminates the program without executing any
destructors and without calling the functions passed to std::atexit() or std::at_quick_exit().
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6.7 Storage duration [basic.stc]

The storage duration is the property of an object that defines the minimum potential lifetime of the storage
containing the object. The storage duration is determined by the construct used to create the object and is
one of the following:

— static storage duration

— thread storage duration

— automatic storage duration
— dynamic storage duration

Static, thread, and automatic storage durations are associated with objects introduced by declarations (6.1)
and implicitly created by the implementation (15.2). The dynamic storage duration is associated with objects
created by a new-expression (8.3.4).

The storage duration categories apply to references as well.

When the end of the duration of a region of storage is reached, the values of all pointers representing the
address of any part of that region of storage become invalid pointer values (6.9.2). Indirection through an
invalid pointer value and passing an invalid pointer value to a deallocation function have undefined behavior.
Any other use of an invalid pointer value has implementation-defined behavior.3”

6.7.1 Static storage duration [basic.stc.static]

All variables which do not have dynamic storage duration, do not have thread storage duration, and are
not local have static storage duration. The storage for these entities shall last for the duration of the
program (6.6.2, 6.6.4).

If a variable with static storage duration has initialization or a destructor with side effects, it shall not be
eliminated even if it appears to be unused, except that a class object or its copy/move may be eliminated as
specified in 15.8.

The keyword static can be used to declare a local variable with static storage duration. [ Note: 9.7 describes
the initialization of local static variables; 6.6.4 describes the destruction of local static variables. — end
note|

The keyword static applied to a class data member in a class definition gives the data member static storage
duration.

6.7.2 Thread storage duration [basic.stc.thread]

All variables declared with the thread_local keyword have thread storage duration. The storage for these
entities shall last for the duration of the thread in which they are created. There is a distinct object or
reference per thread, and use of the declared name refers to the entity associated with the current thread.

A variable with thread storage duration shall be initialized before its first odr-use (6.2) and, if constructed,
shall be destroyed on thread exit.

6.7.3 Automatic storage duration [basic.stc.auto]

Block-scope variables not explicitly declared static, thread_local, or extern have automatic storage
duration. The storage for these entities lasts until the block in which they are created exits.

[ Note: These variables are initialized and destroyed as described in 9.7. — end note|

If a variable with automatic storage duration has initialization or a destructor with side effects, an implemen-
tation shall not destroy it before the end of its block nor eliminate it as an optimization, even if it appears to
be unused, except that a class object or its copy/move may be eliminated as specified in 15.8.

6.7.4 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (4.6), using new-expressions (8.3.4), and
destroyed using delete-expressions (8.3.5). A C++ implementation provides access to, and management
of, dynamic storage via the global allocation functions operator new and operator newl[] and the global
deallocation functions operator delete and operator deletel]. [ Note: The non-allocating forms described
in 21.6.2.3 do not perform allocation or deallocation. — end note]

37) Some implementations might define that copying an invalid pointer value causes a system-generated runtime fault.
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The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (21.6.2). A C++ program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (20.5.4.6). The following allocation and deallocation functions (21.6)
are implicitly declared in global scope in each translation unit of a program.

void* operator new(std::size_t);
void* operator new(std::size_t, std::align_val_t);

void operator delete(void*) noexcept;

void operator delete(void#*, std::size_t) noexcept;

void operator delete(void*, std::align_val_t) noexcept;

void operator delete(void*, std::size_t, std::align_val_t) noexcept;

void* operator new[] (std::size_t);
void* operator new[] (std::size_t, std::align_val_t);

void operator delete[] (void*) noexcept;

void operator delete[] (void*, std::size_t) noexcept;

void operator delete[](void*, std::align_val_t) noexcept;

void operator delete[](void*, std::size_t, std::align_val_t) noexcept;

These implicit declarations introduce only the function names operator new, operator new[], opera-
tor delete, and operator delete[]. [ Note: The implicit declarations do not introduce the names std,
std::size_t, std::align_val_t, or any other names that the library uses to declare these names. Thus, a
new-expression, delete-expression or function call that refers to one of these functions without including the
header <new> is well-formed. However, referring to std or std::size_t or std::align_val_t is ill-formed
unless the name has been declared by including the appropriate header. — end note| Allocation and/or
deallocation functions may also be declared and defined for any class (15.5).

Any allocation and/or deallocation functions defined in a C++ program, including the default versions in the
library, shall conform to the semantics specified in 6.7.4.1 and 6.7.4.2.

6.7.4.1 Allocation functions [basic.stc.dynamic.allocation]

An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be void*. The first parameter shall have type std::size_t (21.2). The first
parameter shall not have an associated default argument (11.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such a
template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall have
two or more parameters.

The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall return
the address of the start of a block of storage whose length in bytes shall be at least as large as the requested
size. There are no constraints on the contents of the allocated storage on return from the allocation function.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation function are
unspecified. The pointer returned shall be suitably aligned so that it can be converted to a pointer to any
suitable complete object type (21.6.2.1) and then used to access the object or array in the storage allocated
(until the storage is explicitly deallocated by a call to a corresponding deallocation function). Even if the size
of the space requested is zero, the request can fail. If the request succeeds, the value returned shall be a
non-null pointer value (7.11) p0 different from any previously returned value p1, unless that value pl was
subsequently passed to an operator delete. Furthermore, for the library allocation functions in 21.6.2.1
and 21.6.2.2, pO shall represent the address of a block of storage disjoint from the storage for any other object
accessible to the caller. The effect of indirecting through a pointer returned as a request for zero size is
undefined.?8

An allocation function that fails to allocate storage can invoke the currently installed new-handler function
(21.6.3.3), if any. [ Note: A program-supplied allocation function can obtain the address of the currently
installed new_handler using the std::get_new_handler function (21.6.3.4). — end note] If an allocation
function that has a non-throwing exception specification (18.4) fails to allocate storage, it shall return a null

38) The intent is to have operator new() implementable by calling std::malloc() or std::calloc(), so the rules are substan-
tially the same. C++ differs from C in requiring a zero request to return a non-null pointer.
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pointer. Any other allocation function that fails to allocate storage shall indicate failure only by throwing an
exception (18.1) of a type that would match a handler (18.3) of type std: :bad_alloc (21.6.3.1).

A global allocation function is only called as the result of a new expression (8.3.4), or called directly using
the function call syntax (8.2.2), or called indirectly through calls to the functions in the C++ standard library.
[ Note: In particular, a global allocation function is not called to allocate storage for objects with static
storage duration (6.7.1), for objects or references with thread storage duration (6.7.2), for objects of type
std: :type_info (8.2.8), or for an exception object (18.1). — end note]

6.7.4.2 Deallocation functions [basic.stc.dynamic.deallocation]

Deallocation functions shall be class member functions or global functions; a program is ill-formed if
deallocation functions are declared in a namespace scope other than global scope or declared static in global
scope.

Each deallocation function shall return void and its first parameter shall be void*. A deallocation function
may have more than one parameter. A usual deallocation function is a deallocation function that has:

— exactly one parameter; or
— exactly two parameters, the type of the second being either std::align_val_t or std::size_t%’; or

— exactly three parameters, the type of the second being std: :size_t and the type of the third being
std::align_val_t.

A deallocation function may be an instance of a function template. Neither the first parameter nor the return
type shall depend on a template parameter. [ Note: That is, a deallocation function template shall have a first
parameter of type void* and a return type of void (as specified above). — end note] A deallocation function
template shall have two or more function parameters. A template instance is never a usual deallocation
function, regardless of its signature.

If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the
first argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation
function is one supplied in the standard library, the call has no effect.

If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (7.11), the deallocation function shall deallocate the storage referenced by the pointer, ending
the duration of the region of storage.
6.7.4.3 Safely-derived pointers [basic.stc.dynamic.safety]
A traceable pointer object is

— an object of an object pointer type (6.9.2), or

— an object of an integral type that is at least as large as std: :intptr_t, or

— a sequence of elements in an array of narrow character type (6.9.1), where the size and alignment of
the sequence match those of some object pointer type.

A pointer value is a safely-derived pointer to a dynamic object only if it has an object pointer type and it is
one of the following:

— the value returned by a call to the C++ standard library implementation of ::operator new(std::
size_t) or ::operator new(std::size_t, std::align_val_t);*°

— the result of taking the address of an object (or one of its subobjects) designated by an lvalue resulting
from indirection through a safely-derived pointer value;

— the result of well-defined pointer arithmetic (8.7) using a safely-derived pointer value;
— the result of a well-defined pointer conversion (7.11, 8.4) of a safely-derived pointer value;
— the result of a reinterpret_cast of a safely-derived pointer value;

— the result of a reinterpret_cast of an integer representation of a safely-derived pointer value;

39) The global operator delete(voidx, std::size_t) precludes use of an allocation function void operator new(std::size_-
t, std::size_t) as a placement allocation function (C.3.2).

40) This section does not impose restrictions on indirection through pointers to memory not allocated by ::operator new.
This maintains the ability of many C++ implementations to use binary libraries and components written in other languages. In
particular, this applies to C binaries, because indirection through pointers to memory allocated by std: :malloc is not restricted.
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— the value of an object whose value was copied from a traceable pointer object, where at the time of the
copy the source object contained a copy of a safely-derived pointer value.

3 An integer value is an integer representation of a safely-derived pointer only if its type is at least as large as

(3.1)
(3.2)

(3.3)

(3.4)

std: :intptr_t and it is one of the following:
— the result of a reinterpret_cast of a safely-derived pointer value;
— the result of a valid conversion of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of the
copy the source object contained an integer representation of a safely-derived pointer value;

— the result of an additive or bitwise operation, one of whose operands is an integer representation of a
safely-derived pointer value P, if that result converted by reinterpret_cast<void*> would compare
equal to a safely-derived pointer computable from reinterpret_cast<voidx*>(P).

4 An implementation may have relazed pointer safety, in which case the validity of a pointer value does not

1

1

(1.1)

(1.2)

(1.3)

(1.4)

depend on whether it is a safely-derived pointer value. Alternatively, an implementation may have strict
pointer safety, in which case a pointer value referring to an object with dynamic storage duration that is not
a safely-derived pointer value is an invalid pointer value unless the referenced complete object has previously
been declared reachable (23.10.4). [ Note: The effect of using an invalid pointer value (including passing it to
a deallocation function) is undefined, see 6.7. This is true even if the unsafely-derived pointer value might
compare equal to some safely-derived pointer value. — end note] It is implementation-defined whether an
implementation has relaxed or strict pointer safety.

6.7.5 Duration of subobjects [basic.stc.inherit]

The storage duration of subobjects and reference members is that of their complete object (4.5).

6.8 Object lifetime [basic.life]

The lifetime of an object or reference is a runtime property of the object or reference. An object is said to have
non-vacuous initialization if it is of a class or aggregate type and it or one of its subobjects is initialized by a
constructor other than a trivial default constructor. [ Note: Initialization by a trivial copy/move constructor
is non-vacuous initialization. — end note] The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and
— if the object has non-vacuous initialization, its initialization is complete,

except that if the object is a union member or subobject thereof, its lifetime only begins if that union member
is the initialized member in the union (11.6.1, 15.6.2), or as described in 12.3. The lifetime of an object o of
type T ends when:

— if T is a class type with a non-trivial destructor (15.4), the destructor call starts, or

— the storage which the object occupies is released, or is reused by an object that is not nested within
o (4.5).

The lifetime of a reference begins when its initialization is complete. The lifetime of a reference ends as if it
were a scalar object.

[ Note: 15.6.2 describes the lifetime of base and member subobjects. — end note|

The properties ascribed to objects and references throughout this document apply for a given object or
reference only during its lifetime. [ Note: In particular, before the lifetime of an object starts and after its
lifetime ends there are significant restrictions on the use of the object, as described below, in 15.6.2 and
in 15.7. Also, the behavior of an object under construction and destruction might not be the same as the
behavior of an object whose lifetime has started and not ended. 15.6.2 and 15.7 describe the behavior of
objects during the construction and destruction phases. — end note]

A program may end the lifetime of any object by reusing the storage which the object occupies or by explicitly
calling the destructor for an object of a class type with a non-trivial destructor. For an object of a class type
with a non-trivial destructor, the program is not required to call the destructor explicitly before the storage
which the object occupies is reused or released; however, if there is no explicit call to the destructor or if a
delete-expression (8.3.5) is not used to release the storage, the destructor shall not be implicitly called and
any program that depends on the side effects produced by the destructor has undefined behavior.
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Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated®! or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that represents the address of the storage location where the object will be or
was located may be used but only in limited ways. For an object under construction or destruction, see 15.7.
Otherwise, such a pointer refers to allocated storage (6.7.4.2), and using the pointer as if the pointer were of
type void#, is well-defined. Indirection through such a pointer is permitted but the resulting lvalue may only
be used in limited ways, as described below. The program has undefined behavior if:

— the object will be or was of a class type with a non-trivial destructor and the pointer is used as the
operand of a delete-expression,

— the pointer is used to access a non-static data member or call a non-static member function of the
object, or

— the pointer is implicitly converted (7.11) to a pointer to a virtual base class, or

— the pointer is used as the operand of a static_cast (8.2.9), except when the conversion is to pointer

to cv void, or to pointer to cv void and subsequently to pointer to cv char, cv unsigned char, or
cv std: :byte (21.2.1), or

— the pointer is used as the operand of a dynamic_cast (8.2.7).
[ Example:

#include <cstdlib>

struct B {
virtual void f();
void mutate();
virtual ~BQ);

};

struct D1 : B { void £Q0); };
struct D2 : B { void £(); };

void B::mutate() {

new (this) D2; // reuses storage — ends the lifetime of *this
£O; // undefined behavior
. = this; // OK, this points to valid memory
}
void g() {

void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) Di;
pb—>mutate();

*pb; // OK: pb points to valid memory
void* q = pb; // OK: pb points to valid memory
pb—>£0); // undefined behavior, lifetime of *pb has ended

¥
— end example ]

Similarly, before the lifetime of an object has started but after the storage which the object will occupy
has been allocated or, after the lifetime of an object has ended and before the storage which the object
occupied is reused or released, any glvalue that refers to the original object may be used but only in limited
ways. For an object under construction or destruction, see 15.7. Otherwise, such a glvalue refers to allocated
storage (6.7.4.2), and using the properties of the glvalue that do not depend on its value is well-defined. The
program has undefined behavior if:

— the glvalue is used to access the object, or
— the glvalue is used to call a non-static member function of the object, or
— the glvalue is bound to a reference to a virtual base class (11.6.3), or

— the glvalue is used as the operand of a dynamic_cast (8.2.7) or as the operand of typeid.

41) For example, before the construction of a global object of non-POD class type (15.7).
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If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-static
data member whose type is const-qualified or a reference type, and

— the original object was a most derived object (4.5) of type T and the new object is a most derived
object of type T (that is, they are not base class subobjects).

[ Ezample:

struct C {
int i;
void f();
const C& operator=( const C& );

};

const C& C::operator=( const C& other) {
if ( this != &other ) {

this->~CQ); // lifetime of *this ends
new (this) C(other); // new object of type C created
£0; // well-defined
}
return *this;
}
C cl;
C c2;
cl = c2; // well-defined
cl.£0; // well-defined; c1 refers to a new object of type C

—end example] [ Note: If these conditions are not met, a pointer to the new object can be obtained from a
pointer that represents the address of its storage by calling std: :launder (21.6). — end note]

If a program ends the lifetime of an object of type T with static (6.7.1), thread (6.7.2), or automatic (6.7.3)
storage duration and if T has a non-trivial destructor,*? the program must ensure that an object of the
original type occupies that same storage location when the implicit destructor call takes place; otherwise the
behavior of the program is undefined. This is true even if the block is exited with an exception. [ Ezample:

class T { };

struct B {
~BQ);

};

void h() {
B b;
new (&b) T;
} // undefined behavior at block exit

— end example ]

Creating a new object within the storage that a const complete object with static, thread, or automatic
storage duration occupies, or within the storage that such a const object used to occupy before its lifetime
ended, results in undefined behavior. | Ezample:

struct B {
BO;

42) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic
storage duration, upon exit from the thread for an object with thread storage duration, or upon exit from the program for an
object with static storage duration.
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~BQO);
}s

const B b;

void h() {

b.~BQ);

new (const_cast<B*>(&b)) const B; // undefined behavior
}

— end example]

In this section, “before” and “after” refer to the “happens before” relation (4.7). [ Note: Therefore, undefined
behavior results if an object that is being constructed in one thread is referenced from another thread without
adequate synchronization. — end note]

6.9 Types [basic.types]

[ Note: 6.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects (4.5),
references (11.3.2), or functions (11.3.5). — end note]

For any object (other than a base-class subobject) of trivially copyable type T, whether or not the object
holds a valid value of type T, the underlying bytes (4.4) making up the object can be copied into an array of
char, unsigned char, or std::byte (21.2.1).%3 If the content of that array is copied back into the object,
the object shall subsequently hold its original value. [ Ezample:

#define N sizeof (T)
char buf[N];

T obj; // obj initialized to its original value
std: :memcpy (buf, &obj, N); // between these two calls to std: :memcpy, obj might be modified
std: :memcpy (&obj, buf, N); // at this point, each subobject of obj of scalar type holds its original value

— end example]

For any trivially copyable type T, if two pointers to T point to distinct T objects obj1 and obj2, where neither
obj1 nor obj2 is a base-class subobject, if the underlying bytes (4.4) making up obj1 are copied into obj2,**
obj2 shall subsequently hold the same value as obj1. [ Ezample:
T* tip;
T* t2p;
// provided that t2p points to an initialized object ...
std: :memcpy(tlp, t2p, sizeof(T));
// at this point, every subobject of trivially copyable type in *tlp contains
// the same value as the corresponding subobject in *t2p

— end example ]

The object representation of an object of type T is the sequence of N unsigned char objects taken up by the
object of type T, where N equals sizeof (T). The value representation of an object is the set of bits that
hold the value of type T. Bits in the object representation that are not part of the value representation are
padding bits. For trivially copyable types, the value representation is a set of bits in the object representation
that determines a wvalue, which is one discrete element of an implementation-defined set of values.*

A class that has been declared but not defined, an enumeration type in certain contexts (10.2), or an array of
unknown bound or of incomplete element type, is an incompletely-defined object type.*S Incompletely-defined
object types and cv void are incomplete types (6.9.1). Objects shall not be defined to have an incomplete
type.

A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later
on; the type “class X” is the same type at both points. The declared type of an array object might be
an array of incomplete class type and therefore incomplete; if the class type is completed later on in the
translation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown bound and therefore be incomplete at one

43) By using, for example, the library functions (20.5.1.2) std: :memcpy or std: :memmove.
44) By using, for example, the library functions (20.5.1.2) std: :memcpy or std: :memmove.
45) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.
46) The size and layout of an instance of an incompletely-defined object type is unknown.
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point in a translation unit and complete later on; the array types at those two points (“array of unknown
bound of T” and “array of N T”) are different types. The type of a pointer to array of unknown bound, or of
a type defined by a typedef declaration to be an array of unknown bound, cannot be completed. [ Ezample:

class X; // X is an incomplete type

extern X* xp; // Xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete

typedef int UNKA[]; // UNKA is an incomplete type

UNKA* arrp; // arrp is a pointer to an incomplete type

UNKA** arrpp;

void foo() {

Xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKA* is known
}
struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete
X x;
void bar() {
Xp = &x; // OK; type is “pointer to X”
arrp = &arr; // ill-formed: different types
Xp++; // OK: X is complete
arrp++; // ill-formed: UNKA can’t be completed
}

— end example]

[ Note: The rules for declarations and expressions describe in which contexts incomplete types are prohibited.
— end note]

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not
cv void.

Arithmetic types (6.9.1), enumeration types, pointer types, pointer to member types (6.9.2), std: :nullptr_-
t, and cv-qualified (6.9.3) versions of these types are collectively called scalar types. Scalar types, POD
classes (Clause 12), arrays of such types and cv-qualified versions of these types are collectively called POD
types. Cv-unqualified scalar types, trivially copyable class types (Clause 12), arrays of such types, and
cv-qualified versions of these types are collectively called trivially copyable types. Scalar types, trivial class
types (Clause 12), arrays of such types and cv-qualified versions of these types are collectively called t¢rivial
types. Scalar types, standard-layout class types (Clause 12), arrays of such types and cv-qualified versions of
these types are collectively called standard-layout types.
A type is a literal type if it is:

— possibly cv-qualified void; or

— a scalar type; or

— a reference type; or

— an array of literal type; or

— a possibly cv-qualified class type (Clause 12) that has all of the following properties:

— it has a trivial destructor,

— it is either a closure type (8.1.5.1), an aggregate type (11.6.1), or has at least one constexpr
constructor or constructor template (possibly inherited (10.3.3) from a base class) that is not a
copy or move constructor,

— if it is a union, at least one of its non-static data members is of non-volatile literal type, and

— if it is not a union, all of its non-static data members and base classes are of non-volatile literal
types.

[ Note: A literal type is one for which it might be possible to create an object within a constant expression.
It is not a guarantee that it is possible to create such an object, nor is it a guarantee that any object of that
type will usable in a constant expression. — end note]
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Two types cvl T1 and cv2 T2 are layout-compatible types if T1 and T2 are the same type, layout-compatible
enumerations (10.2), or layout-compatible standard-layout class types (12.2).

6.9.1 Fundamental types [basic.fundamental]

Objects declared as characters (char) shall be large enough to store any member of the implementation’s basic
character set. If a character from this set is stored in a character object, the integral value of that character
object is equal to the value of the single character literal form of that character. It is implementation-defined
whether a char object can hold negative values. Characters can be explicitly declared unsigned or signed.
Plain char, signed char, and unsigned char are three distinct types, collectively called narrow character
types. A char, a signed char, and an unsigned char occupy the same amount of storage and have the
same alignment requirements (6.11); that is, they have the same object representation. For narrow character
types, all bits of the object representation participate in the value representation. [ Note: A bit-field of narrow
character type whose length is larger than the number of bits in the object representation of that type has
padding bits; see 6.9. — end note] For unsigned narrow character types, each possible bit pattern of the
value representation represents a distinct number. These requirements do not hold for other types. In any
particular implementation, a plain char object can take on either the same values as a signed char or an
unsigned char; which one is implementation-defined. For each value 7 of type unsigned char in the range
0 to 255 inclusive, there exists a value j of type char such that the result of an integral conversion (7.8) from
i to char is j, and the result of an integral conversion from j to unsigned char is i.

"W M s

There are five standard signed integer types : “signed char”, “short int”, “int”, “long int”, and “long
long int”. In this list, each type provides at least as much storage as those preceding it in the list. There
may also be implementation-defined extended signed integer types. The standard and extended signed integer
types are collectively called signed integer types. Plain ints have the natural size suggested by the architecture
of the execution environment*”; the other signed integer types are provided to meet special needs.

For each of the standard signed integer types, there exists a corresponding (but different) standard un-
signed integer type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”,
and “unsigned long long int”, each of which occupies the same amount of storage and has the same
alignment requirements (6.11) as the corresponding signed integer type®®; that is, each signed integer type has
the same object representation as its corresponding unsigned integer type. Likewise, for each of the extended
signed integer types there exists a corresponding extended unsigned integer type with the same amount of
storage and alignment requirements. The standard and extended unsigned integer types are collectively
called unsigned integer types. The range of non-negative values of a signed integer type is a subrange of
the corresponding unsigned integer type, the representation of the same value in each of the two types is
the same, and the value representation of each corresponding signed/unsigned type shall be the same. The
standard signed integer types and standard unsigned integer types are collectively called the standard integer
types, and the extended signed integer types and extended unsigned integer types are collectively called the
extended integer types. The signed and unsigned integer types shall satisfy the constraints given in the C
standard, section 5.2.4.2.1.

Unsigned integers shall obey the laws of arithmetic modulo 2" where n is the number of bits in the value
representation of that particular size of integer.*

Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (25.3.1). Type wchar_t shall have the same
size, signedness, and alignment requirements (6.11) as one of the other integral types, called its underlying
type. Types char16_t and char32_t denote distinct types with the same size, signedness, and alignment as
uint_least16_t and uint_least32_t, respectively, in <cstdint>, called the underlying types.

Values of type bool are either true or false.’" [Note: There are no signed, unsigned, short, or long
bool types or values. — end note] Values of type bool participate in integral promotions (7.6).

Types bool, char, char16_t, char32_t, wchar_t, and the signed and unsigned integer types are collectively
called integral types.”’ A synonym for integral type is integer type. The representations of integral types

47) int must also be large enough to contain any value in the range [INT_MIN, INT_MAX], as defined in the header <climits>.

48) See 10.1.7.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.

49) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the
resulting unsigned integer type.

50) Using a bool value in ways described by this document as “undefined”, such as by examining the value of an uninitialized
automatic object, might cause it to behave as if it is neither true nor false.

51) Therefore, enumerations (10.2) are not integral; however, enumerations can be promoted to integral types as specified in 7.6.
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shall define values by use of a pure binary numeration system.®? [ Ezample: This document permits two’s
complement, ones’ complement and signed magnitude representations for integral types. — end example|

There are three floating-point types: float, double, and long double. The type double provides at least as
much precision as float, and the type long double provides at least as much precision as double. The set of
values of the type float is a subset of the set of values of the type double; the set of values of the type double
is a subset of the set of values of the type long double. The value representation of floating-point types is
implementation-defined. [ Note: This document imposes no requirements on the accuracy of floating-point
operations; see also 21.3. — end note] Integral and floating types are collectively called arithmetic types.
Specializations of the standard library template std: :numeric_limits (21.3) shall specify the maximum
and minimum values of each arithmetic type for an implementation.

A type cv void is an incomplete type that cannot be completed; such a type has an empty set of values. It is
used as the return type for functions that do not return a value. Any expression can be explicitly converted
to type cv void (8.4). An expression of type cv void shall be used only as an expression statement (9.2),
as an operand of a comma expression (8.19), as a second or third operand of ?: (8.16), as the operand
of typeid, noexcept, or decltype, as the expression in a return statement (9.6.3) for a function with the
return type cv void, or as the operand of an explicit conversion to type cv void.

A value of type std: :nullptr_t is a null pointer constant (7.11). Such values participate in the pointer and
the pointer to member conversions (7.11, 7.12). sizeof (std: :nullptr_t) shall be equal to sizeof (void*).

[ Note: Even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types. — end note ]

6.9.2 Compound types [basic.compound]
Compound types can be constructed in the following ways:
— arrays of objects of a given type, 11.3.4;

— functions, which have parameters of given types and return void or references or objects of a given
type, 11.3.5;

— pointers to cv void or objects or functions (including static members of classes) of a given type, 11.3.1;
— references to objects or functions of a given type, 11.3.2. There are two types of references:

— lvalue reference

— rvalue reference

— classes containing a sequence of objects of various types (Clause 12), a set of types, enumerations
and functions for manipulating these objects (12.2.1), and a set of restrictions on the access to these
entities (Clause 14);

— wungons, which are classes capable of containing objects of different types at different times, 12.3;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a
different enumerated type, 10.2;

— pointers to non-static class members,”® which identify members of a given type within objects of a
given class, 11.3.3.

These methods of constructing types can be applied recursively; restrictions are mentioned in 11.3.1, 11.3.4,
11.3.5, and 11.3.2. Constructing a type such that the number of bytes in its object representation exceeds the
maximum value representable in the type std::size_t (21.2) is ill-formed.

The type of a pointer to cv void or a pointer to an object type is called an object pointer type. | Note: A
pointer to void does not have a pointer-to-object type, however, because void is not an object type. — end
note] The type of a pointer that can designate a function is called a function pointer type. A pointer to
objects of type T is referred to as a “pointer to T”. [ Ezample: A pointer to an object of type int is referred to
as “pointer to int” and a pointer to an object of class X is called a “pointer to X”. — end ezample] Except
for pointers to static members, text referring to “pointers” does not apply to pointers to members. Pointers
to incomplete types are allowed although there are restrictions on what can be done with them (6.11). Every
value of pointer type is one of the following;:

52) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.)

53) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
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— a pointer to an object or function (the pointer is said to point to the object or function), or
— a pointer past the end of an object (8.7), or

— the null pointer value (7.11) for that type, or

— an nwvalid pointer value.

A value of a pointer type that is a pointer to or past the end of an object represents the address of the
first byte in memory (4.4) occupied by the object®® or the first byte in memory after the end of the storage
occupied by the object, respectively. [ Note: A pointer past the end of an object (8.7) is not considered to
point to an unrelated object of the object’s type that might be located at that address. A pointer value
becomes invalid when the storage it denotes reaches the end of its storage duration; see 6.7. — end note|
For purposes of pointer arithmetic (8.7) and comparison (8.9, 8.10), a pointer past the end of the last element
of an array x of n elements is considered to be equivalent to a pointer to a hypothetical element x[n]. The
value representation of pointer types is implementation-defined. Pointers to layout-compatible types shall
have the same value representation and alignment requirements (6.11). [ Note: Pointers to over-aligned
types (6.11) have no special representation, but their range of valid values is restricted by the extended
alignment requirement. — end note|

Two objects a and b are pointer-interconvertible if:
— they are the same object, or
— one is a union object and the other is a non-static data member of that object (12.3), or

— one is a standard-layout class object and the other is the first non-static data member of that object,
or, if the object has no non-static data members, the first base class subobject of that object (12.2), or

— there exists an object ¢ such that a and ¢ are pointer-interconvertible, and ¢ and b are pointer-
interconvertible.

If two objects are pointer-interconvertible, then they have the same address, and it is possible to obtain a
pointer to one from a pointer to the other via a reinterpret_cast (8.2.10). [ Note: An array object and its
first element are not pointer-interconvertible, even though they have the same address. — end note|

A pointer to cv-qualified (6.9.3) or cv-unqualified void can be used to point to objects of unknown type.
Such a pointer shall be able to hold any object pointer. An object of type cv void* shall have the same
representation and alignment requirements as cv char*.

6.9.3 CV-qualifiers [basic.type.qualifier]

A type mentioned in 6.9.1 and 6.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete or
incomplete object type or is void (6.9) has three corresponding cv-qualified versions of its type: a const-
qualified version, a volatile-qualified version, and a const-volatile-qualified version. The type of an object (4.5)
includes the cv-qualifiers specified in the decl-specifier-seq (10.1), declarator (Clause 11), type-id (11.1), or
new-type-id (8.3.4) when the object is created.

— A const object is an object of type const T or a non-mutable subobject of such an object.

— A wolatile object is an object of type volatile T, a subobject of such an object, or a mutable subobject
of a const volatile object.

— A const volatile object is an object of type const volatile T, a non-mutable subobject of such an
object, a const subobject of a volatile object, or a non-mutable volatile subobject of a const object.

The cv-qualified or cv-unqualified versions of a type are distinct types; however, they shall have the same
representation and alignment requirements (6.11).5°

A compound type (6.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is
compounded. Any cv-qualifiers applied to an array type affect the array element type (11.3.4).

See 11.3.5 and 12.2.2.1 regarding function types that have cv-qualifiers.

There is a partial ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.
Table 10 shows the relations that constitute this ordering.

In this document, the notation cv (or cvi, cv2, etc.), used in the description of types, represents an arbitrary
set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set. For a type cv T,

54) For an object that is not within its lifetime, this is the first byte in memory that it will occupy or used to occupy.
55) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and non-static data members of unions.
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Table 10 — Relations on const and volatile

no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile
const < const volatile
< const volatile

volatile

the top-level cv-qualifiers of that type are those denoted by cv. [ Ezample: The type corresponding to the
type-id const int& has no top-level cv-qualifiers. The type corresponding to the type-id volatile int *
const has the top-level cv-qualifier const. For a class type C, the type corresponding to the type-id void
(C::* volatile) (int) const has the top-level cv-qualifier volatile. — end ezample]

Cv-qualifiers applied to an array type attach to the underlying element type, so the notation “cv T”, where
T is an array type, refers to an array whose elements are so-qualified. An array type whose elements are
cv-qualified is also considered to have the same cv-qualifications as its elements. [ Example:

typedef char CA[5];

typedef const char CC;

CC arri[5] = { 0 };

const CA arr2 = { 0 };

The type of both arrl and arr2 is “array of 5 const char”, and the array type is considered to be
const-qualified. — end example |
6.10 Lvalues and rvalues [basic.lval]

Expressions are categorized according to the taxonomy in Figure 1.

expression
glvalue rvalue
Ivalue xvalue prvalue

Figure 1 — Expression category taxonomy

— A glvalue is an expression whose evaluation determines the identity of an object, bit-field, or function.

— A prvalue is an expression whose evaluation initializes an object or a bit-field, or computes the value of
the operand of an operator, as specified by the context in which it appears.

— An 2value is a glvalue that denotes an object or bit-field whose resources can be reused (usually
because it is near the end of its lifetime). [ Ezample: Certain kinds of expressions involving rvalue
references (11.3.2) yield xvalues, such as a call to a function whose return type is an rvalue reference or
a cast to an rvalue reference type. — end ezample|

— An [value is a glvalue that is not an xvalue.
— An rvalue is a prvalue or an xvalue.

[ Note: Historically, lvalues and rvalues were so-called because they could appear on the left- and right-hand
side of an assignment (although this is no longer generally true); glvalues are “generalized” lvalues, prvalues
are “pure” rvalues, and xvalues are “eXpiring” lvalues. Despite their names, these terms classify expressions,
not values. — end note] Every expression belongs to exactly one of the fundamental classifications in this
taxonomy: lvalue, xvalue, or prvalue. This property of an expression is called its value category. [ Note: The
discussion of each built-in operator in Clause 8 indicates the category of the value it yields and the value
categories of the operands it expects. For example, the built-in assignment operators expect that the left
operand is an lvalue and that the right operand is a prvalue and yield an lvalue as the result. User-defined
operators are functions, and the categories of values they expect and yield are determined by their parameter
and return types. — end note|
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The result of a prvalue is the value that the expression stores into its context. A prvalue whose result is the
value V is sometimes said to have or name the value V. The result object of a prvalue is the object initialized
by the prvalue; a prvalue that is used to compute the value of an operand of an operator or that has type
cv void has no result object. [ Note: Except when the prvalue is the operand of a decltype-specifier, a prvalue
of class or array type always has a result object. For a discarded prvalue, a temporary object is materialized;
see Clause 8. — end note] The result of a glvalue is the entity denoted by the expression.

[ Note: Whenever a glvalue appears in a context where a prvalue is expected, the glvalue is converted to
a prvalue; see 7.1, 7.2, and 7.3. An attempt to bind an rvalue reference to an lvalue is not such a context;
see 11.6.3. —end note] [Note: There are no prvalue bit-fields; if a bit-field is converted to a prvalue (7.1),
a prvalue of the type of the bit-field is created, which might then be promoted (7.6). — end note]|

[ Note: Whenever a prvalue appears in a context where a glvalue is expected, the prvalue is converted to an
xvalue; see 7.4. — end note|

The discussion of reference initialization in 11.6.3 and of temporaries in 15.2 indicates the behavior of lvalues
and rvalues in other significant contexts.

Unless otherwise indicated (8.2.2), a prvalue shall always have complete type or the void type. A glvalue
shall not have type cv void. [ Note: A glvalue may have complete or incomplete non-void type. Class and
array prvalues can have cv-qualified types; other prvalues always have cv-unqualified types. See Clause 8.
— end note]

7 An lvalue is modifiable unless its type is const-qualified or is a function type. [Note: A program that

(8.7)

(8.8)

attempts to modify an object through a nonmodifiable lvalue expression or through an rvalue expression is
ill-formed (8.18, 8.2.6, 8.3.2). — end note]

If a program attempts to access the stored value of an object through a glvalue of other than one of the
following types the behavior is undefined:°®

— the dynamic type of the object,

— a cv-qualified version of the dynamic type of the object,

— a type similar (as defined in 7.5) to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type
of the object,

— an aggregate or union type that includes one of the aforementioned types among its elements or non-
static data members (including, recursively, an element or non-static data member of a subaggregate or
contained union),

— a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— a char, unsigned char, or std: :byte type.

6.11 Alignment [basic.align)]

Object types have alignment requirements (6.9.1, 6.9.2) which place restrictions on the addresses at which an
object of that type may be allocated. An alignment is an implementation-defined integer value representing
the number of bytes between successive addresses at which a given object can be allocated. An object type
imposes an alignment requirement on every object of that type; stricter alignment can be requested using the
alignment specifier (10.6.2).

A fundamental alignment is represented by an alignment less than or equal to the greatest alignment supported
by the implementation in all contexts, which is equal to alignof (std: :max_align_t) (21.2). The alignment
required for a type might be different when it is used as the type of a complete object and when it is used as
the type of a subobject. [ Ezample:

struct B { long double d; };
struct D : virtual B { char c; };
When D is the type of a complete object, it will have a subobject of type B, so it must be aligned appropriately

for a long double. If D appears as a subobject of another object that also has B as a virtual base class, the
B subobject might be part of a different subobject, reducing the alignment requirements on the D subobject.

56) The intent of this list is to specify those circumstances in which an object may or may not be aliased.
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— end example] The result of the alignof operator reflects the alignment requirement of the type in the
complete-object case.

An extended alignment is represented by an alignment greater than alignof (std::max_align_t). It is
implementation-defined whether any extended alignments are supported and the contexts in which they
are supported (10.6.2). A type having an extended alignment requirement is an over-aligned type. [ Note:
Every over-aligned type is or contains a class type to which extended alignment applies (possibly through a
non-static data member). — end note] A new-extended alignment is represented by an alignment greater
than __STDCPP_DEFAULT_NEW_ALIGNMENT__ (19.8).

Alignments are represented as values of the type std::size_t. Valid alignments include only those values
returned by an alignof expression for the fundamental types plus an additional implementation-defined set
of values, which may be empty. Every alignment value shall be a non-negative integral power of two.

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger
alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment
requirement.

The alignment requirement of a complete type can be queried using an alignof expression (8.3.6). Further-
more, the narrow character types (6.9.1) shall have the weakest alignment requirement. [ Note: This enables
the narrow character types to be used as the underlying type for an aligned memory area (10.6.2). — end
note|

Comparing alignments is meaningful and provides the obvious results:
— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.
— When an alignment is larger than another it represents a stricter alignment.

[ Note: The runtime pointer alignment function (23.10.5) can be used to obtain an aligned pointer within a
buffer; the aligned-storage templates in the library (23.15.7.6) can be used to obtain aligned storage. — end
note|

If a request for a specific extended alignment in a specific context is not supported by an implementation,
the program is ill-formed.
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7 Standard conversions [conv]

Standard conversions are implicit conversions with built-in meaning. Clause 7 enumerates the full set of such
conversions. A standard conversion sequence is a sequence of standard conversions in the following order:

— Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating-point promotion, integral
conversions, floating-point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one function pointer conversion.
— Zero or one qualification conversion.

[ Note: A standard conversion sequence can be empty, i.e., it can consist of no conversions. — end note|
A standard conversion sequence will be applied to an expression if necessary to convert it to a required
destination type.

[ Note: Expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destination
type (Clause 8).

— When used in the condition of an if statement or iteration statement (9.4, 9.5). The destination type
is bool.

— When used in the expression of a switch statement. The destination type is integral (9.4).

— When used as the source expression for an initialization (which includes use as an argument in a
function call and use as the expression in a return statement). The type of the entity being initialized
is (generally) the destination type. See 11.6, 11.6.3.

— end note]

An expression e can be implicitly converted to a type T if and only if the declaration T t=e; is well-formed,
for some invented temporary variable t (11.6).

Certain language constructs require that an expression be converted to a Boolean value. An expression e
appearing in such a context is said to be conteztually converted to bool and is well-formed if and only if the
declaration bool t(e); is well-formed, for some invented temporary variable t (11.6).

Certain language constructs require conversion to a value having one of a specified set of types appropriate to
the construct. An expression e of class type E appearing in such a context is said to be contextually implicitly
converted to a specified type T and is well-formed if and only if e can be implicitly converted to a type T
that is determined as follows: E is searched for non-explicit conversion functions whose return type is cv T or
reference to cv T such that T is allowed by the context. There shall be exactly one such T.

The effect of any implicit conversion is the same as performing the corresponding declaration and initialization
and then using the temporary variable as the result of the conversion. The result is an lvalue if T is an Ivalue
reference type or an rvalue reference to function type (11.3.2), an xvalue if T is an rvalue reference to object
type, and a prvalue otherwise. The expression e is used as a glvalue if and only if the initialization uses it as
a glvalue.

[ Note: For class types, user-defined conversions are considered as well; see 15.3. In general, an implicit
conversion sequence (16.3.3.1) consists of a standard conversion sequence followed by a user-defined conversion
followed by another standard conversion sequence. — end note]

[ Note: There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue
conversion is not done on the operand of the unary & operator. Specific exceptions are given in the descriptions
of those operators and contexts. — end note|
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7.1 Lvalue-to-rvalue conversion [conv.lval]

A glvalue (6.10) of a non-function, non-array type T can be converted to a prvalue.’” If T is an incomplete
type, a program that necessitates this conversion is ill-formed. If T is a non-class type, the type of the prvalue
is the cv-unqualified version of T. Otherwise, the type of the prvalue is T.?3

When an lvalue-to-rvalue conversion is applied to an expression e, and either
— e is not potentially evaluated, or

— the evaluation of e results in the evaluation of a member ex of the set of potential results of e, and ex
names a variable x that is not odr-used by ex (6.2),

the value contained in the referenced object is not accessed. [ Example:

struct S { int n; };
auto £f() {
Sx{1};
constexpr Sy { 2 };
return [&] (bool b) { return (b 7 y : x).n; };

}

auto g = £0);

int m = g(false); // undefined behavior due to access of x.n outside its lifetime
int n = g(true); // OK, does not access y.n

— end example]
The result of the conversion is determined according to the following rules:

— If Tis cv std::nullptr_t, the result is a null pointer constant (7.11). [ Note: Since no value is fetched
from memory, there is no side effect for a volatile access (4.6), and an inactive member of a union (12.3)
may be accessed. — end note]

— Otherwise, if T has a class type, the conversion copy-initializes the result object from the glvalue.

— Otherwise, if the object to which the glvalue refers contains an invalid pointer value (6.7.4.2, 6.7.4.3),
the behavior is implementation-defined.

— Otherwise, the value contained in the object indicated by the glvalue is the prvalue result.
[ Note: See also 6.10. — end note]

7.2 Array-to-pointer conversion [conv.array]

An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to a prvalue of
type “pointer to T”. The temporary materialization conversion (7.4) is applied. The result is a pointer to the
first element of the array.

7.3 Function-to-pointer conversion [conv.func]

An lvalue of function type T can be converted to a prvalue of type “pointer to T”. The result is a pointer to
the function.?®

[ Note: See 16.4 for additional rules for the case where the function is overloaded. — end note]

7.4 Temporary materialization conversion [conv.rval]

A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a temporary
object (15.2) of type T from the prvalue by evaluating the prvalue with the temporary object as its result
object, and produces an xvalue denoting the temporary object. T shall be a complete type. [ Note: If T is a
class type (or array thereof), it must have an accessible and non-deleted destructor; see 15.4. — end note
[ Example:

struct X { int n; };
int k = X .n; // OK, X() prvalue is converted to zvalue

— end example]

57) For historical reasons, this conversion is called the “lvalue-to-rvalue” conversion, even though that name does not accurately
reflect the taxonomy of expressions described in 6.10.

58) In C++ class and array prvalues can have cv-qualified types. This differs from ISO C, in which non-lvalues never have
cv-qualified types.

59) This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function
cannot be obtained.
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7.5 Qualification conversions [conv.qual]
A cv-decomposition of a type T is a sequence of cv; and P; such that T is
“cvg Py cvy Py -+ cvp_y Pu_q cv, U” for n > 0,

where each cv; is a set of cv-qualifiers (6.9.3), and each P; is “pointer to” (11.3.1), “pointer to member of
class C; of type” (11.3.3), “array of N;”, or “array of unknown bound of” (11.3.4). If P; designates an array,
the cv-qualifiers cv;;1 on the element type are also taken as the cv-qualifiers cv; of the array. [ Example: The
type denoted by the type-id const int ** has two cv-decompositions, taking U as “int” and as “pointer to
const int”. — end ezample] The n-tuple of cv-qualifiers after the first one in the longest cv-decomposition
of T, that is, cvy, cve, ..., cv,, is called the cv-qualification signature of T.

Two types Ty and Ty are similar if they have cv-decompositions with the same n such that corresponding P;
components are the same and the types denoted by U are the same.

J

%

A prvalue expression of type T1 can be converted to type T if the following conditions are satisfied, where cv
denotes the cv-qualifiers in the cv-qualification signature of T;:%°

— Ty and Ty are similar.
— For every i > 0, if const is in cv} then const is in cv?, and similarly for volatile.
— If the cv; and cv? are different, then const is in every cvi for 0 < k < 1.

[ Note: If a program could assign a pointer of type T** to a pointer of type const T** (that is, if line #1
below were allowed), a program could inadvertently modify a const object (as it is done on line #2). For
example,
int main() {
const char ¢ = ’c’;
char* pc;
const char** pcc = &pc; // #1: not allowed
*pcc = &c;
*pc = ’C’; // #2: modifies a const object
}

— end note]

[ Note: A prvalue of type “pointer to cvl T” can be converted to a prvalue of type “pointer to cv2 T” if
“cv2 T” is more cv-qualified than “cvl T”. A prvalue of type “pointer to member of X of type cvl T” can be
converted to a prvalue of type “pointer to member of X of type cv2 T” if “cv2 T” is more cv-qualified than
“cvl T". — end note]

[ Note: Function types (including those used in pointer to member function types) are never cv-qualified
(11.3.5). — end note]

7.6 Integral promotions [conv.prom]

A prvalue of an integer type other than bool, char16_t, char32_t, or wchar_t whose integer conversion
rank (7.15) is less than the rank of int can be converted to a prvalue of type int if int can represent all the
values of the source type; otherwise, the source prvalue can be converted to a prvalue of type unsigned int.

A prvalue of type char16_t, char32_t, or wchar_t (6.9.1) can be converted to a prvalue of the first of
the following types that can represent all the values of its underlying type: int, unsigned int, long int,
unsigned long int, long long int, or unsigned long long int. If none of the types in that list can
represent all the values of its underlying type, a prvalue of type char16_t, char32_t, or wchar_t can be
converted to a prvalue of its underlying type.

A prvalue of an unscoped enumeration type whose underlying type is not fixed (10.2) can be converted to a
prvalue of the first of the following types that can represent all the values of the enumeration (i.e., the values
in the range byin t0 bmax as described in 10.2): int, unsigned int, long int, unsigned long int, long
long int, or unsigned long long int. If none of the types in that list can represent all the values of the
enumeration, a prvalue of an unscoped enumeration type can be converted to a prvalue of the extended
integer type with lowest integer conversion rank (7.15) greater than the rank of long long in which all the
values of the enumeration can be represented. If there are two such extended types, the signed one is chosen.

A prvalue of an unscoped enumeration type whose underlying type is fixed (10.2) can be converted to a
prvalue of its underlying type. Moreover, if integral promotion can be applied to its underlying type, a

60) These rules ensure that const-safety is preserved by the conversion.
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prvalue of an unscoped enumeration type whose underlying type is fixed can also be converted to a prvalue
of the promoted underlying type.

A prvalue for an integral bit-field (12.2.4) can be converted to a prvalue of type int if int can represent all
the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent all
the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field has
an enumerated type, it is treated as any other value of that type for promotion purposes.

A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and true
becoming one.

These conversions are called integral promotions.

7.7 Floating-point promotion [conv.fpprom]
A prvalue of type float can be converted to a prvalue of type double. The value is unchanged.

This conversion is called floating-point promotion.

7.8 Integral conversions [conv.integral]

A prvalue of an integer type can be converted to a prvalue of another integer type. A prvalue of an unscoped
enumeration type can be converted to a prvalue of an integer type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2™ where n is the number of bits used to represent the unsigned type). [ Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there is
no truncation). — end note|

If the destination type is signed, the value is unchanged if it can be represented in the destination type;
otherwise, the value is implementation-defined.

If the destination type is bool, see 7.14. If the source type is bool, the value false is converted to zero and
the value true is converted to one.

The conversions allowed as integral promotions are excluded from the set of integral conversions.

7.9 Floating-point conversions [conv.double]

A prvalue of floating-point type can be converted to a prvalue of another floating-point type. If the
source value can be exactly represented in the destination type, the result of the conversion is that exact
representation. If the source value is between two adjacent destination values, the result of the conversion is
an implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

The conversions allowed as floating-point promotions are excluded from the set of floating-point conversions.

7.10 Floating-integral conversions [conv.fpint]

A prvalue of a floating-point type can be converted to a prvalue of an integer type. The conversion truncates;
that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be represented
in the destination type. [ Note: If the destination type is bool, see 7.14. — end note]|

A prvalue of an integer type or of an unscoped enumeration type can be converted to a prvalue of a floating-
point type. The result is exact if possible. If the value being converted is in the range of values that can
be represented but the value cannot be represented exactly, it is an implementation-defined choice of either
the next lower or higher representable value. [ Note: Loss of precision occurs if the integral value cannot
be represented exactly as a value of the floating type. — end note] If the value being converted is outside
the range of values that can be represented, the behavior is undefined. If the source type is bool, the value
false is converted to zero and the value true is converted to one.

7.11 Pointer conversions [conv.ptr]

A null pointer constant is an integer literal (5.13.2) with value zero or a prvalue of type std::nullptr_t. A
null pointer constant can be converted to a pointer type; the result is the null pointer value of that type and is
distinguishable from every other value of object pointer or function pointer type. Such a conversion is called
a null pointer conversion. Two null pointer values of the same type shall compare equal. The conversion of
a null pointer constant to a pointer to cv-qualified type is a single conversion, and not the sequence of a
pointer conversion followed by a qualification conversion (7.5). A null pointer constant of integral type can
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be converted to a prvalue of type std::nullptr_t. [ Note: The resulting prvalue is not a null pointer value.
— end note]

2 A prvalue of type “pointer to cv T”, where T is an object type, can be converted to a prvalue of type “pointer
to cv void”. The pointer value (6.9.2) is unchanged by this conversion.

3 A prvalue of type “pointer to cv D”, where D is a class type, can be converted to a prvalue of type “pointer to
cv B”, where B is a base class (Clause 13) of D. If B is an inaccessible (Clause 14) or ambiguous (13.2) base
class of D, a program that necessitates this conversion is ill-formed. The result of the conversion is a pointer
to the base class subobject of the derived class object. The null pointer value is converted to the null pointer
value of the destination type.

7.12 Pointer to member conversions [conv.mem]

1 A null pointer constant (7.11) can be converted to a pointer to member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Such a conversion is called a null member pointer conversion. Two null member pointer values of
the same type shall compare equal. The conversion of a null pointer constant to a pointer to member of
cv-qualified type is a single conversion, and not the sequence of a pointer to member conversion followed by a
qualification conversion (7.5).

2 A prvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted to a
prvalue of type “pointer to member of D of type cv T”, where D is a derived class (Clause 13) of B. If B is an
inaccessible (Clause 14), ambiguous (13.2), or virtual (13.1) base class of D, or a base class of a virtual base
class of D, a program that necessitates this conversion is ill-formed. The result of the conversion refers to
the same member as the pointer to member before the conversion took place, but it refers to the base class
member as if it were a member of the derived class. The result refers to the member in D’s instance of B.
Since the result has type “pointer to member of D of type cv T”, indirection through it with a D object is
valid. The result is the same as if indirecting through the pointer to member of B with the B subobject of D.
The null member pointer value is converted to the null member pointer value of the destination type.5!

7.13 Function pointer conversions [conv.fctptr]

1 A prvalue of type “pointer to noexcept function” can be converted to a prvalue of type “pointer to function”.
The result is a pointer to the function. A prvalue of type “pointer to member of type noexcept function”
can be converted to a prvalue of type “pointer to member of type function”. The result points to the member
function.

[ Example:
void (*p) O;
void (**pp) () noexcept = &p; // error: cannot convert to pointer to noexcept function
struct S { typedef void (*p)(); operator p(); };
void (*q) () noexcept = S(0); // error: cannot convert to pointer to noexcept function

— end example]

7.14 Boolean conversions [conv.bool]

1 A prvalue of arithmetic, unscoped enumeration, pointer, or pointer to member type can be converted to a
prvalue of type bool. A zero value, null pointer value, or null member pointer value is converted to false;
any other value is converted to true. For direct-initialization (11.6), a prvalue of type std: :nullptr_t can
be converted to a prvalue of type bool; the resulting value is false.

7.15 Integer conversion rank [conv.rank]

1 Every integer type has an integer conversion rank defined as follows:

(1.1) — No two signed integer types other than char and signed char (if char is signed) shall have the same

rank, even if they have the same representation.

61) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears
inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (7.11, Clause 13). This inversion
is necessary to ensure type safety. Note that a pointer to member is not an object pointer or a function pointer and the rules for
conversions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted to a
void.
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The rank of a signed integer type shall be greater than the rank of any signed integer type with a
smaller size.

The rank of long long int shall be greater than the rank of long int, which shall be greater than
the rank of int, which shall be greater than the rank of short int, which shall be greater than the
rank of signed char.

The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type.

The rank of any standard integer type shall be greater than the rank of any extended integer type with
the same size.

The rank of char shall equal the rank of signed char and unsigned char.
The rank of bool shall be less than the rank of all other standard integer types.
The ranks of char16_t, char32_t, and wchar_t shall equal the ranks of their underlying types (6.9.1).

The rank of any extended signed integer type relative to another extended signed integer type with the
same size is implementation-defined, but still subject to the other rules for determining the integer
conversion rank.

For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3,
then T1 shall have greater rank than T3.

[ Note: The integer conversion rank is used in the definition of the integral promotions (7.6) and the usual
arithmetic conversions (Clause 8). — end note]

§7.15 80



(7.1)

(7.2)

(7.3)

(7.4)

©ISO/IEC N4700

8 Expressions lexpr]

[ Note: Clause 8 defines the syntax, order of evaluation, and meaning of expressions.®> An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects. — end note|

[ Note: Operators can be overloaded, that is, given meaning when applied to expressions of class type (Clause
12) or enumeration type (10.2). Uses of overloaded operators are transformed into function calls as described
in 16.5. Overloaded operators obey the rules for syntax and evaluation order specified in Clause 8, but the
requirements of operand type and value category are replaced by the rules for function call. Relations between
operators, such as ++a meaning a+=1, are not guaranteed for overloaded operators (16.5). — end note]

Clause 8 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to convert
the operands to types appropriate for the built-in operator. If a built-in operator is selected, such conversions
will be applied to the operands before the operation is considered further according to the rules in Clause 8;
see 16.3.1.2, 16.6.

If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined. | Note: Treatment of division by zero, forming a
remainder using a zero divisor, and all floating-point exceptions vary among machines, and is sometimes
adjustable by a library function. — end note]

If an expression initially has the type “reference to T” (11.3.2, 11.6.3), the type is adjusted to T prior to
any further analysis. The expression designates the object or function denoted by the reference, and the
expression is an lvalue or an xvalue, depending on the expression. [ Note: Before the lifetime of the reference
has started or after it has ended, the behavior is undefined (see 6.8). — end note]

If a prvalue initially has the type “cv T”, where T is a cv-unqualified non-class, non-array type, the type of
the expression is adjusted to T prior to any further analysis.

[ Note: An expression is an xvalue if it is:

— the result of calling a function, whether implicitly or explicitly, whose return type is an rvalue reference
to object type,

— a cast to an rvalue reference to object type,

— a class member access expression designating a non-static data member of non-reference type in which
the object expression is an xvalue, or

— a .* pointer-to-member expression in which the first operand is an xvalue and the second operand is a
pointer to data member.

In general, the effect of this rule is that named rvalue references are treated as Ivalues and unnamed rvalue
references to objects are treated as xvalues; rvalue references to functions are treated as lvalues whether
named or not. — end note]

[ Ezample:

struct A {
int m;
};
A&& operator+(A, A);
As& £0);

A a;
A%& ar = static_cast<A&&>(a);

The expressions £(), £() .m, static_cast<A&&>(a), and a + a are xvalues. The expression ar is an lvalue.
— end example ]

62) The precedence of operators is not directly specified, but it can be derived from the syntax.
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In some contexts, unevaluated operands appear (8.1.7, 8.2.8, 8.3.3, 8.3.7, 10.1.7.2, Clause 17). An unevaluated
operand is not evaluated. [ Note: In an unevaluated operand, a non-static class member may be named (8.1)
and naming of objects or functions does not, by itself, require that a definition be provided (6.2). An
unevaluated operand is considered a full-expression (4.6). — end note]

Whenever a glvalue expression appears as an operand of an operator that expects a prvalue for that operand,
the lvalue-to-rvalue (7.1), array-to-pointer (7.2), or function-to-pointer (7.3) standard conversions are applied
to convert the expression to a prvalue. [Note: Because cv-qualifiers are removed from the type of an
expression of non-class type when the expression is converted to a prvalue, an lvalue expression of type const
int can, for example, be used where a prvalue expression of type int is required. — end note|

Whenever a prvalue expression appears as an operand of an operator that expects a glvalue for that operand,
the temporary materialization conversion (7.4) is applied to convert the expression to an xvalue.

Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of scoped enumeration type (10.2), no conversions are performed; if the other
operand does not have the same type, the expression is ill-formed.

— If either operand is of type long double, the other shall be converted to long double.
— Otherwise, if either operand is double, the other shall be converted to double.
— Otherwise, if either operand is float, the other shall be converted to float.

— Otherwise, the integral promotions (7.6) shall be performed on both operands.®® Then the following
rules shall be applied to the promoted operands:

— If both operands have the same type, no further conversion is needed.

— Otherwise, if both operands have signed integer types or both have unsigned integer types, the
operand with the type of lesser integer conversion rank shall be converted to the type of the
operand with greater rank.

— Otherwise, if the operand that has unsigned integer type has rank greater than or equal to the
rank of the type of the other operand, the operand with signed integer type shall be converted to
the type of the operand with unsigned integer type.

— Otherwise, if the type of the operand with signed integer type can represent all of the values of
the type of the operand with unsigned integer type, the operand with unsigned integer type shall
be converted to the type of the operand with signed integer type.

— Otherwise, both operands shall be converted to the unsigned integer type corresponding to the
type of the operand with signed integer type.

In some contexts, an expression only appears for its side effects. Such an expression is called a discarded-value
expression. The array-to-pointer (7.2) and function-to-pointer (7.3) standard conversions are not applied.
The lvalue-to-rvalue conversion (7.1) is applied if and only if the expression is a glvalue of volatile-qualified
type and it is one of the following:

— ( expression ), where expression is one of these expressions,
— id-ezpression (8.1.4),

— subscripting (8.2.1),

— class member access (8.2.5),

— indirection (8.3.1),

— pointer-to-member operation (8.5),

— conditional expression (8.16) where both the second and the third operands are one of these expressions,
or

— comma expression (8.19) where the right operand is one of these expressions.

[ Note: Using an overloaded operator causes a function call; the above covers only operators with built-in
meaning. — end note] If the (possibly converted) expression is a prvalue, the temporary materialization

63) As a consequence, operands of type bool, char16_t, char32_t, wchar_t, or an enumerated type are converted to some
integral type.
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conversion (7.4) is applied. [ Note: If the expression is an lvalue of class type, it must have a volatile copy
constructor to initialize the temporary object that is the result object of the lvalue-to-rvalue conversion.
—end note] The glvalue expression is evaluated and its value is discarded.

13 The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.%

14 The cv-combined type of two types T1 and T2 is a type T3 similar to T1 whose cv-qualification signature (7.5)
is:

(141)  — for every i > 0, cv3 is the union of cv} and cv?;

(14.2)  — if the resulting cv} is different from cv} or cv?, then const is added to every cvj for 0 < k < i.
[ Note: Given similar types T1 and T2, this construction ensures that both can be converted to T3. —end
note|

15 The composite pointer type of two operands pl and p2 having types T1 and T2, respectively, where at least
one is a pointer or pointer to member type or std: :nullptr_t, is:

(151)  — if both p1 and p2 are null pointer constants, std: :nullptr_t;
(15.2) — if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
(15.3) — if T1 or T2 is “pointer to cv! void” and the other type is “pointer to cv2 T”, where T is an object type

or void, “pointer to cvi2 void”, where cv12 is the union of cv! and cv2;

(15.4) — if T1 or T2 is “pointer to noexcept function” and the other type is “pointer to function”, where the
function types are otherwise the same, “pointer to function”;

(15.5) — if T1 is “pointer to cv! C1” and T2 is “pointer to cv2 C2”, where C1 is reference-related to C2 or C2 is
reference-related to C1 (11.6.3), the cv-combined type of T1 and T2 or the cv-combined type of T2 and
T1, respectively;

(15.6) — if T1 is “pointer to member of C1 of type cvl U1” and T2 is “pointer to member of C2 of type cv2 U2”
where C1 is reference-related to C2 or C2 is reference-related to C1 (11.6.3), the cv-combined type of T2
and T1 or the cv-combined type of T1 and T2, respectively;

(15.7) — if T1 and T2 are similar types (7.5), the cv-combined type of T1 and T2;
(15.8) — otherwise, a program that necessitates the determination of a composite pointer type is ill-formed.
[ Ezample:

typedef void *p;
typedef const int *q;
typedef int **pi;
typedef const int **pci;

The composite pointer type of p and q is “pointer to const void”; the composite pointer type of pi and

pci is “pointer to const pointer to const int”. — end example]
8.1 Primary expressions [expr.prim)]
Primary-expression:
literal
this

( expression )
id-expression
lambda-expression
fold-expression
TeqUITES-ETPTESSION

8.1.1 Literals [expr.prim.literal]

LA literal is a primary expression. Its type depends on its form (5.13). A string literal is an lvalue; all other
literals are prvalues.

64) The cast and assignment operators must still perform their specific conversions as described in 8.4, 8.2.9 and 8.18.
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8.1.2 This [expr.prim.this]

The keyword this names a pointer to the object for which a non-static member function (12.2.2.1) is invoked
or a non-static data member’s initializer (12.2) is evaluated.

If a declaration declares a member function or member function template of a class X, the expression this
is a prvalue of type “pointer to cv-qualifier-seq X” between the optional cv-qualifier-seq and the end of the
function-definition, member-declarator, or declarator. It shall not appear before the optional cv-qualifier-seq
and it shall not appear within the declaration of a static member function (although its type and value
category are defined within a static member function as they are within a non-static member function).
[ Note: This is because declaration matching does not occur until the complete declarator is known. — end
note| [Note: In a trailing-return-type, the class being defined is not required to be complete for purposes of
class member access (8.2.5). Class members declared later are not visible. [ Ezample:

struct A {
char g(O;
template<class T> auto f(T t) -> decltype(t + g())
{ return t + gQO; }
};
template auto A::f(int t) -> decltype(t + g());

—end example] — end note|

Otherwise, if a member-declarator declares a non-static data member (12.2) of a class X, the expression this
is a prvalue of type “pointer to X” within the optional default member initializer (12.2). It shall not appear
elsewhere in the member-declarator.

The expression this shall not appear in any other context. [ Ezample:

class Outer {

int al[sizeof (*this)]; // error: not inside a member function
unsigned int sz = sizeof (*¥this); // OK: in default member initializer
void £() {

int b[sizeof (*this)]; // OK

struct Inner {
int c[sizeof (*this)]; // error: not inside a member function of Inner
I
}
};

— end example]

8.1.3 Parentheses [expr.prim.paren)]

A parenthesized expression (E) is a primary expression whose type, value, and value category are identical
to those of E. The parenthesized expression can be used in exactly the same contexts as those where E can be
used, and with the same meaning, except as otherwise indicated.

8.1.4 Names [expr.prim.id]

id-expression:
unqualified-id
qualified-id

An id-expression is a restricted form of a primary-expression. | Note: An id-expression can appear after .
and -> operators (8.2.5). — end note]

An id-expression that denotes a non-static data member or non-static member function of a class can only
be used:

— as part of a class member access (8.2.5) in which the object expression refers to the member’s class® or
a class derived from that class, or

— to form a pointer to member (8.3.1), or

— if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
[ Ezample:

65) This also applies when the object expression is an implicit (¥this) (12.2.2).
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struct S {
int m;
};
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); // OK

— end example ]
3 An id-expression that denotes the specialization of a concept (17.6.8) results in a prvalue of type bool.
The expression is true if the concept’s normalized constraint-expression (17.4.2) is satisfied (17.4.1) by the
specified template arguments and false otherwise. [ Ezample:

template<typename T> concept C = true;
static_assert(C<int>); // OK

—end example] [ Note: A concept’s constraints are also considered when using a template name (17.2)
and during overload resolution (Clause 16), and they are compared during the the partial ordering of
constraints (17.4.4). — end note]

4 A program that refers explicitly or implicitly to a function with a requires-clause whose constraint-expression
is not satisfied, other than to declare it, is ill-formed. [ Example:

void f(int) requires false;

void g() {
£(0); // error: cannot call £
void (*p1) (int) = f; // error: cannot take the address of £
decltype(f)* p2 = nullptr; // error: the type decltype(f) is invalid
}
In each case, the constraints of f are not satisfied. In the declaration of p2, those constraints are required to
be satisfied even though f is an unevaluated operand (Clause 8). — end example|
8.1.4.1 TUngqualified names [expr.prim.id.unqual]
unqualified-id:
identifier

operator-function-id

converston-function-id

literal-operator-id

~ class-name

~ decltype-specifier

template-id

L An identifier is an id-expression provided it has been suitably declared (Clause 10). [ Note: For operator-

function-ids, see 16.5; for conversion-function-ids, see 15.3.2; for literal-operator-ids, see 16.5.8; for template-
ids, see 17.2. A class-name or decltype-specifier prefixed by ~ denotes a destructor; see 15.4. Within the
definition of a non-static member function, an identifier that names a non-static member is transformed to a
class member access expression (12.2.2). — end note] The type of the expression is the type of the identifier.
The result is the entity denoted by the identifier. The expression is an lvalue if the entity is a function,
variable, or data member and a prvalue otherwise; it is a bit-field if the identifier designates a bit-field (11.5).

8.1.4.2 Qualified names [expr.prim.id.qual]
qualified-id:
nested-name-specifier template,,; unqualified-id

nested-name-specifier:

type-name : :

namespace-name : :

decltype-specifier : :

nested-name-specifier identifier : :
nested-name-specifier template,p: simple-template-id : :

1 The type denoted by a decltype-specifier in a nested-name-specifier shall be a class or enumeration type.

2 A nested-name-specifier that denotes a class, optionally followed by the keyword template (17.2), and then
followed by the name of a member of either that class (12.2) or one of its base classes (Clause 13), is a
qualified-id; 6.4.3.1 describes name lookup for class members that appear in qualified-ids. The result is the
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member. The type of the result is the type of the member. The result is an lvalue if the member is a static
member function or a data member and a prvalue otherwise. [ Note: A class member can be referred to using
a qualified-id at any point in its potential scope (6.3.7). — end note] Where class-name ::~ class-name is
used, the two class-names shall refer to the same class; this notation names the destructor (15.4). The form
~ decltype-specifier also denotes the destructor, but it shall not be used as the unqualified-id in a qualified-id.
[ Note: A typedef-name that names a class is a class-name (12.1). — end note

The nested-name-specifier :: names the global namespace. A nested-name-specifier that names a namespace
(10.3), optionally followed by the keyword template (17.2), and then followed by the name of a member of
that namespace (or the name of a member of a namespace made visible by a using-directive), is a qualified-
id; 6.4.3.2 describes name lookup for namespace members that appear in qualified-ids. The result is the
member. The type of the result is the type of the member. The result is an lvalue if the member is a function
or a variable and a prvalue otherwise.

A nested-name-specifier that denotes an enumeration (10.2), followed by the name of an enumerator of that
enumeration, is a qualified-id that refers to the enumerator. The result is the enumerator. The type of the
result is the type of the enumeration. The result is a prvalue.

In a qualified-id, if the unqualified-id is a conversion-function-id, its conversion-type-id shall denote the same
type in both the context in which the entire qualified-id occurs and in the context of the class denoted by the
nested-name-specifier.

8.1.5 Lambda expressions [expr.prim.lambda]
lambda-expression:

lambda-introducer lambda-declaratoroy,: compound-statement
lambda-introducer < template-parameter-list > lambda-declaratoro,y: compound-statement

lambda-introducer:
[ lambda-captureop: 1

lambda-declarator:
( parameter-declaration-clause ) decl-specifier-seqop:
noexcept-specifierop: attribute-specifier-seqop: trailing-return-typeopt
Lambda expressions provide a concise way to create simple function objects. [ Example:
#include <algorithm>
#include <cmath>
void abssort(float* x, unsigned N) {

std::sort(x, x + N, [J(float a, float b) { return std::abs(a) < std::abs(b); });
}

— end ezample ]

A lambda-expression is a prvalue whose result object is called the closure object. A lambda-expression shall
not appear in an unevaluated operand (Clause 8), in a template-argument, in an alias-declaration, in a typedef
declaration, or in the declaration of a function or function template outside its function body and default
arguments. [ Note: The intention is to prevent lambdas from appearing in a signature. — end note| [ Note:
A closure object behaves like a function object (23.14). — end note]

In the decl-specifier-seq of the lambda-declarator, each decl-specifier shall either be mutable or constexpr.

If a lambda-expression does not include a lambda-declarator, it is as if the lambda-declarator were (). The
lambda return type is auto, which is replaced by the type specified by the trailing-return-type if provided
and/or deduced from return statements as described in 10.1.7.4. [ Example:

auto x1 = [J(int i){ return i; }; // OK: return type is int
auto x2 = []{ return { 1, 2 }; }; // error: deducing return type from braced-init-list
int j;

auto x3 = [J]()->auto&& { return j; }; // OK: return type is int&
— end example]

A lambda is a generic lambda if the auto type-specifier appears as one of the decl-specifiers in the decl-specifier-
seq of a parameter-declaration of the lambda-expression, or if the lambda has a template-parameter-list.
[ Example:

int i = [J(int i, auto a) { return i; }(3, 4); // OK: a generic lambda
int j = [l<class T>(T t, int i) { return i; }(3, 4); // OK: a generic lambda
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— end example]

8.1.5.1 Closure types [expr.prim.lambda.closure]

The type of a lambda-expression (which is also the type of the closure object) is a unique, unnamed non-union
class type, called the closure type, whose properties are described below.

The closure type is declared in the smallest block scope, class scope, or namespace scope that contains the
corresponding lambda-expression. | Note: This determines the set of namespaces and classes associated with
the closure type (6.4.2). The parameter types of a lambda-declarator do not affect these associated namespaces
and classes. — end note] The closure type is not an aggregate type (11.6.1). An implementation may define
the closure type differently from what is described below provided this does not alter the observable behavior
of the program other than by changing:

— the size and/or alignment of the closure type,
— whether the closure type is trivially copyable (Clause 12),
— whether the closure type is a standard-layout class (Clause 12), or
— whether the closure type is a POD class (Clause 12).
An implementation shall not add members of rvalue reference type to the closure type.

The closure type for a non-generic lambda-expression has a public inline function call operator (16.5.4)
whose parameters and return type are described by the lambda-expression’s parameter-declaration-clause
and trailing-return-type respectively. For a generic lambda, the closure type has a public inline function
call operator member template (17.6.2) whose template-parameter-list consists of the specified template-
parameter-list, if any, to which is appended one invented type template-parameter for each occurrence of
auto in the lambda’s parameter-declaration-clause, in order of appearance. The invented type template-
parameter is a parameter pack if the corresponding parameter-declaration declares a function parameter
pack (11.3.5). The return type and function parameters of the function call operator template are derived from
the lambda-expression’s trailing-return-type and parameter-declaration-clause by replacing each occurrence of
auto in the decl-specifiers of the parameter-declaration-clause with the name of the corresponding invented
template-parameter. | Example:

auto glambda = [](auto a, auto&& b) { return a < b; };
bool b = glambda(3, 3.14); // OK

auto vglambda = [](auto printer) {
return [=] (auto&& ... ts) { // OK: ts is a function parameter pack
printer(std::forward<decltype(ts)>(ts)...);

return [=]1(0) {
printer(ts ...);
};
};
};
auto p = vglambda( [](auto v1, auto v2, auto v3)
{ std::cout << vl << v2 << v3; } );

auto q = p(1, ’a’, 3.14); // OK: outputs 1a3.14
qQ0; // OK: outputs 1a3.14

— end example]

The function call operator or operator template is declared const (12.2.2) if and only if the lambda-expression’s
parameter-declaration-clause is not followed by mutable. It is neither virtual nor declared volatile. Any
noexcept-specifier specified on a lambda-expression applies to the corresponding function call operator or
operator template. An attribute-specifier-seq in a lambda-declarator appertains to the type of the corresponding
function call operator or operator template. The function call operator or any given operator template
specialization is a constexpr function if either the corresponding lambda-expression’s parameter-declaration-
clause is followed by constexpr, or it satisfies the requirements for a constexpr function (10.1.5). [ Note:
Names referenced in the lambda-declarator are looked up in the context in which the lambda-expression
appears. — end note] [ Example:

auto ID = [](auto a) { return a; I};
static_assert(ID(3) == 3); // OK
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struct NonLiteral {
NonLiteral(int n) : n(n) { }
int n;
};
static_assert (ID(NonLiteral{3}).n == 3); // ill-formed

— end example]
5 [ Ezample:

auto monoid = [](auto v) { return [=] { return v; }; };
auto add = [](auto ml) constexpr {
auto ret = m1();
return [=] (auto m2) mutable {
auto mival = m1();
auto plus = [=] (auto m2val) mutable constexpr
{ return mival += m2val; };
ret = plus(m2());
return monoid(ret);
};
};
constexpr auto zero = monoid(0);
constexpr auto one = monoid(1);
static_assert(add(one) (zero) () == one()); // OK

// Since two below is not declared constexpr, an evaluation of its constexpr member function call operator
// cannot perform an lvalue-to-rvalue conversion on one of its subobjects (that represents its capture)

// in a constant expression.

auto two = monoid(2);

assert(two() == 2); // OK, not a constant expression.

static_assert(add(one) (one) ) == two()); // ill-formed: two() is not a constant expression
static_assert(add(one) (one) () == monoid(2)()); // OK

— end example]

6 The closure type for a non-generic lambda-expression with no lambda-capture has a conversion function to
pointer to function with C++ language linkage (10.5) having the same parameter and return types as the
closure type’s function call operator. The conversion is to “pointer to noexcept function” if the function
call operator has a non-throwing exception specification. The value returned by this conversion function is
the address of a function F that, when invoked, has the same effect as invoking the closure type’s function
call operator. F is a constexpr function if the function call operator is a constexpr function. For a generic
lambda with no lambda-capture, the closure type has a conversion function template to pointer to function.
The conversion function template has the same invented template parameter list, and the pointer to function
has the same parameter types, as the function call operator template. The return type of the pointer to
function shall behave as if it were a decltype-specifier denoting the return type of the corresponding function
call operator template specialization.

7 [ Note: If the generic lambda has no trailing-return-type or the trailing-return-type contains a placeholder
type, return type deduction of the corresponding function call operator template specialization has to be done.
The corresponding specialization is that instantiation of the function call operator template with the same
template arguments as those deduced for the conversion function template. Consider the following:

auto glambda = [](auto a) { return a; };
int (*fp) (int) = glambda;

The behavior of the conversion function of glambda above is like that of the following conversion function:

struct Closure {
template<class T> auto operator()(T t) const { ... }
template<class T> static auto lambda_call_operator_invoker(T a) {
// forwards execution to operator () (a) and therefore has
// the same return type deduced

}

template<class T> using fptr_t =
decltype(lambda_call_operator_invoker (declval<T>())) (*)(T);
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template<class T> operator fptr_t<T>() const
{ return &lambda_call_operator_invoker; }

};

— end note]

[ Example:
void f1(int (%) (int)) {3}
void f2(char () (int)) { }

void g(int (*)(int)) {1}y /J/#1
void g(char (x)(char)) {1} // #2

void h(int (%) (int)) {1} //#3
void h(char (*)(int)) { } // #4

auto glambda = [](auto a) { return a; };

fi(glambda); // OK

f2(glambda); // error: ID is not convertible

g(glambda);  // error: ambiguous

h(glambda); // OK: calls #8 since it is convertible from ID

int& (*#fpi) (int*) = [](autox a) -> autok { return *a; }; // OK

— end example]

8 The value returned by any given specialization of this conversion function template is the address of a function
F that, when invoked, has the same effect as invoking the generic lambda’s corresponding function call
operator template specialization. F is a constexpr function if the corresponding specialization is a constexpr
function. [ Note: This will result in the implicit instantiation of the generic lambda’s body. The instantiated
generic lambda’s return type and parameter types shall match the return type and parameter types of the
pointer to function. — end note| [ Ezample:

auto GL = [](auto a) { std::cout << a; return a; };
int (*GL_int) (int) = GL; // OK: through conversion function template
GL_int(3); // OK: same as GL(3)

— end example]

9 The conversion function or conversion function template is public, constexpr, non-virtual, non-explicit, const,
and has a non-throwing exception specification (18.4). [ Example:

auto Fwd = [](int (*fp) (int), auto a) { return fp(a); I};
auto C = [](auto a) { return a; };

static_assert(Fwd(C,3) == 3); // OK

// No specialization of the function call operator template can be constexpr (due to the local static).
auto NC = [](auto a) { static int s; return a; };
static_assert(Fwd(NC,3) == 3); // ill-formed

— end example ]

10 The lambda-expression’s compound-statement yields the function-body (11.4) of the function call operator,
but for purposes of name lookup (6.4), determining the type and value of this (12.2.2.1) and transforming id-
expressions referring to non-static class members into class member access expressions using (*this) (12.2.2),
the compound-statement is considered in the context of the lambda-expression. | Example:

struct S1 {
int x, y;
int operator() (int);
void £() {
[=1 O ->int {
return operator() (this->x + y); // equivalent to S1::operator() (this->x + (*this).y)
// this has type S1*
};
}
};

§8.1.5.1 89



11

12

13

©ISO/IEC N4700

— end example] Further, a variable __func__ is implicitly defined at the beginning of the compound-statement
of the lambda-expression, with semantics as described in 11.4.1.

The closure type associated with a lambda-expression has no default constructor and a deleted copy assignment
operator. It has a defaulted copy constructor and a defaulted move constructor (15.8). [ Note: These special
member functions are implicitly defined as usual, and might therefore be defined as deleted. — end note|

The closure type associated with a lambda-exzpression has an implicitly-declared destructor (15.4).

A member of a closure type shall not be explicitly instantiated (17.8.2), explicitly specialized (17.8.3), or
named in a friend declaration (14.3).

8.1.5.2 Captures [expr.prim.lambda.capture]

lambda-capture:
capture-default
capture-list
capture-default , capture-list

capture-default:
&

capture-list:
capture . . .opt
capture-list , capture .. .op

capture:

simple-capture

init-capture
stmple-capture:

identifier

& identifier

this

* this
init-capture:

identifier initializer

& identifier initializer

The body of a lambda-expression may refer to variables with automatic storage duration and the *this
object (if any) of enclosing block scopes by capturing those entities, as described below.

If a lambda-capture includes a capture-default that is &, no identifier in a simple-capture of that lambda-capture
shall be preceded by &. If a lambda-capture includes a capture-default that is =, each simple-capture of
that lambda-capture shall be of the form “& identifier”, “this”, or “* this” [Note: The form [&,this]
is redundant but accepted for compatibility with ISO C++ 2014. — end note] Ignoring appearances in
initializers of init-captures, an identifier or this shall not appear more than once in a lambda-capture.
[ Example:

struct S2 { void f(int i); };

void S2::f(int i) {

[&, i1{ }; // OK

[&, this, il{ }; // OK, equivalent to [&, il

[&, &il{ }; // error: i preceded by & when & is the default
[=, *thisl{ }; // OK

[=, thisl{ }; // OK, equivalent to [=]

[i, 11{ ¥; // error: i repeated

[this, *this]{ }; // error: this appears twice

}
— end example]

A lambda-expression whose smallest enclosing scope is a block scope (6.3.3) is a local lambda expression; any
other lambda-expression shall not have a capture-default or simple-capture in its lambda-introducer. The
reaching scope of a local lambda expression is the set of enclosing scopes up to and including the innermost
enclosing function and its parameters. [ Note: This reaching scope includes any intervening lambda-expressions.
— end note]
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The identifier in a simple-capture is looked up using the usual rules for unqualified name lookup (6.4.1); each
such lookup shall find an entity. An entity that is designated by a simple-capture is said to be explicitly
captured, and shall be *this (when the simple-capture is “this” or “* this”) or a variable with automatic
storage duration declared in the reaching scope of the local lambda expression.

If an identifier in a simple-capture appears as the declarator-id of a parameter of the lambda-declarator’s
parameter-declaration-clause, the program is ill-formed. [ Example:

void £() {
int x = 0;
auto g = [x](int x) { return 0; } // error: parameter and simple-capture have the same name

}

— end example]

”

An init-capture behaves as if it declares and explicitly captures a variable of the form “auto init-capture ;
whose declarative region is the lambda-expression’s compound-statement, except that:

— if the capture is by copy (see below), the non-static data member declared for the capture and the
variable are treated as two different ways of referring to the same object, which has the lifetime of the
non-static data member, and no additional copy and destruction is performed, and

— if the capture is by reference, the variable’s lifetime ends when the closure object’s lifetime ends.

[ Note: This enables an init-capture like “x = std::move(x)”; the second “x” must bind to a declaration in
the surrounding context. — end note| [ Example:
int x = 4;
auto y = [&r = x, x = x+1]1 ()->int {
r += 2;
return x+2;
YO; // Updates ::x to 6, and initializes y to 7.

auto z = [a = 42] (int a) { return 1; } // error: parameter and local variable have the same name
— end example ]

A lambda-expression with an associated capture-default that does not explicitly capture *this or a variable
with automatic storage duration (this excludes any id-expression that has been found to refer to an nit-
capture’s associated non-static data member), is said to implicitly capture the entity (i.e., *this or a variable)
if the compound-statement:

— odr-uses (6.2) the entity (in the case of a variable),
— odr-uses (6.2) this (in the case of the object designated by *this), or
— mnames the entity in a potentially-evaluated expression (6.2) where the enclosing full-expression depends
on a generic lambda parameter declared within the reaching scope of the lambda-expression.
[ Ezample:

void f(int, comst int (&)[2] = {}) {}Y /J/#1
void f(const int&, comst int (&)[11) {3} // #2
void test() {

const int x = 17;

auto g = [I(auto a) {

f(x); // OK: calls #1, does not capture x
};
auto g2 = [=](auto a) {

int selector[sizeof(a) == 1 ? 1 : 2]4{};

f(x, selector); // OK: is a dependent expression, so captures x
3

}

— end example] All such implicitly captured entities shall be declared within the reaching scope of the lambda

expression. [ Note: The implicit capture of an entity by a nested lambda-expression can cause its implicit
capture by the containing lambda-ezpression (see below). Implicit odr-uses of this can result in implicit
capture. — end note|

§8.1.5.2 91



©ISO/IEC N4700

8 An entity is captured if it is captured explicitly or implicitly. An entity captured by a lambda-expression
is odr-used (6.2) in the scope containing the lambda-expression. If *this is captured by a local lambda
expression, its nearest enclosing function shall be a non-static member function. If a lambda-expression or an
instantiation of the function call operator template of a generic lambda odr-uses (6.2) this or a variable with
automatic storage duration from its reaching scope, that entity shall be captured by the lambda-expression.
If a lambda-expression captures an entity and that entity is not defined or captured in the immediately
enclosing lambda expression or function, the program is ill-formed. [ Ezample:

void fi(int i) {
int const N = 20;
auto ml = [=]{
int const M = 30;
auto m2 = [i]{

int x[N][M]; // OK: N and M are not odr-used
x[01[0] = i; // OK: i is explicitly captured by m2 and implicitly captured by ml
};
3
struct s1 {
int f;

void work(int n) {
int m = n*n;

int j = 40;
auto m3 = [this,m] {
auto m4 = [&,j] { // error: j not captured by m3
int x = n; // error: n implicitly captured by m4 but not captured by m3
X += m; // OK: m implicitly captured by m4 and explicitly captured by m3
X += i; // error: i is outside of the reaching scope
x += f; // OK: this captured implicitly by m4 and explicitly by m3
};
};
}
};

struct s2 {
double ohseven = .007;
auto £f() {
return [this] {
return [*this] {

return ohseven; // OK
}
}0O;
}
auto g() {
return [] {
return [*this] { }; // error: ¥this not captured by outer lambda-expression
10;
}
};

— end example ]

9 A lambda-expression appearing in a default argument shall not implicitly or explicitly capture any entity.
[ Ezample:

void £20) {
int i = 1;
void gl(int = ([i]{ return i; }) O)); // ill-formed
void g2(int = ([i]{ return 0; })()); // ill-formed
void g3(int = ([=]{ return i; }) O)); // ill-formed
void g4(int = ([=]{ return 0; })()); // OK
void gb(int = ([]{ return sizeof i; })()); // OK

}

— end example]
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An entity is captured by copy if
— it is implicitly captured, the capture-default is =, and the captured entity is not *this, or

— it is explicitly captured with a capture that is not of the form this, & identifier, or & identifier
initializer.
For each entity captured by copy, an unnamed non-static data member is declared in the closure type. The
declaration order of these members is unspecified. The type of such a data member is the referenced type
if the entity is a reference to an object, an lvalue reference to the referenced function type if the entity
is a reference to a function, or the type of the corresponding captured entity otherwise. A member of an
anonymous union shall not be captured by copy.

Every id-expression within the compound-statement of a lambda-expression that is an odr-use (6.2) of an
entity captured by copy is transformed into an access to the corresponding unnamed data member of the
closure type. [ Note: An id-expression that is not an odr-use refers to the original entity, never to a member of
the closure type. Furthermore, such an id-ezpression does not cause the implicit capture of the entity. — end
note| If *this is captured by copy, each odr-use of this is transformed into a pointer to the corresponding
unnamed data member of the closure type, cast (8.4) to the type of this. [ Note: The cast ensures that
the transformed expression is a prvalue. — end note] An id-expression within the compound-statement
of a lambda-expression that is an odr-use of a reference captured by reference refers to the entity to which
the captured reference is bound and not to the captured reference. [ Note: The validity of such captures is
determined by the lifetime of the object to which the reference refers, not by the lifetime of the reference
itself. —end note] [ Exzample:

void f(const int*);

void g() {
const int N = 10;
=1 {
int arr([N]; // OK: not an odr-use, refers to automatic variable
£(&N) ; // OK: causes N to be captured; &N points to
// the corresponding member of the closure type
}
}

auto h(int &r) {
return [&] {
++r; // Valid after h returns if the lifetime of the
// object to which r is bound has not ended
};
}
— end example]

An entity is captured by reference if it is implicitly or explicitly captured but not captured by copy. It is
unspecified whether additional unnamed non-static data members are declared in the closure type for entities
captured by reference. If declared, such non-static data members shall be of literal type. [ Ezample:

// The inner closure type must be a literal type regardless of how reference captures are represented.
static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);

— end example] A bit-field or a member of an anonymous union shall not be captured by reference.

If a lambda-expression m2 captures an entity and that entity is captured by an immediately enclosing
lambda-expression m1, then m2’s capture is transformed as follows:
— if m1 captures the entity by copy, m2 captures the corresponding non-static data member of m1’s closure
type;
— if m1 captures the entity by reference, m2 captures the same entity captured by m1.
[ Ezample: The nested lambda expressions and invocations below will output 123234.

int a=1, b=1, c = 1;
auto ml1 = [a, &b, &c]() mutable {
auto m2 = [a, b, &c]() mutable {
std::cout << a << b << c;
a=4; b=4; c = 4;

§8.1.5.2 93



©ISO/IEC N4700

m2Q0);
};
a=2; b=2; c=2;
miQ);
std::cout << a << b << c;

— end example]

14 Every occurrence of decltype((x)) where x is a possibly parenthesized id-expression that names an entity of
automatic storage duration is treated as if x were transformed into an access to a corresponding data member
of the closure type that would have been declared if x were an odr-use of the denoted entity. [ Example:

void £3(0) {
float x, &r = x;
[=1 { // x and T are not captured (appearance in a decltype operand is not an odr-use)
decltype(x) yi; // y1 has type £loat

decltype((x)) y2 = y1; //y2 has type float const& because this lambda is not mutable and x is an lwalue
decltype(r) rl = yi; // Tl has type £loat& (transformation not considered)
decltype((r)) r2 = y2; //r2 has type £loat const&
};

}

— end example]

15 When the lambda-expression is evaluated, the entities that are captured by copy are used to direct-initialize
each corresponding non-static data member of the resulting closure object, and the non-static data members
corresponding to the init-captures are initialized as indicated by the corresponding initializer (which may be
copy- or direct-initialization). (For array members, the array elements are direct-initialized in increasing
subscript order.) These initializations are performed in the (unspecified) order in which the non-static data
members are declared. [ Note: This ensures that the destructions will occur in the reverse order of the
constructions. — end note|

16 [ Note: If a non-reference entity is implicitly or explicitly captured by reference, invoking the function call
operator of the corresponding lambda-expression after the lifetime of the entity has ended is likely to result
in undefined behavior. — end note]

17 A simple-capture followed by an ellipsis is a pack expansion (17.6.3). An init-capture followed by an ellipsis is
ill-formed. [ Exzample:

template<class... Args>

void f(Args... args) {
auto 1m = [&, args...] { return g(args...); };
ImQ);

}

— end example]

8.1.6 Fold expressions [expr.prim.fold]
1 A fold expression performs a fold of a template parameter pack (17.6.3) over a binary operator.

fold-expression:

( cast-expression fold-operator ... )
( ... fold-operator cast-expression )
( cast-expression fold-operator ... fold-operator cast-expression )

fold-operator: one of

+ - ox /b T w << >
+= —-= *= /= %= ~= &= |= <<= >>= =
= 1= < > <= >= && || s Lk —>%
2 An expression of the form (... op e) where op is a fold-operator is called a unary left fold. An expression of

the form (e op ...) where op is a fold-operator is called a unary right fold. Unary left folds and unary right
folds are collectively called unary folds. In a unary fold, the cast-expression shall contain an unexpanded
parameter pack (17.6.3).

3 An expression of the form (el op? ... op2 e2) where op! and op2 are fold-operators is called a binary fold.
In a binary fold, op! and op2 shall be the same fold-operator, and either el shall contain an unexpanded
parameter pack or e2 shall contain an unexpanded parameter pack, but not both. If e2 contains an
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unexpanded parameter pack, the expression is called a binary left fold. If el contains an unexpanded
parameter pack, the expression is called a binary right fold. [ Example:

template<typename ...Args>
bool f(Args ...args) {
return (true && ... && args); // OK
}
template<typename ...Args>
bool f(Args ...args) {
return (args + ... + args); // error: both operands contain unexpanded parameter packs
}

— end example]

8.1.7 Requires expressions [expr.prim.req]

A requires-expression provides a concise way to express requirements on template arguments that can be
checked by name lookup (6.4) or by checking properties of types and expressions.

TeqUITES-ETPTESSION:
requires requirement-parameter-list,p; requirement-body

requirement-parameter-list:
( parameter-declaration-clausept )

requirement-body:
{ requirement-seq }
requirement-seq:
requirement
requirement-seq requirement

requirement:
stmple-requirement
type-requirement
compound-requirement
nested-requirement

A requires-expression is a prvalue of type bool whose value is described below. Expressions appearing within
a requirement-body are unevaluated operands (Clause 8).

[ Example: A common use of requires-expressions is to define requirements in concepts such as the one
below:

template<typename T>
concept R = requires (T i) {
typename T::type;
{*i} -> const typename T::type&;
};
A requires-expression can also be used in a requires-clause (Clause 17) as a way of writing ad hoc constraints
on template arguments such as the one below:

template<typename T>
requires requires (T x) { x + x; }
T add(T a, T b) { return a + b; }

The first requires introduces the requires-clause, and the second introduces the requires-expression. — end
example]

A requires-expression may introduce local parameters using a parameter-declaration-clause (11.3.5). A local
parameter of a requires-expression shall not have a default argument. Each name introduced by a local
parameter is in scope from the point of its declaration until the closing brace of the requirement-body. These
parameters have no linkage, storage, or lifetime; they are only used as notation for the purpose of defining
requirements. The parameter-declaration-clause of a requirement-parameter-list shall not terminate with an
ellipsis. [ Example:

template<typename T>

concept C = requires(T t, ...) { // error: terminates with an ellipsis
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— end example]

The requirement-body contains a sequence of requirements. These requirements may refer to local parameters,
template parameters, and any other declarations visible from the enclosing context.

The substitution of template arguments into a requires-expression may result in the formation of invalid
types or expressions in its requirements or the violation of the semantic constraints of those requirements.
In such cases, the requires-expression evaluates to false; it does not cause the program to be ill-formed.
The substitution and semantic constraint checking proceeds in lexical order and stops when a condition that
determines the result of the requires-expression is encountered. If substitution (if any) and semantic constraint
checking succeed, the requires-expression evaluates to true. [ Note: If a requires-expression contains invalid
types or expressions in its requirements, and it does not appear within the declaration of a templated entity,
then the program is ill-formed. — end note] If the substitution of template arguments into a requirement
would always result in a substitution failure, the program is ill-formed; no diagnostic required. [ Ezample:

template<typename T> concept C =

requires {

new int[-(int)sizeof(T)]; // ill-formed, no diagnostic required

};

— end ezample]

8.1.7.1 Simple requirements [expr.prim.req.simple]
stmple-requirement:

expression ;

A simple-requirement asserts the validity of an expression. [ Note: The enclosing requires-expression will
evaluate to false if substitution of template arguments into the expression fails. The expression is an
unevaluated operand (Clause 8). — end note| [Ezample:
template<typename T> concept C =
requires (T a, T b) {
a + b; //C<T> is true if a + b is a valid expression

};

— end example]

8.1.7.2 Type requirements [expr.prim.req.type]

type-requirement:
typename nested-name-specifierop: type-name ;

A type-requirement asserts the validity of a type. [ Note: The enclosing requires-expression will evaluate to
false if substitution of template arguments fails. — end note| [ Ezample:

template<typename T, typename T::type = 0> struct S;
template<typename T> using Ref = T&;

template<typename T> concept C = requires {

typename T::inner; // required nested member name

typename S<T>; // required class template specialization

typename Ref<T>; // required alias template substitution, fails if T is void
};

— end example ]

A type-requirement that names a class template specialization does not require that type to be complete (6.9).

8.1.7.3 Compound requirements [expr.prim.req.compound]

compound-requirement:
{ expression } noexcept,y: return-type-requirement,p; ;

return-type-requirement:
trailing-return-type
> cv-qualifier-seqop: constrained-parameter cv-qualifier-seqop: abstract-declaratorop:

A compound-requirement asserts properties of the expression E. Substitution of template arguments (if any)
and verification of semantic properties proceed in the following order:

— Substitution of template arguments (if any) into the expression is performed.
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(1.2)  — If the noexcept specifier is present, E shall not be a potentially-throwing expression (18.4).
(1.3) — If the return-type-requirement is present, then:
(1.3.1) — Substitution of template arguments (if any) into the return-type-requirement is performed.
(1.3.2) — If the return-type-requirement is a trailing-return-type, E is implicitly convertible to the type named

by the trailing-return-type. If conversion fails, the enclosing requires-expression is false.

(1.3.3) — If the return-type-requirement starts with a constrained-parameter (17.1), the expression is deduced
against an invented function template F using the rules in 17.9.2.1. F is a void function template
with a single type template parameter T declared with the constrained-parameter. A cv-qualifier-seq
cv is formed as the union of const and volatile specifiers around the constrained-parameter. F
has a single parameter whose type-specifier is cv T followed by the abstract-declarator. If deduction
fails, the enclosing requires-expression is false.

[ Example:

template<typename T> concept Cl = requires(T x) {
{x++1};

})

The compound-requirement in C1 requires that x++ is a valid expression. It is equivalent to the simple-
requirement x++;.

template<typename T> concept C2 = requires(T x) {
{*x} -> typename T::inner;
};
The compound-requirement in C2 requires that *x is a valid expression, that typename T::inner is a valid
type, and that *x is implicitly convertible to typename T::inner.
template<typename T, typename U> concept C3 = requires (T t, U u) {
t == u;
};
template<typename T> concept C4 = requires(T x) {
{*x} -> C3<int> const&;
};
The compound-requirement requires that *x be deduced as an argument for the invented function:
template<C3<int> X> void f(X const&);

In this case, deduction only succeeds if an expression of the type deduced for X can be compared to an int
with the == operator.

template<typename T> concept C5 =
requires(T x) {

{g(x)} noexcept;

}

The compound-requirement in C5 requires that g(x) is a valid expression and that g(x) is non-throwing.
— end example ]

8.1.7.4 Nested requirements [expr.prim.req.nested]

nested-requirement:
requires constraint-expression ;

1 A nested-requirement can be used to specify additional constraints in terms of local parameters. The
constraint-expression shall be satisfied (17.4.2) by the substituted template arguments, if any. Substitution of
template arguments into a nested-requirement does not result in substitution into the constraint-expression
other than as specified in 17.4.2. [ Example:

template<typename U> concept C = sizeof(U) == 1;
template<typename T> concept D = requires (T t) {

requires C<decltype (+t)>;
+;

D<T> is satisfied if sizeof (decltype (+t)) == 1 (17.4.1.2). — end example]

2 A local parameter shall only appear as an unevaluated operand (Clause 8) within the constraint-expression.
[ Ezample:
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template<typename T> concept C = requires (T a) {
requires sizeof(a) == 4; // OK
requires a == 0; // error: evaluation of a constraint variable

}

— end example ]

8.2 Postfix expressions [expr.post]
1 Postfix expressions group left-to-right.

postfir-expression:
Primary-expression
postfir-expression [ expr-or-braced-init-list ]
postfiz-expression ( expression-listop: )
simple-type-specifier ( expression-listop: )
typename-specifier ( expression-listop: )
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfiz-expression . template,,: id-erpression
postfiz-expression —=> template,y; id-expression
postfiz-expression . pseudo-destructor-name
postfir-expression -> pseudo-destructor-name
postfiz-erpression ++
postfiz-expression ==
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
const_cast < type-id > ( expression )
typeid ( expression )
typeid ( type-id )

expression-list:
initializer-list

pseudo-destructor-name:
nested-name-specifieroy; type-name :: ~ type-name
nested-name-specifier template simple-template-id : : ~ type-name
~ type-name
~ decltype-specifier

2 [ Note: The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_-
cast may be the product of replacing a >> token by two consecutive > tokens (17.2). — end note|

8.2.1 Subscripting [expr.sub]

1 A postfix expression followed by an expression in square brackets is a postfix expression. One of the expressions
shall be a glvalue of type “array of T” or a prvalue of type “pointer to T” and the other shall be a prvalue of
unscoped enumeration or integral type. The result is of type “T”. The type “T” shall be a completely-defined
object type.%® The expression E1[E2] is identical (by definition) to * ((E1)+(E2)) [ Note: see 8.3 and 8.7 for
details of * and + and 11.3.4 for details of arrays. — end note| , except that in the case of an array operand,
the result is an lvalue if that operand is an lvalue and an xvalue otherwise. The expression E1 is sequenced
before the expression E2.

2 A braced-init-list shall not be used with the built-in subscript operator.

8.2.2 Function call [expr.call]

1 A function call is a postfix expression followed by parentheses containing a possibly empty, comma-separated
list of initializer-clauses which constitute the arguments to the function. The postfix expression shall have
function type or function pointer type. For a call to a non-member function or to a static member function,
the postfix expression shall be either an lvalue that refers to a function (in which case the function-to-pointer
standard conversion (7.3) is suppressed on the postfix expression), or it shall have function pointer type.
Calling a function through an expression whose function type is different from the function type of the
called function’s definition results in undefined behavior (10.5). For a call to a non-static member function,
the postfix expression shall be an implicit (12.2.2, 12.2.3) or explicit class member access (8.2.5) whose

66) This is true even if the subscript operator is used in the following common idiom: &x[0].
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id-expression is a function member name, or a pointer-to-member expression (8.5) selecting a function member;
the call is as a member of the class object referred to by the object expression. In the case of an implicit class
member access, the implied object is the one pointed to by this. [ Note: A member function call of the form
£ () is interpreted as (xthis) .f() (see 12.2.2). —end note] If a function or member function name is used,
the name can be overloaded (Clause 16), in which case the appropriate function shall be selected according
to the rules in 16.3. If the selected function is non-virtual, or if the id-expression in the class member access
expression is a qualified-id, that function is called. Otherwise, its final overrider (13.3) in the dynamic type of
the object expression is called; such a call is referred to as a wvirtual function call. [ Note: The dynamic type
is the type of the object referred to by the current value of the object expression. 15.7 describes the behavior
of virtual function calls when the object expression refers to an object under construction or destruction.
— end note ]

2 [ Note: If a function or member function name is used, and name lookup (6.4) does not find a declaration of
that name, the program is ill-formed. No function is implicitly declared by such a call. — end note]

3 If the postfiz-expression designates a destructor (15.4), the type of the function call expression is void;
otherwise, the type of the function call expression is the return type of the statically chosen function (i.e.,
ignoring the virtual keyword), even if the type of the function actually called is different. This return type
shall be an object type, a reference type or cv void.

4 When a function is called, each parameter (11.3.5) shall be initialized (11.6, 15.8, 15.1) with its corresponding
argument. If the function is a non-static member function, the this parameter of the function (12.2.2.1) shall
be initialized with a pointer to the object of the call, converted as if by an explicit type conversion (8.4). [ Note:
There is no access or ambiguity checking on this conversion; the access checking and disambiguation are done
as part of the (possibly implicit) class member access operator. See 13.2, 14.2; and 8.2.5. — end note] When
a function is called, the parameters that have object type shall have completely-defined object type. [ Note:
this still allows a parameter to be a pointer or reference to an incomplete class type. However, it prevents
a passed-by-value parameter to have an incomplete class type. — end note| It is implementation-defined
whether the lifetime of a parameter ends when the function in which it is defined returns or at the end of the
enclosing full-expression. The initialization and destruction of each parameter occurs within the context of
the calling function. [ Ezample: The access of the constructor, conversion functions or destructor is checked
at the point of call in the calling function. If a constructor or destructor for a function parameter throws an
exception, the search for a handler starts in the scope of the calling function; in particular, if the function
called has a function-try-block (Clause 18) with a handler that could handle the exception, this handler is not
considered. — end example]

5 The postfiz-expression is sequenced before each expression in the expression-list and any default argument. The
initialization of a parameter, including every associated value computation and side effect, is indeterminately
sequenced with respect to that of any other parameter. [ Note: All side effects of argument evaluations are

sequenced before the function is entered (see 4.6). — end note| [ Example:
void £() {
std::string s = "but I have heard it works even if you don’t believe in it";
s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don’t"), 6, "");
assert(s == "I have heard it works only if you believe in it"); // OK
}
— end exzample] [ Note: If an operator function is invoked using operator notation, argument evaluation is
sequenced as specified for the built-in operator; see 16.3.1.2. — end note] [ Example:
struct S {
S(int);
};
int operator<<(S, int);
int i, j;

int x = S(i=1) << (i=2);
int y = operator<<(S(j=1), j=2);

After performing the initializations, the value of i is 2 (see 8.8), but it is unspecified whether the value of j
is 1 or 2. —end example]

6 The result of a function call is the result of the operand of the evaluated return statement (9.6.3) in the
called function (if any), except in a virtual function call if the return type of the final overrider is different
from the return type of the statically chosen function, the value returned from the final overrider is converted
to the return type of the statically chosen function.
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[ Note: A function can change the values of its non-const parameters, but these changes cannot affect the
values of the arguments except where a parameter is of a reference type (11.3.2); if the reference is to
a const-qualified type, const_cast is required to be used to cast away the constness in order to modify
the argument’s value. Where a parameter is of const reference type a temporary object is introduced if
needed (10.1.7, 5.13, 5.13.5, 11.3.4, 15.2). In addition, it is possible to modify the values of non-constant
objects through pointer parameters. — end note]

A function can be declared to accept fewer arguments (by declaring default arguments (11.3.6)) or more

arguments (by using the ellipsis, ..., or a function parameter pack (11.3.5)) than the number of parameters
in the function definition (11.4). [ Note: This implies that, except where the ellipsis (...) or a function
parameter pack is used, a parameter is available for each argument. — end note]

When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (21.10). [ Note: This paragraph does not
apply to arguments passed to a function parameter pack. Function parameter packs are expanded during
template instantiation (17.6.3), thus each such argument has a corresponding parameter when a function
template specialization is actually called. — end note] The lvalue-to-rvalue (7.1), array-to-pointer (7.2), and
function-to-pointer (7.3) standard conversions are performed on the argument expression. An argument that
has type cv std: :nullptr_t is converted to type void* (7.11). After these conversions, if the argument does
not have arithmetic, enumeration, pointer, pointer to member, or class type, the program is ill-formed. Passing
a potentially-evaluated argument of class type (Clause 12) having a non-trivial copy constructor, a non-trivial
move constructor, or a non-trivial destructor, with no corresponding parameter, is conditionally-supported
with implementation-defined semantics. If the argument has integral or enumeration type that is subject to
the integral promotions (7.6), or a floating-point type that is subject to the floating-point promotion (7.7),
the value of the argument is converted to the promoted type before the call. These promotions are referred
to as the default argument promotions.

Recursive calls are permitted, except to the main function (6.6.1).

A function call is an lvalue if the result type is an Ivalue reference type or an rvalue reference to function
type, an xvalue if the result type is an rvalue reference to object type, and a prvalue otherwise.

8.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifier (10.1.7.2) or typename-specifier (17.7) followed by a parenthesized optional expression-
list or by a braced-init-list (the initializer) constructs a value of the specified type given the initializer. If the
type is a placeholder for a deduced class type, it is replaced by the return type of the function selected by
overload resolution for class template deduction (16.3.1.8) for the remainder of this section.

If the initializer is a parenthesized single expression, the type conversion expression is equivalent to the
corresponding cast expression (8.4). Otherwise, if the type is cv void and the initializer is (), the expression
is a prvalue of the specified type that performs no initialization. Otherwise, the expression is a prvalue of the
specified type whose result object is direct-initialized (11.6) with the initializer. For an expression of the
form T(Q), T shall not be an array type.

8.2.4 Pseudo destructor call [expr.pseudo]

The use of a pseudo-destructor-name after a dot . or arrow -> operator represents the destructor for the
non-class type denoted by type-name or decltype-specifier. The result shall only be used as the operand for
the function call operator (), and the result of such a call has type void. The only effect is the evaluation of
the postfiz-expression before the dot or arrow.

The left-hand side of the dot operator shall be of scalar type. The left-hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The cv-unqualified versions of the object
type and of the type designated by the pseudo-destructor-name shall be the same type. Furthermore, the
two type-names in a pseudo-destructor-name of the form

nested-name-specifierop; type-name :: ~ type-name

shall designate the same scalar type (ignoring cv-qualification).

8.2.5 Class member access [expr.ref]

A postfix expression followed by a dot . or an arrow ->, optionally followed by the keyword template (17.2),
and then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow
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is evaluated;%” the result of that evaluation, together with the id-ezpression, determines the result of the
entire postfix expression.

For the first option (dot) the first expression shall be a glvalue having class type. For the second option
(arrow) the first expression shall be a prvalue having pointer to class type. In both cases, the class type shall
be complete unless the class member access appears in the definition of that class. [ Note: If the class is
incomplete, lookup in the complete class type is required to refer to the same declaration (6.3.7). —end
note] The expression E1->E2 is converted to the equivalent form (*(E1)) .E2; the remainder of 8.2.5 will
address only the first option (dot).%® In either case, the id-ezpression shall name a member of the class or of
one of its base classes. [ Note: Because the name of a class is inserted in its class scope (Clause 12), the name
of a class is also considered a nested member of that class. — end note] [Note: 6.4.5 describes how names
are looked up after the . and -> operators. — end note|

Abbreviating postfiz-expression.id-expression as E1.E2, E1 is called the object expression. If E2 is a bit-field,
E1.E2 is a bit-field. The type and value category of E1.E2 are determined as follows. In the remainder
of 8.2.5, cq represents either const or the absence of const and vq represents either volatile or the absence
of volatile. cv represents an arbitrary set of cv-qualifiers, as defined in 6.9.3.

If E2 is declared to have type “reference to T”, then E1.E2 is an Ivalue; the type of E1.E2 is T. Otherwise,
one of the following rules applies.

— If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates
the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member and the type of E1 is “cq! vql X”, and the type of E2 is “cq2 vq2 T7,
the expression designates the named member of the object designated by the first expression. If E1 is
an lvalue, then E1.E2 is an lvalue; otherwise E1.E2 is an xvalue. Let the notation vg12 stand for the
“union” of vgl and vq2; that is, if vgl or vg2 is volatile, then vql2 is volatile. Similarly, let the
notation cql2 stand for the “union” of cq! and cqg2; that is, if cql or cq2 is const, then cql2 is const.
If E2 is declared to be a mutable member, then the type of E1.E2 is “vql2 T”. If E2 is not declared to
be a mutable member, then the type of E1.E2 is “cq12 vq12 T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (16.3) is used to determine
whether E1.E2 refers to a static or a non-static member function.

— If it refers to a static member function and the type of E2 is “function of parameter-type-list
returning T”, then E1.E2 is an lvalue; the expression designates the static member function. The
type of E1.E2 is the same type as that of E2, namely “function of parameter-type-list returning T”.

— Otherwise, if E1.E2 refers to a non-static member function and the type of E2 is “function of
parameter-type-list cv ref-qualifier,p; returning T”, then E1.E2 is a prvalue. The expression
designates a non-static member function. The expression can be used only as the left-hand operand
of a member function call (12.2.1). [ Note: Any redundant set of parentheses surrounding the
expression is ignored (8.1). — end note] The type of E1.E2 is “function of parameter-type-list cv
returning T”.

— If E2 is a nested type, the expression E1.E2 is ill-formed.

— If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue. The type of
E1.E2is T.

If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of
which E2 is directly a member is an ambiguous base (13.2) of the naming class (14.2) of E2. [ Note: The
program is also ill-formed if the naming class is an ambiguous base of the class type of the object expression;
see 14.2. — end note]|

8.2.6 Increment and decrement [expr.post.incr]

The value of a postfix ++ expression is the value of its operand. [ Note: The value obtained is a copy
of the original value — end note] The operand shall be a modifiable lvalue. The type of the operand
shall be an arithmetic type other than cv bool, or a pointer to a complete object type. The value of the
operand object is modified by adding 1 to it. The value computation of the ++ expression is sequenced before
the modification of the operand object. With respect to an indeterminately-sequenced function call, the

67) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary to
determine the value of the entire postfix expression, for example if the id-expression denotes a static member.
68) Note that (x(E1)) is an lvalue.
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operation of postfix ++ is a single evaluation. | Note: Therefore, a function call shall not intervene between
the lvalue-to-rvalue conversion and the side effect associated with any single postfix ++ operator. — end
note] The result is a prvalue. The type of the result is the cv-unqualified version of the type of the operand.
If the operand is a bit-field that cannot represent the incremented value, the resulting value of the bit-field is
implementation-defined. See also 8.7 and 8.18.

The operand of postfix -- is decremented analogously to the postfix ++ operator. [ Note: For prefix increment
and decrement, see 8.3.2. — end note]

8.2.7 Dynamic cast [expr.dynamic.cast]

The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T
shall be a pointer or reference to a complete class type, or “pointer to cv void”. The dynamic_cast operator
shall not cast away constness (8.2.11).

If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result is a prvalue of
type T. If T is an lvalue reference type, v shall be an lvalue of a complete class type, and the result is an
Ivalue of the type referred to by T. If T is an rvalue reference type, v shall be a glvalue having a complete
class type, and the result is an xvalue of the type referred to by T.

If the type of v is the same as T, or it is the same as T except that the class object type in T is more
cv-qualified than the class object type in v, the result is v (converted if necessary).

If the value of v is a null pointer value in the pointer case, the result is the null pointer value of type T.

If T is “pointer to cvl B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a
pointer to the unique B subobject of the D object pointed to by v. Similarly, if T is “reference to cv! B” and v
has type cv2 D such that B is a base class of D, the result is the unique B subobject of the D object referred to
by v.%9 In both the pointer and reference cases, the program is ill-formed if cv2 has greater cv-qualification
than cvl or if B is an inaccessible or ambiguous base class of D. [ Example:

struct B { };
struct D : B { };
void foo(D* dp) {
B*x bp = dynamic_cast<B*>(dp); // equivalent to B¥ bp = dp;
}

— end example]
Otherwise, v shall be a pointer to or a glvalue of a polymorphic type (13.3).

If T is “pointer to cv void”, then the result is a pointer to the most derived object pointed to by v. Otherwise,
a runtime check is applied to see if the object pointed or referred to by v can be converted to the type pointed
or referred to by T.

If C is the class type to which T points or refers, the runtime check logically executes as follows:

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class
subobject of a C object, and if only one object of type C is derived from the subobject pointed (referred)
to by v the result points (refers) to that C object.

— Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the
type of the most derived object has a base class, of type C, that is unambiguous and public, the result
points (refers) to the C subobject of the most derived object.

— Otherwise, the runtime check fails.

The value of a failed cast to pointer type is the null pointer value of the required result type. A failed
cast to reference type throws an exception (18.1) of a type that would match a handler (18.3) of type
std: :bad_cast (21.7.3).

[ Example:

class A { virtual void £(); };
class B { virtual void g(); };
class D : public virtual A, private B { };

void g() {
D d;
Bx bp = (Bx)&d; // cast needed to break protection

69) The most derived object (4.5) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

§8.2.7 102



©ISO/IEC N4700

Ax ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails

ap = dynamic_cast<A*>(bp); // fails

bp = dynamic_cast<Bx>(ap); // fails

ap = dynamic_cast<A*>(&d) ; // succeeds

bp = dynamic_cast<B*>(&d); // ill-formed (not a runtime check)

}

class E : public D, public B { };
class F : public E, public D { };

void h() {
F f;
Ax ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields null; £ has two D subobjects
Ex ep = (Ex)ap; // ill-formed: cast from virtual base
Ex epl = dynamic_cast<Ex>(ap); // succeeds
}

— end example| [ Note: 15.7 describes the behavior of a dynamic_cast applied to an object under construction
or destruction. — end note]

8.2.8 Type identification [expr.typeid]

The result of a typeid expression is an lvalue of static type const std: :type_info (21.7.2) and dynamic type
const std::type_info or const name where name is an implementation-defined class publicly derived from
std: :type_info which preserves the behavior described in 21.7.2.7° The lifetime of the object referred to by
the lvalue extends to the end of the program. Whether or not the destructor is called for the std: :type_info
object at the end of the program is unspecified.

When typeid is applied to a glvalue expression whose type is a polymorphic class type (13.3), the result refers
to a std::type_info object representing the type of the most derived object (4.5) (that is, the dynamic
type) to which the glvalue refers. If the glvalue expression is obtained by applying the unary * operator to a
pointer” and the pointer is a null pointer value (7.11), the typeid expression throws an exception (18.1) of
a type that would match a handler of type std: :bad_typeid exception (21.7.4).

When typeid is applied to an expression other than a glvalue of a polymorphic class type, the result
refers to a std::type_info object representing the static type of the expression. Lvalue-to-rvalue (7.1),
array-to-pointer (7.2), and function-to-pointer (7.3) conversions are not applied to the expression. If the
expression is a prvalue, the temporary materialization conversion (7.4) is applied. The expression is an
unevaluated operand (Clause 8).

When typeid is applied to a type-id, the result refers to a std: :type_info object representing the type of
the type-id. If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid
expression refers to a std: :type_info object representing the cv-unqualified referenced type. If the type of
the type-id is a class type or a reference to a class type, the class shall be completely-defined.

If the type of the expression or type-id is a cv-qualified type, the result of the typeid expression refers to a
std: :type_info object representing the cv-unqualified type. [ Example:

class D { /* ... %/ };

D di;

const D d2;

typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

— end example ]
If the header <typeinfo> (21.7.2) is not included prior to a use of typeid, the program is ill-formed.

[ Note: 15.7 describes the behavior of typeid applied to an object under construction or destruction. — end
note |

70) The recommended name for such a class is extended_type_info.
71) If p is an expression of pointer type, then *p, (*p), *(p), ((*p)), *((p)), and so on all meet this requirement.

§8.2.8 103



t

©ISO/IEC N4700

8.2.9 Static cast [expr.static.cast]

The result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T
is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue
reference to object type, the result is an xvalue; otherwise, the result is a prvalue. The static_cast operator
shall not cast away constness (8.2.11).

An lvalue of type “cvl B”, where B is a class type, can be cast to type “reference to cv2 D”, where D is a class
derived (Clause 13) from B, if cv2 is the same cv-qualification as, or greater cv-qualification than, cvi. If B is
a virtual base class of D or a base class of a virtual base class of D, or if no valid standard conversion from
“pointer to D” to “pointer to B” exists (7.11), the program is ill-formed. An xvalue of type “cvl B” can be cast
to type “rvalue reference to cv2 D” with the same constraints as for an lvalue of type “cv! B”. If the object of
type “cvl B” is actually a base class subobject of an object of type D, the result refers to the enclosing object
of type D. Otherwise, the behavior is undefined. [ Ezample:

struct B { };
struct D : public B { };

D d;
B &br = d;
static_cast<D&> (br); // produces lvalue to the original d object

— end example ]

An lvalue of type “cvl T1” can be cast to type “rvalue reference to cv2 T2” if “cv2 T2” is reference-compatible
with “cvl T1” (11.6.3). If the value is not a bit-field, the result refers to the object or the specified base
class subobject thereof; otherwise, the lvalue-to-rvalue conversion (7.1) is applied to the bit-field and the
resulting prvalue is used as the expression of the static_cast for the remainder of this section. If T2 is an
inaccessible (Clause 14) or ambiguous (13.2) base class of T1, a program that necessitates such a cast is
ill-formed.

An expression e can be explicitly converted to a type T if there is an implicit conversion sequence (16.3.3.1)
from e to T, or if overload resolution for a direct-initialization (11.6) of an object or reference of type T from
e would find at least one viable function (16.3.2). If T is a reference type, the effect is the same as performing
the declaration and initialization

T t(e);

for some invented temporary variable t (11.6) and then using the temporary variable as the result of the
conversion. Otherwise, the result object is direct-initialized from e. [ Note: The conversion is ill-formed when
attempting to convert an expression of class type to an inaccessible or ambiguous base class. — end note]

Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be
performed explicitly using a static_cast.

Any expression can be explicitly converted to type cv void, in which case it becomes a discarded-value
expression (Clause 8). [ Note: However, if the value is in a temporary object (15.2), the destructor for
that object is not executed until the usual time, and the value of the object is preserved for the purpose of
executing the destructor. — end note]|

The inverse of any standard conversion sequence (Clause 7) not containing an lvalue-to-rvalue (7.1), array-to-
pointer (7.2), function-to-pointer (7.3), null pointer (7.11), null member pointer (7.12), boolean (7.14), or
function pointer (7.13) conversion, can be performed explicitly using static_cast. A program is ill-formed
if it uses static_cast to perform the inverse of an ill-formed standard conversion sequence. [ Ezample:

struct B { };
struct D : private B { };

void £(O) {
static_cast<D*>((B*)0); // error: B is a private base of D
static_cast<int B::*>((int D::%)0); // error: B is a private base of D
}

— end example]

The lvalue-to-rvalue (7.1), array-to-pointer (7.2), and function-to-pointer (7.3) conversions are applied to the
operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast away
constness (8.2.11), and the following additional rules for specific cases:
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A value of a scoped enumeration type (10.2) can be explicitly converted to an integral type. When that type
is cv bool, the resulting value is false if the original value is zero and true for all other values. For the
remaining integral types, the value is unchanged if the original value can be represented by the specified type.
Otherwise, the resulting value is unspecified. A value of a scoped enumeration type can also be explicitly
converted to a floating-point type; the result is the same as that of converting from the original value to the
floating-point type.

A value of integral or enumeration type can be explicitly converted to a complete enumeration type. The value
is unchanged if the original value is within the range of the enumeration values (10.2). Otherwise, the behavior
is undefined. A value of floating-point type can also be explicitly converted to an enumeration type. The
resulting value is the same as converting the original value to the underlying type of the enumeration (7.10),
and subsequently to the enumeration type.

A prvalue of type “pointer to cvi B”, where B is a class type, can be converted to a prvalue of type “pointer
to cv2 D”, where D is a class derived (Clause 13) from B, if cv2 is the same cv-qualification as, or greater
cv-qualification than, cvi. If B is a virtual base class of D or a base class of a virtual base class of D, or if
no valid standard conversion from “pointer to D” to “pointer to B” exists (7.11), the program is ill-formed.
The null pointer value (7.11) is converted to the null pointer value of the destination type. If the prvalue of
type “pointer to cvl B” points to a B that is actually a subobject of an object of type D, the resulting pointer
points to the enclosing object of type D. Otherwise, the behavior is undefined.

A prvalue of type “pointer to member of D of type cv! T” can be converted to a prvalue of type “pointer
to member of B of type cv2 T”, where B is a base class (Clause 13) of D, if cv2 is the same cv-qualification
as, or greater cv-qualification than, cv1.” If no valid standard conversion from “pointer to member of B of
type T” to “pointer to member of D of type T” exists (7.12), the program is ill-formed. The null member
pointer value (7.12) is converted to the null member pointer value of the destination type. If class B contains
the original member, or is a base or derived class of the class containing the original member, the resulting
pointer to member points to the original member. Otherwise, the behavior is undefined. [ Note: Although
class B need not contain the original member, the dynamic type of the object with which indirection through
the pointer to member is performed must contain the original member; see 8.5. — end note]

A prvalue of type “pointer to cvl void” can be converted to a prvalue of type “pointer to cv2 T”, where T is
an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cvi. If the original
pointer value represents the address A of a byte in memory and A does not satisfy the alignment requirement
of T, then the resulting pointer value is unspecified. Otherwise, if the original pointer value points to an
object a, and there is an object b of type T (ignoring cv-qualification) that is pointer-interconvertible (6.9.2)
with a, the result is a pointer to b. Otherwise, the pointer value is unchanged by the conversion. [ Example:

T* pl = new T;

const T* p2 = static_cast<const T*>(static_cast<void*>(pl));

bool b = pl == p2; //b will have the value true.

— end example]

8.2.10 Reinterpret cast [expr.reinterpret.cast]

The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to type T.
If T is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue
reference to object type, the result is an xvalue; otherwise, the result is a prvalue and the lvalue-to-rvalue (7.1),
array-to-pointer (7.2), and function-to-pointer (7.3) standard conversions are performed on the expression v.
Conversions that can be performed explicitly using reinterpret_cast are listed below. No other conversion
can be performed explicitly using reinterpret_cast.

The reinterpret_cast operator shall not cast away constness (8.2.11). An expression of integral, enumera-
tion, pointer, or pointer-to-member type can be explicitly converted to its own type; such a cast yields the
value of its operand.

[ Note: The mapping performed by reinterpret_cast might, or might not, produce a representation different
from the original value. — end note]

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined. [ Note: It is intended to be unsurprising to those who know the addressing structure
of the underlying machine. — end note] A value of type std: :nullptr_t can be converted to an integral
type; the conversion has the same meaning and validity as a conversion of (void*)0 to the integral type.

72) Function types (including those used in pointer to member function types) are never cv-qualified; see 11.3.5.
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[ Note: A reinterpret_cast cannot be used to convert a value of any type to the type std: :nullptr_t.
— end note]

A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted to
an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.
[ Note: Except as described in 6.7.4.3, the result of such a conversion will not be a safely-derived pointer
value. — end note]

A function pointer can be explicitly converted to a function pointer of a different type. [ Note: The effect of
calling a function through a pointer to a function type (11.3.5) that is not the same as the type used in the
definition of the function is undefined. — end note] Except that converting a prvalue of type “pointer to T1”
to the type “pointer to T2” (where T1 and T2 are function types) and back to its original type yields the
original pointer value, the result of such a pointer conversion is unspecified. [ Note: See also 7.11 for more
details of pointer conversions. — end note]

An object pointer can be explicitly converted to an object pointer of a different type.”> When a prvalue v of
object pointer type is converted to the object pointer type “pointer to cv T”, the result is static_cast<cv
T*>(static_cast<cv void*>(v)). [ Note: Converting a prvalue of type “pointer to T1” to the type “pointer
to T2” (where T1 and T2 are object types and where the alignment requirements of T2 are no stricter than
those of T1) and back to its original type yields the original pointer value. — end note]|

Converting a function pointer to an object pointer type or vice versa is conditionally-supported. The meaning
of such a conversion is implementation-defined, except that if an implementation supports conversions in both
directions, converting a prvalue of one type to the other type and back, possibly with different cv-qualification,
shall yield the original pointer value.

The null pointer value (7.11) is converted to the null pointer value of the destination type. [ Note: A null
pointer constant of type std: :nullptr_t cannot be converted to a pointer type, and a null pointer constant
of integral type is not necessarily converted to a null pointer value. — end note]

A prvalue of type “pointer to member of X of type T1” can be explicitly converted to a prvalue of a different
type “pointer to member of Y of type T2” if T1 and T2 are both function types or both object types.”* The
null member pointer value (7.12) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting a prvalue of type “pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data
member of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1) and
back to its original type yields the original pointer to member value.

A glvalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer to
T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast. The result refers to
the same object as the source glvalue, but with the specified type. [ Note: That is, for lvalues, a reference
cast reinterpret_cast<T&>(x) has the same effect as the conversion *reinterpret_cast<T*>(&x) with
the built-in & and * operators (and similarly for reinterpret_cast<T&&>(x)). — end note] No temporary
is created, no copy is made, and constructors (15.1) or conversion functions (15.3) are not called.”™

8.2.11 Const cast [expr.const.cast]

The result of the expression const_cast<T>(v) is of type T. If T is an lvalue reference to object type, the result
is an lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue
and the lvalue-to-rvalue (7.1), array-to-pointer (7.2), and function-to-pointer (7.3) standard conversions are
performed on the expression v. Conversions that can be performed explicitly using const_cast are listed
below. No other conversion shall be performed explicitly using const_cast.

[ Note: Subject to the restrictions in this section, an expression may be cast to its own type using a const_cast
operator. — end note|

73) The types may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

74) T1 and T2 may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

75) This is sometimes referred to as a type pun.
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For two similar types T1 and T2 (7.5), a prvalue of type T1 may be explicitly converted to the type T2 using
a const_cast. The result of a const_cast refers to the original entity. [ Ezample:

typedef int *A[3]; // array of 3 pointer to int
typedef const int *comnst CA[3]; // array of 8 const pointer to const int

CA &&r = MY; // OK, reference binds to temporary array object after qualification conversion to type CA
A &&r1 = const_cast<A>(CA{}); // error: temporary array decayed to pointer
A &&r2 = const_cast<Ak&>(CA{}); // OK

— end ezample]

For two object types T1 and T2, if a pointer to T1 can be explicitly converted to the type “pointer to T2”
using a const_cast, then the following conversions can also be made:

— an lvalue of type T1 can be explicitly converted to an Ivalue of type T2 using the cast const_cast<T2&>;

— a glvalue of type T1 can be explicitly converted to an xvalue of type T2 using the cast const_cast<T2&&>;
and

— if T1 is a class type, a prvalue of type T1 can be explicitly converted to an xvalue of type T2 using the
cast const_cast<T2&&>.

The result of a reference const_cast refers to the original object if the operand is a glvalue and to the result
of applying the temporary materialization conversion (7.4) otherwise.

A null pointer value (7.11) is converted to the null pointer value of the destination type. The null member
pointer value (7.12) is converted to the null member pointer value of the destination type.

[ Note: Depending on the type of the object, a write operation through the pointer, lvalue or pointer
to data member resulting from a const_cast that casts away a const-qualifier™® may produce undefined
behavior (10.1.7.1). — end note]

A conversion from a type T1 to a type T2 casts away constness if T1 and T2 are different, there is a
cv-decomposition (7.5) of T1 yielding n such that T2 has a cv-decomposition of the form

2 p2 .2 p2 2 2 2
cvg Py ocvp PP -+ cvi_y Pr_y cu;, Ug,

and there is no qualification conversion that converts T1 to

cvd PLevi Pl cv?2_ | Pl ev? Uy

Casting from an lvalue of type T1 to an lvalue of type T2 using an lvalue reference cast or casting from an
expression of type T1 to an xvalue of type T2 using an rvalue reference cast casts away constness if a cast
from a prvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

[ Note: Some conversions which involve only changes in cv-qualification cannot be done using const_cast.
For instance, conversions between pointers to functions are not covered because such conversions lead to
values whose use causes undefined behavior. For the same reasons, conversions between pointers to member
functions, and in particular, the conversion from a pointer to a const member function to a pointer to a
non-const member function, are not covered. — end note]

8.3 Unary expressions [expr.unary]
Expressions with unary operators group right-to-left.

UNATY-erpression:
postfiz-expression
++ cast-expression
—-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
sizeof ... ( identifier )
alignof ( type-id)
noexcept-expression
New-exrpression
delete-expression

76) const_cast is not limited to conversions that cast away a const-qualifier.
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unary-operator: one of
* &+ -1 ~

8.3.1 Unary operators [expr.unary.op]

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an Ivalue referring to the object or function
to which the expression points. If the type of the expression is “pointer to T”, the type of the result is “T".
[ Note: Indirection through a pointer to an incomplete type (other than cv void) is valid. The lvalue thus
obtained can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted
to a prvalue, see 7.1. — end note]

The result of each of the following unary operators is a prvalue.

The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id.
If the operand is a qualified-id naming a non-static or variant member m of some class C with type T, the
result has type “pointer to member of class C of type T” and is a prvalue designating C: :m. Otherwise, if
the type of the expression is T, the result has type “pointer to T” and is a prvalue that is the address of the
designated object (4.4) or a pointer to the designated function. [ Note: In particular, the address of an object
of type “cv T” is “pointer to cv T”, with the same cv-qualification. — end note] For purposes of pointer
arithmetic (8.7) and comparison (8.9, 8.10), an object that is not an array element whose address is taken in
this way is considered to belong to an array with one element of type T. [ Ezample:

struct A { int i; };

struct B : A { };

Lo &BiiioLL. // has type int A::*
int a;

int* pl = &a;

int* p2 = p1 + 1;  // defined behavior

bool b = p2 > pl; // defined behavior, with value true

—end example]| [Note: A pointer to member formed from a mutable non-static data member (10.1.1) does
not reflect the mutable specifier associated with the non-static data member. — end note]

A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed
in parentheses. [Note: That is, the expression &(qualified-id), where the qualified-id is enclosed in
parentheses, does not form an expression of type “pointer to member”. Neither does qualified-id, because
there is no implicit conversion from a qualified-id for a non-static member function to the type “pointer to
member function” as there is from an lvalue of function type to the type “pointer to function” (7.3). Nor is
&unqualified-id a pointer to member, even within the scope of the unqualified-id’s class. — end note]

If & is applied to an lvalue of incomplete class type and the complete type declares operator&(), it is
unspecified whether the operator has the built-in meaning or the operator function is called. The operand of
& shall not be a bit-field.

The address of an overloaded function (Clause 16) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 16.4). [ Note: Since the context might determine
whether the operand is a static or non-static member function, the context can also affect whether the
expression has type “pointer to function” or “pointer to member function”. — end note|

The operand of the unary + operator shall have arithmetic, unscoped enumeration, or pointer type and the
result is the value of the argument. Integral promotion is performed on integral or enumeration operands.
The type of the result is the type of the promoted operand.

The operand of the unary - operator shall have arithmetic or unscoped enumeration type and the result
is the negation of its operand. Integral promotion is performed on integral or enumeration operands. The
negative of an unsigned quantity is computed by subtracting its value from 2", where n is the number of bits
in the promoted operand. The type of the result is the type of the promoted operand.

The operand of the logical negation operator ! is contextually converted to bool (Clause 7); its value is
true if the converted operand is false and false otherwise. The type of the result is bool.

The operand of ~ shall have integral or unscoped enumeration type; the result is the ones’ complement of its
operand. Integral promotions are performed. The type of the result is the type of the promoted operand.
There is an ambiguity in the grammar when ~ is followed by a class-name or decltype-specifier. The ambiguity
is resolved by treating ~ as the unary complement operator rather than as the start of an unqualified-id
naming a destructor. [ Note: Because the grammar does not permit an operator to follow the ., => or ::
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tokens, a ~ followed by a class-name or decltype-specifier in a member access expression or qualified-id is
unambiguously parsed as a destructor name. — end note|

8.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix ++ is modified by adding 1. The operand shall be a modifiable lvalue. The type of the
operand shall be an arithmetic type other than cv bool, or a pointer to a completely-defined object type. The
result is the updated operand; it is an lvalue, and it is a bit-field if the operand is a bit-field. The expression
++x is equivalent to x+=1. [ Note: See the discussions of addition (8.7) and assignment operators (8.18) for
information on conversions. — end note]

The operand of prefix —- is modified by subtracting 1. The requirements on the operand of prefix -- and
the properties of its result are otherwise the same as those of prefix ++. [ Note: For postfix increment and
decrement, see 8.2.6. — end note]

8.3.3 Sizeof [expr.sizeof]

The sizeof operator yields the number of bytes in the object representation of its operand. The operand is
either an expression, which is an unevaluated operand (Clause 8), or a parenthesized type-id. The sizeof
operator shall not be applied to an expression that has function or incomplete type, to the parenthesized
name of such types, or to a glvalue that designates a bit-field. sizeof (char), sizeof (signed char) and
sizeof (unsigned char) are 1. The result of sizeof applied to any other fundamental type (6.9.1) is
implementation-defined. | Note: In particular, sizeof (bool), sizeof (char16_t), sizeof (char32_t), and
sizeof (wchar_t) are implementation-defined.”” — end note] [Note: See 4.4 for the definition of byte
and 6.9 for the definition of object representation. — end note]

When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (4.5).
The result of applying sizeof to a base class subobject is the size of the base class type.”® When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array of n
elements is n times the size of an element.

The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a function.

The lvalue-to-rvalue (7.1), array-to-pointer (7.2), and function-to-pointer (7.3) standard conversions are not
applied to the operand of sizeof. If the operand is a prvalue, the temporary materialization conversion (7.4)
is applied.

The identifier in a sizeof... expression shall name a parameter pack. The sizeof... operator yields
the number of arguments provided for the parameter pack identifier. A sizeof... expression is a pack
expansion (17.6.3). [ Example:

template<class... Types>

struct count {

static const std::size_t value = sizeof...(Types);

3

— end example]|

The result of sizeof and sizeof... is a constant of type std::size_t. [ Note: std::size_t is defined in
the standard header <cstddef> (21.2.1, 21.2.4). — end note]

8.3.4 New [expr.new]

The new-expression attempts to create an object of the type-id (11.1) or new-type-id to which it is applied.
The type of that object is the allocated type. This type shall be a complete object type, but not an abstract
class type or array thereof (4.5, 6.9, 13.4). [ Note: Because references are not objects, references cannot be
created by new-expressions. — end note] [ Note: The type-id may be a cv-qualified type, in which case the
object created by the new-expression has a cv-qualified type. — end note]

New-exrpression:

t:opt New new-placement,p: new-type-id new-initializerypt
t:opt Dew new-placementop; ( type-id ) new-initializer,p:

77) sizeof (bool) is not required to be 1.
78) The actual size of a base class subobject may be less than the result of applying sizeof to the subobject, due to virtual
base classes and less strict padding requirements on base class subobjects.
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new-placement:

( expression-list )
new-type-id:

type-specifier-seq new-declaratorp:
new-declarator:

ptr-operator new-declarator,p:
noptr-new-declarator

noptr-new-declarator:
[ expression 1 attribute-specifier-seqopt
noptr-new-declarator [ constant-expression 1 attribute-specifier-seqopt
new-initializer:
( expression-listop: )
braced-init-list
Entities created by a new-expression have dynamic storage duration (6.7.4). [ Note: The lifetime of such an
entity is not necessarily restricted to the scope in which it is created. — end note| If the entity is a non-array

object, the new-expression returns a pointer to the object created. If it is an array, the new-expression returns
a pointer to the initial element of the array.

2 If a placeholder type (10.1.7.4) appears in the type-specifier-seq of a new-type-id or type-id of a new-expression,
the allocated type is deduced as follows: Let init be the new-initializer, if any, and T be the new-type-id or
type-id of the new-expression, then the allocated type is the type deduced for the variable x in the invented
declaration (10.1.7.4):

T x init ;
[ Example:
new auto(1); // allocated type is int
auto x = new auto(’a’); // allocated type is char, x is of type char*

template<class T> struct A { A(T, T); };
auto y = new A{1, 2}; // allocated type is A<int>

— end example ]

3 The new-type-id in a new-expression is the longest possible sequence of new-declarators. [ Note: This prevents
ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts. — end
note] [ Ezample:

new int * ij; // syntaz error: parsed as (new int*) i, not as (new int)x*i
The * is the pointer declarator and not the multiplication operator. — end example ]
4 [ Note: Parentheses in a new-type-id of a new-expression can have surprising effects. [ Ezample:
new int (x[10]) O); // error
is ill-formed because the binding is
(new int) (*[10]1)Q); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound
types (6.9.2):

new (int (*[10])());

allocates an array of 10 pointers to functions (taking no argument and returning int). — end ezample ]
— end note]

5 When the allocated object is an array (that is, the noptr-new-declarator syntax is used or the new-type-id or
type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array.
[ Note: Both new int and new int[10] have type int* and the type of new int[i][10] is int (%) [10]
—end note] The attribute-specifier-seq in a noptr-new-declarator appertains to the associated array type.

6 Every constant-expression in a noptr-new-declarator shall be a converted constant expression (8.20) of type
std::size_t and shall evaluate to a strictly positive value. The expression in a noptr-new-declarator is
implicitly converted to std::size_t. [Fzample: Given the definition int n = 42, new float[n] [5] is
well-formed (because n is the expression of a noptr-new-declarator), but new float[5] [n] is ill-formed
(because n is not a constant expression). — end example]
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7 The expression in a noptr-new-declarator is erroneous if:

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)
(7.6)

(7.6.1)

(7.6.2)

10

(10.1)
(10.2)
(10.3)

(10.4)

(10.5)

(10.6)

— the expression is of non-class type and its value before converting to std: :size_t is less than zero;

— the expression is of class type and its value before application of the second standard conversion
(16.3.3.1.2)™ is less than zero;

— its value is such that the size of the allocated object would exceed the implementation-defined limit
(Annex B); or

— the new-initializer is a braced-init-list and the number of array elements for which initializers are
provided (including the terminating >\0’ in a string literal (5.13.5)) exceeds the number of elements to
initialize.

If the expression is erroneous after converting to std: :size_t:
— if the expression is a core constant expression, the program is ill-formed;

— otherwise, an allocation function is not called; instead

— if the allocation function that would have been called has a non-throwing exception specification
(18.4), the value of the new-expression is the null pointer value of the required result type;

— otherwise, the new-expression terminates by throwing an exception of a type that would match a
handler (18.3) of type std: :bad_array_new_length (21.6.3.2).

When the value of the expression is zero, the allocation function is called to allocate an array with no
elements.

A new-ezxpression may obtain storage for the object by calling an allocation function (6.7.4.1). If the
new-expression terminates by throwing an exception, it may release storage by calling a deallocation
function (6.7.4.2). If the allocated type is a non-array type, the allocation function’s name is operator
new and the deallocation function’s name is operator delete. If the allocated type is an array type, the
allocation function’s name is operator new[] and the deallocation function’s name is operator deletel[].
[ Note: An implementation shall provide default definitions for the global allocation functions (6.7.4, 21.6.2.1,
21.6.2.2). A C++ program can provide alternative definitions of these functions (20.5.4.6) and/or class-specific
versions (15.5). The set of allocation and deallocation functions that may be called by a new-ezpression may
include functions that do not perform allocation or deallocation; for example, see 21.6.2.3. — end note]

If the new-expression begins with a unary :: operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function’s name
is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a class type,
the allocation function’s name is looked up in the global scope.

An implementation is allowed to omit a call to a replaceable global allocation function (21.6.2.1, 21.6.2.2).
When it does so, the storage is instead provided by the implementation or provided by extending the allocation
of another new-expression. The implementation may extend the allocation of a new-expression el to provide
storage for a new-expression e2 if the following would be true were the allocation not extended:

— the evaluation of el is sequenced before the evaluation of e2, and
— e2 is evaluated whenever el obtains storage, and
— both el and e2 invoke the same replaceable global allocation function, and

— if the allocation function invoked by el and e2 is throwing, any exceptions thrown in the evaluation of
either el or e2 would be first caught in the same handler, and

— the pointer values produced by el and e2 are operands to evaluated delete-expressions, and

— the evaluation of e2 is sequenced before the evaluation of the delete-expression whose operand is the
pointer value produced by el.

[ Example:

void mergeable(int x) {
// These allocations are safe for merging:
std::unique_ptr<char[]> a{new (std::nothrow) char[8]};
std: :unique_ptr<char[]> b{new (std::nothrow) char[8]};
std: :unique_ptr<char[]> c{new (std::nothrow) char[x]};

79) If the conversion function returns a signed integer type, the second standard conversion converts to the unsigned type
std::size_t and thus thwarts any attempt to detect a negative value afterwards.
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gla.get(), b.get(), c.get);
}

void unmergeable(int x) {
std: :unique_ptr<char[]> a{new char[8]};
try {
// Merging this allocation would change its catch handler.
std: :unique_ptr<char[]> b{new char[x]};
} catch (const std::bad_allock e) {
std::cerr << "Allocation failed: " << e.what() << std::endl;
throw;
}
}

— end example]

When a new-ezxpression calls an allocation function and that allocation has not been extended, the new-
expression passes the amount of space requested to the allocation function as the first argument of type
std::size_t. That argument shall be no less than the size of the object being created; it may be greater
than the size of the object being created only if the object is an array. For arrays of char, unsigned char,
and std: :byte, the difference between the result of the new-expression and the address returned by the
allocation function shall be an integral multiple of the strictest fundamental alignment requirement (6.11) of
any object type whose size is no greater than the size of the array being created. [ Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type with
fundamental alignment, this constraint on array allocation overhead permits the common idiom of allocating
character arrays into which objects of other types will later be placed. — end note|

When a new-ezpression calls an allocation function and that allocation has been extended, the size argument
to the allocation call shall be no greater than the sum of the sizes for the omitted calls as specified above,
plus the size for the extended call had it not been extended, plus any padding necessary to align the allocated
objects within the allocated memory.

The new-placement syntax is used to supply additional arguments to an allocation function; such an expression
is called a placement new-expression.

Overload resolution is performed on a function call created by assembling an argument list. The first
argument is the amount of space requested, and has type std::size_t. If the type of the allocated object
has new-extended alignment, the next argument is the type’s alignment, and has type std::align_val_t. If
the new-placement syntax is used, the initializer-clauses in its expression-list are the succeeding arguments.
If no matching function is found and the allocated object type has new-extended alignment, the alignment
argument is removed from the argument list, and overload resolution is performed again.

[ Example:
— new T results in one of the following calls:

operator new(sizeof(T))
operator new(sizeof(T), std::align_val_t(alignof(T)))

— new(2,f) T results in one of the following calls:

operator new(sizeof(T), 2, f)
operator new(sizeof(T), std::align_val_t(alignof(T)), 2, f)

— new T[5] results in one of the following calls:

operator newl[] (sizeof(T) * 5 + x)
operator new([] (sizeof(T) * 5 + x, std::align_val_t(alignof(T)))

— new(2,f) T[5] results in one of the following calls:

operator new[] (sizeof(T) * 5 + x, 2, f)
operator newl[] (sizeof(T) * 5 + x, std::align_val_t(alignof(T)), 2, f)

Here, each instance of x is a non-negative unspecified value representing array allocation overhead; the
result of the new-expression will be offset by this amount from the value returned by operator new[].
This overhead may be applied in all array new-expressions, including those referencing the library function
operator newl[] (std::size_t, voidx) and other placement allocation functions. The amount of overhead
may vary from one invocation of new to another. — end example]
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[ Note: Unless an allocation function has a non-throwing exception specification (18.4), it indicates failure to
allocate storage by throwing a std: :bad_alloc exception (6.7.4.1, Clause 18, 21.6.3.1); it returns a non-null
pointer otherwise. If the allocation function has a non-throwing exception specification, it returns null to
indicate failure to allocate storage and a non-null pointer otherwise. — end note] If the allocation function
is a non-allocating form (21.6.2.3) that returns null, the behavior is undefined. Otherwise, if the allocation
function returns null, initialization shall not be done, the deallocation function shall not be called, and the
value of the new-expression shall be null.

[ Note: When the allocation function returns a value other than null, it must be a pointer to a block of
storage in which space for the object has been reserved. The block of storage is assumed to be appropriately
aligned and of the requested size. The address of the created object will not necessarily be the same as that
of the block if the object is an array. — end note]

A new-expression that creates an object of type T initializes that object as follows:

— If the new-initializer is omitted, the object is default-initialized (11.6). [ Note: If no initialization is
performed, the object has an indeterminate value. — end note|

— Otherwise, the new-initializer is interpreted according to the initialization rules of 11.6 for direct-
initialization.
The invocation of the allocation function is sequenced before the evaluations of expressions in the new-
initializer. Initialization of the allocated object is sequenced before the value computation of the new-
expression.

If the new-expression creates an object or an array of objects of class type, access and ambiguity control
are done for the allocation function, the deallocation function (15.5), and the constructor (15.1). If the
new-expression creates an array of objects of class type, the destructor is potentially invoked (15.4).

If any part of the object initialization described above®? terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the object
was being constructed, after which the exception continues to propagate in the context of the new-expression.
If no unambiguous matching deallocation function can be found, propagating the exception does not cause
the object’s memory to be freed. [ Note: This is appropriate when the called allocation function does not
allocate memory; otherwise, it is likely to result in a memory leak. — end note]

If the new-expression begins with a unary :: operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type or array thereof, the deallocation function’s name is looked up in the global scope.

A declaration of a placement deallocation function matches the declaration of a placement allocation function
if it has the same number of parameters and, after parameter transformations (11.3.5), all parameter types
except the first are identical. If the lookup finds a single matching deallocation function, that function will
be called; otherwise, no deallocation function will be called. If the lookup finds a usual deallocation function
with a parameter of type std::size_t (6.7.4.2) and that function, considered as a placement deallocation
function, would have been selected as a match for the allocation function, the program is ill-formed. For
a non-placement allocation function, the normal deallocation function lookup is used to find the matching
deallocation function (8.3.5) [ Example:

struct S {
// Placement allocation function:
static void* operator new(std::size_t, std::size_t);

// Usual (non-placement) deallocation function:
static void operator delete(void*, std::size_t);

};
S* p = new (0) S;  //ill-formed: non-placement deallocation function matches
// placement allocation function
— end example ]

If a new-expression calls a deallocation function, it passes the value returned from the allocation function
call as the first argument of type void*. If a placement deallocation function is called, it is passed the same

80) This may include evaluating a new-initializer and/or calling a constructor.
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additional arguments as were passed to the placement allocation function, that is, the same arguments as
those specified with the new-placement syntax. If the implementation is allowed to make a copy of any
argument as part of the call to the allocation function, it is allowed to make a copy (of the same original
value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the
allocation function. If the copy is elided in one place, it need not be elided in the other.

8.3.5 Delete [expr.delete]
The delete-expression operator destroys a most derived object (4.5) or array created by a new-expression.

delete-expression:
tiopt delete cast-expression
tiopt delete [ ] cast-expression

The first alternative is for non-array objects, and the second is for arrays. Whenever the delete keyword
is immediately followed by empty square brackets, it shall be interpreted as the second alternative.®! The
operand shall be of pointer to object type or of class type. If of class type, the operand is contextually
implicitly converted (Clause 7) to a pointer to object type.®? The delete-expression’s result has type void.

If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In the first alternative (delete object), the value of the operand of delete may be a null pointer
value, a pointer to a non-array object created by a previous new-exzpression, or a pointer to a subobject (4.5)
representing a base class of such an object (Clause 13). If not, the behavior is undefined. In the second
alternative (delete array), the value of the operand of delete may be a null pointer value or a pointer
value that resulted from a previous array new-erpression.®? If not, the behavior is undefined. [ Note: This
means that the syntax of the delete-expression must match the type of the object allocated by new, not the

syntax of the new-expression. — end note] [Note: A pointer to a const type can be the operand of a
delete-expression; it is not necessary to cast away the constness (8.2.11) of the pointer expression before it is
used as the operand of the delete-expression. — end note]

In the first alternative (delete object), if the static type of the object to be deleted is different from its dynamic
type, the static type shall be a base class of the dynamic type of the object to be deleted and the static type
shall have a virtual destructor or the behavior is undefined. In the second alternative (delete array) if the
dynamic type of the object to be deleted differs from its static type, the behavior is undefined.

The cast-expression in a delete-expression shall be evaluated exactly once.

If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will
invoke the destructor (if any) for the object or the elements of the array being deleted. In the case of an
array, the elements will be destroyed in order of decreasing address (that is, in reverse order of the completion
of their constructor; see 15.6.2).

If the value of the operand of the delete-expression is not a null pointer value, then:

— If the allocation call for the new-expression for the object to be deleted was not omitted and the
allocation was not extended (8.3.4), the delete-expression shall call a deallocation function (6.7.4.2).
The value returned from the allocation call of the new-expression shall be passed as the first argument
to the deallocation function.

— Otherwise, if the allocation was extended or was provided by extending the allocation of another
new-expression, and the delete-expression for every other pointer value produced by a new-expression
that had storage provided by the extended new-expression has been evaluated, the delete-expression shall
call a deallocation function. The value returned from the allocation call of the extended new-expression
shall be passed as the first argument to the deallocation function.

— Otherwise, the delete-expression will not call a deallocation function.

81) A lambda expression with a lambda-introducer that consists of empty square brackets can follow the delete keyword if the
lambda expression is enclosed in parentheses.

82) This implies that an object cannot be deleted using a pointer of type void* because void is not an object type.

83) For nonzero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression.
Zero-length arrays do not have a first element.
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[ Note: The deallocation function is called regardless of whether the destructor for the object or some element
of the array throws an exception. — end note] If the value of the operand of the delete-expression is a null
pointer value, it is unspecified whether a deallocation function will be called as described above.

[ Note: An implementation provides default definitions of the global deallocation functions operator delete
for non-arrays (21.6.2.1) and operator deletel[] for arrays (21.6.2.2). A C++ program can provide alternative
definitions of these functions (20.5.4.6), and/or class-specific versions (15.5). — end note]

When the keyword delete in a delete-expression is preceded by the unary :: operator, the deallocation
function’s name is looked up in global scope. Otherwise, the lookup considers class-specific deallocation
functions (15.5). If no class-specific deallocation function is found, the deallocation function’s name is looked
up in global scope.

If deallocation function lookup finds more than one usual deallocation function, the function to be called is
selected as follows:

— If the type has new-extended alignment, a function with a parameter of type std::align_val_t is
preferred; otherwise a function without such a parameter is preferred. If exactly one preferred function
is found, that function is selected and the selection process terminates. If more than one preferred
function is found, all non-preferred functions are eliminated from further consideration.

— If the deallocation functions have class scope, the one without a parameter of type std: :size_t is
selected.

— If the type is complete and if, for the second alternative (delete array) only, the operand is a pointer to
a class type with a non-trivial destructor or a (possibly multi-dimensional) array thereof, the function
with a parameter of type std: :size_t is selected.

— Otherwise, it is unspecified whether a deallocation function with a parameter of type std::size_t is
selected.

When a delete-expression is executed, the selected deallocation function shall be called with the address
of the most-derived object in the delete object case, or the address of the object suitably adjusted for the
array allocation overhead (8.3.4) in the delete array case, as its first argument. If a deallocation function
with a parameter of type std::align_val_t is used, the alignment of the type of the object to be deleted is
passed as the corresponding argument. If a deallocation function with a parameter of type std::size_t is
used, the size of the most-derived type, or of the array plus allocation overhead, respectively, is passed as the
corresponding argument.®* [ Note: If this results in a call to a usual deallocation function, and either the
first argument was not the result of a prior call to a usual allocation function or the second argument was
not the corresponding argument in said call, the behavior is undefined (21.6.2.1, 21.6.2.2). — end note]

Access and ambiguity control are done for both the deallocation function and the destructor (15.4, 15.5).

8.3.6 Alignof [expr.alignof]

An alignof expression yields the alignment requirement of its operand type. The operand shall be a type-id
representing a complete object type, or an array thereof, or a reference to one of those types.

The result is an integral constant of type std: :size_t.

When alignof is applied to a reference type, the result is the alignment of the referenced type. When
alignof is applied to an array type, the result is the alignment of the element type.

8.3.7 noexcept operator [expr.unary.noexcept]

The noexcept operator determines whether the evaluation of its operand, which is an unevaluated operand
(Clause 8), can throw an exception (18.1).

noexcept-erpression:
noexcept ( expression )

The result of the noexcept operator is a constant of type bool and is a prvalue.

The result of the noexcept operator is true unless the expression is potentially-throwing (18.4).

84) If the static type of the object to be deleted is complete and is different from the dynamic type, and the destructor is not
virtual, the size might be incorrect, but that case is already undefined, as stated above.
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8.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is an lvalue reference
type or an rvalue reference to function type and an xvalue if T is an rvalue reference to object type; otherwise
the result is a prvalue. [ Note: If T is a non-class type that is cv-qualified, the cv-qualifiers are discarded
when determining the type of the resulting prvalue; see Clause 8. — end note|

An explicit type conversion can be expressed using functional notation (8.2.3), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression:
UNATY-ETPTESSION
( type-id ) cast-expression

Any type conversion not mentioned below and not explicitly defined by the user (15.3) is ill-formed.
The conversions performed by

— a const_cast (8.2.11),

— a static_cast (8.2.9),

— a static_cast followed by a const_cast,

— a reinterpret_cast (8.2.10), or

— a reinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions
and behaviors apply, with the exception that in performing a static_cast in the following situations the
conversion is valid even if the base class is inaccessible:

— a pointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly
converted to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

— a pointer to an object of an unambiguous non-virtual base class type, a glvalue of an unambiguous
non-virtual base class type, or a pointer to member of an unambiguous non-virtual base class type
may be explicitly converted to a pointer, a reference, or a pointer to member of a derived class type,
respectively.

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears
first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be
interpreted in more than one way as a static_cast followed by a const_cast, the conversion is ill-formed.
[ Example:

struct A { };
struct I1 : A { };
struct 12 : A { };
struct D : I1, I2 { };
Ax foo( Dx p ) {
return (Ax)( p ); // ill-formed static_cast interpretation
}

— end example]

The operand of a cast using the cast notation can be a prvalue of type “pointer to incomplete class type”.
The destination type of a cast using the cast notation can be “pointer to incomplete class type”. If both the
operand and destination types are class types and one or both are incomplete, it is unspecified whether the
static_cast or the reinterpret_cast interpretation is used, even if there is an inheritance relationship
between the two classes. [ Note: For example, if the classes were defined later in the translation unit, a
multi-pass compiler would be permitted to interpret a cast between pointers to the classes as if the class
types were complete at the point of the cast. — end note]

8.5 Pointer-to-member operators [expr.mptr.oper]

The pointer-to-member operators =>* and .* group left-to-right.
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pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression —>* cast-expression

The binary operator .* binds its second operand, which shall be of type “pointer to member of T” to its first
operand, which shall be a glvalue of class T or of a class of which T is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

The binary operator —>* binds its second operand, which shall be of type “pointer to member of T” to its first
operand, which shall be of type “pointer to U” where U is either T or a class of which T is an unambiguous
and accessible base class. The expression E1->*E2 is converted into the equivalent form (*(E1)) .*E2.

Abbreviating pm-expression . * cast-expression as E1.*E2, E1 is called the object expression. If the dynamic
type of E1 does not contain the member to which E2 refers, the behavior is undefined. Otherwise, the
expression E1 is sequenced before the expression E2.

The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same as the rules for E1.E2 given in 8.2.5. [ Note: It is not
possible to use a pointer to member that refers to a mutable member to modify a const class object. For
example,

struct S {
SO : i {1}
mutable int i;
};
void f£()
{
const S cs;
int S::* pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // ill-formed: cs is a const object

}
— end note]

If the result of .* or —->* is a function, then that result can be used only as the operand for the function call
operator (). [ Ezample:

(ptr_to_obj->*ptr_to_mfct) (10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. — end example|
In a .* expression whose object expression is an rvalue, the program is ill-formed if the second operand is a
pointer to member function whose ref-qualifier is &, unless its cv-qualifier-seq is const. In a .* expression
whose object expression is an lvalue, the program is ill-formed if the second operand is a pointer to member
function whose ref-qualifier is &&. The result of a .* expression whose second operand is a pointer to a data
member is an lvalue if the first operand is an Ivalue and an xvalue otherwise. The result of a .* expression
whose second operand is a pointer to a member function is a prvalue. If the second operand is the null
member pointer value (7.12), the behavior is undefined.

8.6 Multiplicative operators [expr.mul]
The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-erpression * pm-exrpression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

The operands of * and / shall have arithmetic or unscoped enumeration type; the operands of % shall have
integral or unscoped enumeration type. The usual arithmetic conversions are performed on the operands and
determine the type of the result.

The binary * operator indicates multiplication.

The binary / operator yields the quotient, and the binary % operator yields the remainder from the division
of the first expression by the second. If the second operand of / or % is zero the behavior is undefined. For
integral operands the / operator yields the algebraic quotient with any fractional part discarded;® if the

85) This is often called truncation towards zero.

§8.6 117



(2.1)

(2.2)

(2.3)

©ISO/IEC N4700

quotient a/b is representable in the type of the result, (a/b)*b + a)b is equal to a; otherwise, the behavior
of both a/b and a¥b is undefined.

8.7 Additive operators [expr.add]

The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or unscoped enumeration type, or one operand shall
be a pointer to a completely-defined object type and the other shall have integral or unscoped enumeration

type.
For subtraction, one of the following shall hold:
— both operands have arithmetic or unscoped enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely-defined
object type; or

— the left operand is a pointer to a completely-defined object type and the right operand has integral or
unscoped enumeration type.

The result of the binary + operator is the sum of the operands. The result of the binary - operator is the
difference resulting from the subtraction of the second operand from the first.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type
of the pointer operand. If the expression P points to element x[i] of an array object x with n elements,5°
the expressions P + J and J + P (where J has the value j) point to the (possibly-hypothetical) element
x[i + 7] if 0 < i+ j < n; otherwise, the behavior is undefined. Likewise, the expression P - J points to the
(possibly-hypothetical) element x[i — j] if 0 < i — j < n; otherwise, the behavior is undefined.

When two pointers to elements of the same array object are subtracted, the type of the result is an
implementation-defined signed integral type; this type shall be the same type that is defined as std: :ptrdiff_-
t in the <cstddef> header (21.2). If the expressions P and Q point to, respectively, elements x[i] and x[j]
of the same array object x, the expression P - Q has the value i — j; otherwise, the behavior is undefined.
[ Note: If the value ¢ — j is not in the range of representable values of type std::ptrdiff_t, the behavior is
undefined. — end note |

For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T and the array
element type are not similar (7.5), the behavior is undefined. [ Note: In particular, a pointer to a base class
cannot be used for pointer arithmetic when the array contains objects of a derived class type. — end note]

If the value 0 is added to or subtracted from a null pointer value, the result is a null pointer value. If two null
pointer values are subtracted, the result compares equal to the value 0 converted to the type std: :ptrdiff_t.

8.8 Shift operators [expr.shift]
The shift operators << and >> group left-to-right.
shift-expression:
additive-expression

shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or unscoped enumeration type and integral promotions are performed. The

type of the result is that of the promoted left operand. The behavior is undefined if the right operand is
negative, or greater than or equal to the length in bits of the promoted left operand.

The value of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are zero-filled. If E1 has an unsigned
type, the value of the result is E1 x 2F2, reduced modulo one more than the maximum value representable in
the result type. Otherwise, if E1 has a signed type and non-negative value, and E1 x 252 is representable

86) An object that is not an array element is considered to belong to a single-element array for this purpose; see 8.3.1. A
pointer past the last element of an array x of n elements is considered to be equivalent to a pointer to a hypothetical element
x[n] for this purpose; see 6.9.2.
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in the corresponding unsigned type of the result type, then that value, converted to the result type, is the
resulting value; otherwise, the behavior is undefined.

The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed
type and a non-negative value, the value of the result is the integral part of the quotient of E1/2F2. If E1 has
a signed type and a negative value, the resulting value is implementation-defined.

The expression E1 is sequenced before the expression E2.

8.9 Relational operators [expr.rel]
The relational operators group left-to-right. [ Ezample: a<b<c means (a<b)<c and not (a<b)&&(b<c). —end
example]

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration, or pointer type. The operators < (less than), > (greater
than), <= (less than or equal to), and >= (greater than or equal to) all yield false or true. The type of the
result is bool.

The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. If both
operands are pointers, pointer conversions (7.11) and qualification conversions (7.5) are performed to bring
them to their composite pointer type (Clause 8). After conversions, the operands shall have the same type.

Comparing unequal pointers to objects®” is defined as follows:

— If two pointers point to different elements of the same array, or to subobjects thereof, the pointer to
the element with the higher subscript compares greater.

— If two pointers point to different non-static data members of the same object, or to subobjects of such
members, recursively, the pointer to the later declared member compares greater provided the two
members have the same access control (Clause 14) and provided their class is not a union.

— Otherwise, neither pointer compares greater than the other.

If two operands p and q compare equal (8.10), p<=q and p>=q both yield true and p<q and p>q both yield
false. Otherwise, if a pointer p compares greater than a pointer q, p>=q, p>q, q<=p, and g<p all yield true
and p<=q, p<q, @>=p, and g>p all yield false. Otherwise, the result of each of the operators is unspecified.

If both operands (after conversions) are of arithmetic or enumeration type, each of the operators shall yield
true if the specified relationship is true and false if it is false.

8.10 Equality operators [expr.eq]
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression '= relational-expression

The == (equal to) and the != (not equal to) operators group left-to-right. The operands shall have arithmetic,
enumeration, pointer, or pointer to member type, or type std: :nullptr_t. The operators == and != both
yield true or false, i.e., a result of type bool. In each case below, the operands shall have the same type
after the specified conversions have been applied.

If at least one of the operands is a pointer, pointer conversions (7.11), function pointer conversions (7.13),
and qualification conversions (7.5) are performed on both operands to bring them to their composite pointer
type (Clause 8). Comparing pointers is defined as follows:

— If one pointer represents the address of a complete object, and another pointer represents the address
one past the last element of a different complete object,®® the result of the comparison is unspecified.

87) An object that is not an array element is considered to belong to a single-element array for this purpose; see 8.3.1. A
pointer past the last element of an array x of n elements is considered to be equivalent to a pointer to a hypothetical element
x[n] for this purpose; see 6.9.2.

88) An object that is not an array element is considered to belong to a single-element array for this purpose; see 8.3.1.
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— Otherwise, if the pointers are both null, both point to the same function, or both represent the same
address (6.9.2), they compare equal.

— Otherwise, the pointers compare unequal.

If at least one of the operands is a pointer to member, pointer to member conversions (7.12) and qualification
conversions (7.5) are performed on both operands to bring them to their composite pointer type (Clause 8).
Comparing pointers to members is defined as follows:

If two pointers to members are both the null member pointer value, they compare equal.

If only one of two pointers to members is the null member pointer value, they compare unequal.
If either is a pointer to a virtual member function, the result is unspecified.

If one refers to a member of class C1 and the other refers to a member of a different class C2, where
neither is a base class of the other, the result is unspecified. [ Ezample:

struct A {3};

struct B : A { int x; };

struct C : A { int x; };

int A::¥bx = (int(A::*))&B::x;
(int (A::%))&C::x;

int A::*cx

bool bl = (bx == cx); // unspecified
— end example]

If both refer to (possibly different) members of the same union (12.3), they compare equal.

Otherwise, two pointers to members compare equal if they would refer to the same member of the
same most derived object (4.5) or the same subobject if indirection with a hypothetical object of the
associated class type were performed, otherwise they compare unequal. [ Ezample:

struct B {
int £Q;

};

struct L : B

struct R : B

struct D : L

int (B::*pb) () = &B::f;
int (L::*pl) () = pb;
int (R::*pr) () = pb;
int (D::*pdl) () = pl;

int (D::*pdr) () = pr;
bool x = (pdl == pdr); // false
bool y = (pb == pl); // true

— end example]

Two operands of type std: :nullptr_t or one operand of type std: :nullptr_t and the other a null pointer
constant compare equal.

If two operands compare equal, the result is true for the == operator and false for the != operator. If two
operands compare unequal, the result is false for the == operator and true for the != operator. Otherwise,
the result of each of the operators is unspecified.

If both operands are of arithmetic or enumeration type, the usual arithmetic conversions are performed on
both operands; each of the operators shall yield true if the specified relationship is true and false if it is
false.

8.11 Bitwise AND operator [expr.bit.and]

and-expression:
equality-expression
and-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The
operator applies only to integral or unscoped enumeration operands.
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8.12 Bitwise exclusive OR operator [expr.xor]
exclusive-or-erpression:

and-expression
exclusive-or-expression ~ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function of the operands.
The operator applies only to integral or unscoped enumeration operands.

8.13 Bitwise inclusive OR operator [expr.or]
inclusive-or-expression:

exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of its operands.
The operator applies only to integral or unscoped enumeration operands.

8.14 Logical AND operator [expr.log.and]
logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

The &% operator groups left-to-right. The operands are both contextually converted to bool (Clause 7).
The result is true if both operands are true and false otherwise. Unlike &, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand is false.

The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

8.15 Logical OR operator [expr.log.or]
logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression
The || operator groups left-to-right. The operands are both contextually converted to bool (Clause 7). It
returns true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right
evaluation; moreover, the second operand is not evaluated if the first operand evaluates to true.

The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

8.16 Conditional operator [expr.cond]
conditional-expression:

logical-or-expression

logical-or-expression 7 expression : assignment-erpression
Conditional expressions group right-to-left. The first expression is contextually converted to bool (Clause 7).
It is evaluated and if it is true, the result of the conditional expression is the value of the second expression,
otherwise that of the third expression. Only one of the second and third expressions is evaluated. Every value
computation and side effect associated with the first expression is sequenced before every value computation
and side effect associated with the second or third expression.

If either the second or the third operand has type void, one of the following shall hold:

— The second or the third operand (but not both) is a (possibly parenthesized) throw-expression (8.17);
the result is of the type and value category of the other. The conditional-expression is a bit-field if that
operand is a bit-field.

— Both the second and the third operands have type void; the result is of type void and is a prvalue.
[ Note: This includes the case where both operands are throw-expressions. — end note]

Otherwise, if the second and third operand are glvalue bit-fields of the same value category and of types cv!
T and cv2 T, respectively, the operands are considered to be of type cv T for the remainder of this section,
where cv is the union of cv! and cv2.
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Otherwise, if the second and third operand have different types and either has (possibly cv-qualified) class
type, or if both are glvalues of the same value category and the same type except for cv-qualification, an
attempt is made to form an implicit conversion sequence (16.3.3.1) from each of those operands to the type
of the other. [ Note: Properties such as access, whether an operand is a bit-field, or whether a conversion
function is deleted are ignored for that determination. — end note] Attempts are made to form an implicit
conversion sequence from an operand expression E1 of type T1 to a target type related to the type T2 of the
operand expression E2 as follows:

— If E2 is an lvalue, the target type is “lvalue reference to T2”, subject to the constraint that in the
conversion the reference must bind directly (11.6.3) to an lvalue.

— If E2 is an xvalue, the target type is “rvalue reference to T2”, subject to the constraint that the reference
must bind directly.

— If E2 is a prvalue or if neither of the conversion sequences above can be formed and at least one of the
operands has (possibly cv-qualified) class type:

— if T1 and T2 are the same class type (ignoring cv-qualification), or one is a base class of the other,
and T2 is at least as cv-qualified as T1, the target type is T2,

— otherwise, the target type is the type that E2 would have after applying the lvalue-to-rvalue (7.1),
array-to-pointer (7.2), and function-to-pointer (7.3) standard conversions.

Using this process, it is determined whether an implicit conversion sequence can be formed from the second
operand to the target type determined for the third operand, and vice versa. If both sequences can be formed,
or one can be formed but it is the ambiguous conversion sequence, the program is ill-formed. If no conversion
sequence can be formed, the operands are left unchanged and further checking is performed as described
below. Otherwise, if exactly one conversion sequence can be formed, that conversion is applied to the chosen
operand and the converted operand is used in place of the original operand for the remainder of this section.
[ Note: The conversion might be ill-formed even if an implicit conversion sequence could be formed. — end
note |

If the second and third operands are glvalues of the same value category and have the same type, the result
is of that type and value category and it is a bit-field if the second or the third operand is a bit-field, or if
both are bit-fields.

Otherwise, the result is a prvalue. If the second and third operands do not have the same type, and either
has (possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (16.3.1.2; 16.6). If the overload resolution fails, the program is ill-formed. Otherwise,
the conversions thus determined are applied, and the converted operands are used in place of the original
operands for the remainder of this section.

Lvalue-to-rvalue (7.1), array-to-pointer (7.2), and function-to-pointer (7.3) standard conversions are performed
on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type and the result object is
initialized using the selected operand.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

— One or both of the second and third operands have pointer type; pointer conversions (7.11), function
pointer conversions (7.13), and qualification conversions (7.5) are performed to bring them to their
composite pointer type (Clause 8). The result is of the composite pointer type.

— One or both of the second and third operands have pointer to member type; pointer to member
conversions (7.12) and qualification conversions (7.5) are performed to bring them to their composite
pointer type (Clause 8). The result is of the composite pointer type.

— DBoth the second and third operands have type std: :nullptr_t or one has that type and the other is
a null pointer constant. The result is of type std: :nullptr_t.

8.17 Throwing an exception [expr.throw]

throw-expression:
throw assignment-expressionop:

A throw-expression is of type void.
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Evaluating a throw-ezpression with an operand throws an exception (18.1); the type of the exception object
is determined by removing any top-level cv-qualifiers from the static type of the operand and adjusting the
type from “array of T” or function type T to “pointer to T”.

A throw-expression with no operand rethrows the currently handled exception (18.3). The exception is
reactivated with the existing exception object; no new exception object is created. The exception is no
longer considered to be caught. [ Ezample: Code that must be executed because of an exception, but cannot
completely handle the exception itself, can be written like this:

try {
} catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some other handler
}

— end example]

If no exception is presently being handled, evaluating a throw-expression with no operand calls std::
terminate () (18.5.1).

8.18 Assignment and compound assignment operators [expr.ass]

The assignment operator (=) and the compound assignment operators all group right-to-left. All require a
modifiable lvalue as their left operand and return an lvalue referring to the left operand. The result in all
cases is a bit-field if the left operand is a bit-field. In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
The right operand is sequenced before the left operand. With respect to an indeterminately-sequenced
function call, the operation of a compound assignment is a single evaluation. [ Note: Therefore, a function
call shall not intervene between the lvalue-to-rvalue conversion and the side effect associated with any single
compound assignment operator. — end note]

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression

assignment-operator: one of
= %= /= Y= += —= >>= <K= &= "= |=
In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

If the left operand is not of class type, the expression is implicitly converted (Clause 7) to the cv-unqualified
type of the left operand.

If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined by
the copy/move assignment operator (15.8, 16.5.3).

[ Note: For class objects, assignment is not in general the same as initialization (11.6, 15.1, 15.6, 15.8). — end
note|

When the left operand of an assignment operator is a bit-field that cannot represent the value of the expression,
the resulting value of the bit-field is implementation-defined.

The behavior of an expression of the form E1 op= E2 is equivalent to E1 = E1 op E2 except that E1 is
evaluated only once. In += and -=, E1 shall either have arithmetic type or be a pointer to a possibly
cv-qualified completely-defined object type. In all other cases, E1 shall have arithmetic type.

If the value being stored in an object is read via another object that overlaps in any way the storage of the
first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined. [ Note: This restriction applies to the relationship between the left and right sides of
the assignment operation; it is not a statement about how the target of the assignment may be aliased in
general. See 6.10. — end note]

A braced-init-list may appear on the right-hand side of

— an assignment to a scalar, in which case the initializer list shall have at most a single element. The
meaning of x = {v}, where T is the scalar type of the expression x, is that of x = T{v}. The meaning
of x = {}isx = T{}.
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— an assignment to an object of class type, in which case the initializer list is passed as the argument to
the assignment operator function selected by overload resolution (16.5.3; 16.3).

[ Example:
complex<double> z;
z=9{1,2%}; // meaning z.operator=({1,2})
z+=4{1, 2 }; // meaning z.operator+=({1,2})
int a, b;
a=b={113; // meaning a=b=1;
a={11%}=b; // syntax error

— end example]

8.19 Comma operator [expr.commal]
The comma operator groups left-to-right.

exTpression:
assignment-expression
expression , assignment-erpression

A pair of expressions separated by a comma is evaluated left-to-right; the left expression is a discarded-value
expression (Clause 8). Every value computation and side effect associated with the left expression is sequenced
before every value computation and side effect associated with the right expression. The type and value of the
result are the type and value of the right operand; the result is of the same value category as its right operand,
and is a bit-field if its right operand is a bit-field. If the right operand is a temporary expression (15.2), the
result is a temporary expression.

In contexts where comma is given a special meaning, [ Ezample: in lists of arguments to functions (8.2.2) and
lists of initializers (11.6) — end ezample] the comma operator as described in Clause 8 can appear only in
parentheses. [ Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5. — end ezample ]

8.20 Constant expressions [expr.const]

Certain contexts require expressions that satisfy additional requirements as detailed in this subclause; other
contexts have different semantics depending on whether or not an expression satisfies these requirements.
Expressions that satisfy these requirements, assuming that copy elision is performed, are called constant
expressions. | Note: Constant expressions can be evaluated during translation. — end note

constant-expression:
conditional-expression

An expression e is a core constant expression unless the evaluation of e, following the rules of the abstract
machine (4.6), would evaluate one of the following expressions:

— this (8.1.2), except in a constexpr function or a constexpr constructor that is being evaluated as part
of e;

— an invocation of a function other than a constexpr constructor for a literal class, a constexpr function,
or an implicit invocation of a trivial destructor (15.4) [ Note: Overload resolution (16.3) is applied as
usual — end note] ;

— an invocation of an undefined constexpr function or an undefined constexpr constructor;

— an invocation of an instantiated constexpr function or constexpr constructor that fails to satisfy the
requirements for a constexpr function or constexpr constructor (10.1.5);

— an expression that would exceed the implementation-defined limits (see Annex B);

— an operation that would have undefined behavior as specified in Clause 4 through Clause 19 of
this document [ Note: including, for example, signed integer overflow (Clause 8), certain pointer
arithmetic (8.7), division by zero (8.6), or certain shift operations (8.8) — end note] ;

— an lvalue-to-rvalue conversion (7.1) unless it is applied to

— a non-volatile glvalue of integral or enumeration type that refers to a complete non-volatile const
object with a preceding initialization, initialized with a constant expression, or
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(2.7.2) — a non-volatile glvalue that refers to a subobject of a string literal (5.13.5), or

(2.7.3) — a non-volatile glvalue that refers to a non-volatile object defined with constexpr, or that refers to
a non-mutable subobject of such an object, or

(2.7.4) — a non-volatile glvalue of literal type that refers to a non-volatile object whose lifetime began within
the evaluation of e;

(2.8) — an lvalue-to-rvalue conversion (7.1) that is applied to a glvalue that refers to a non-active member of a
union or a subobject thereof;

(2.9) — an invocation of an implicitly-defined copy/move constructor or copy/move assignment operator for a
union whose active member (if any) is mutable, unless the lifetime of the union object began within the
evaluation of e;

(2.10)  — an assignment expression (8.18) or invocation of an assignment operator (15.8) that would change the
active member of a union;
(2.11) — an id-expression that refers to a variable or data member of reference type unless the reference has a
preceding initialization and either
(2.11.1) — it is initialized with a constant expression or
(2.11.2) — its lifetime began within the evaluation of e;
(2.12) — in a lambda-expression, a reference to this or to a variable with automatic storage duration defined
outside that lambda-expression, where the reference would be an odr-use (6.2, 8.1.5); [ Ezample:
void g() {
const int n = O;
(=1 {
constexpr int i = n; // OK, n is not odr-used and not captured here

constexpr int j
}
}
— end example] [ Note: If the odr-use occurs in an invocation of a function call operator of a closure
type, it no longer refers to this or to an enclosing automatic variable due to the transformation (8.1.5.2)
of the id-expression into an access of the corresponding data member. [ Example:

*&n; // ill-formed, &n would be an odr-use of n

auto monad = [](auto v) { return [=] { return v; }; };
auto bind = [](auto m) {
return [=] (auto fvm) { return fvm(m()); };

};

// OK to have captures to automatic objects created during constant expression evaluation.
static_assert(bind(monad(2)) (monad) () == monad(2)());

—end ezample] — end note]
(2.13) — a conversion from type cv void* to a pointer-to-object type;
(214)  — a dynamic cast (8.2.7);
(215)  — a reinterpret_cast (8.2.10);
(216)  — a pseudo-destructor call (8.2.4);
(2.17) — modification of an object (8.18, 8.2.6, 8.3.2) unless it is applied to a non-volatile lvalue of literal type
that refers to a non-volatile object whose lifetime began within the evaluation of e;
(2.18) — a typeid expression (8.2.8) whose operand is a glvalue of a polymorphic class type;
(219)  — a new-expression (8.3.4);
(2200 — a delete-expression (8.3.5);
(221)  — a relational (8.9) or equality (8.10) operator where the result is unspecified; or
(222)  — a throw-expression (8.17).

If e satisfies the constraints of a core constant expression, but evaluation of e would evaluate an operation
that has undefined behavior as specified in Clause 20 through Clause 33 of this document, it is unspecified
whether e is a core constant expression.

[ Ezample:
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int x; // mot constant
struct A {
constexpr A(bool b) : m(b?742:x) { }
int m;
};
constexpr int v = A(true).m; // OK: constructor call initializes m with the value 42
constexpr int w = A(false).m; // error: initializer for m is x, which is non-constant

constexpr int fi(int k) {
constexpr int x = k; // error: x is not initialized by a constant expression
// because lifetime of k began outside the initializer of x

return x;
}
constexpr int f2(int k) {
int x = k; // OK: not required to be a constant expression
// because x is not constexpr
return x;
}

constexpr int incr(int &n) {
return ++n;

}
constexpr int g(int k) {
constexpr int x = incr(k); // error: incr (k) is not a core constant expression
// because lifetime of k began outside the expression incr (k)
return x;
}
constexpr int h(int k) {
int x = incr(k); // OK: incr (k) is not required to be a core constant expression
return x;
}
constexpr int y = h(1); // OK: initializes y with the value 2

// h(1) is a core constant expression because
// the lifetime of k begins inside h(1)

— end example]

3 An integral constant expression is an expression of integral or unscoped enumeration type, implicitly converted
to a prvalue, where the converted expression is a core constant expression. [ Note: Such expressions may be
used as bit-field lengths (12.2.4), as enumerator initializers if the underlying type is not fixed (10.2), and as
alignments (10.6.2). — end note]

4 If an expression of literal class type is used in a context where an integral constant expression is required,
then that expression is contextually implicitly converted (Clause 7) to an integral or unscoped enumeration
type and the selected conversion function shall be constexpr. [ Example:

struct A {
constexpr A(int i) : val(i) { }
constexpr operator int() const { return val; }
constexpr operator long() const { return 42; }
private:
int val;
};
template<int> struct X { };
constexpr A a = alignof (int);
alignas(a) int n; // error: ambiguous conversion
struct B { int n : a; }; // error: ambiguous conversion

— end example]

5 A converted constant expression of type T is an expression, implicitly converted to type T, where the converted
expression is a constant expression and the implicit conversion sequence contains only

(5.1) — user-defined conversions,

(5-2) — lvalue-to-rvalue conversions (7.1),
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(5.3)  — array-to-pointer conversions (7.2),

(54)  — function-to-pointer conversions (7.3),

(55)  — qualification conversions (7.5),

(5.6)  — integral promotions (7.6),

(5.7 — integral conversions (7.8) other than narrowing conversions (11.6.4),
(58)  — null pointer conversions (7.11) from std: :nullptr_t,

(3.9 — null member pointer conversions (7.12) from std: :nullptr_t, and
(5.10)  — function pointer conversions (7.13),

and where the reference binding (if any) binds directly. [Note: Such expressions may be used in new
expressions (8.3.4), as case expressions (9.4.2), as enumerator initializers if the underlying type is fixed (10.2),
as array bounds (11.3.4), and as non-type template arguments (17.3). — end note] A contextually converted
constant expression of type bool is an expression, contextually converted to bool (Clause 7), where the
converted expression is a constant expression and the conversion sequence contains only the conversions
above.

6 A constant expression is either a glvalue core constant expression that refers to an entity that is a permitted
result of a constant expression (as defined below), or a prvalue core constant expression whose value satisfies
the following constraints:

(6.1) — if the value is an object of class type, each non-static data member of reference type refers to an entity
that is a permitted result of a constant expression,

(6.2) — if the value is of pointer type, it contains the address of an object with static storage duration, the
address past the end of such an object (8.7), the address of a function, or a null pointer value, and

(6.3)  — if the value is an object of class or array type, each subobject satisfies these constraints for the value.

An entity is a permitted result of a constant expression if it is an object with static storage duration that is
either not a temporary object or is a temporary object whose value satisfies the above constraints, or it is a
function.

7 [ Note: Since this document imposes no restrictions on the accuracy of floating-point operations, it is
unspecified whether the evaluation of a floating-point expression during translation yields the same result as
the evaluation of the same expression (or the same operations on the same values) during program execution.®?
[ Ezample:

bool £() {
char array[1 + int(1 + 0.2 - 0.1 - 0.1)]; // Must be evaluated during translation
int size = 1 + int(1 + 0.2 - 0.1 - 0.1);  // May be evaluated at runtime
return sizeof (array) == size;

}

It is unspecified whether the value of £() will be true or false. — end example] — end note|

89) Nonetheless, implementations should provide consistent results, irrespective of whether the evaluation was performed during
translation and/or during program execution.
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9 Statements [stmt.stmt]

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
attribute-specifier-seqop: expression-statement
attribute-specifier-seqop: compound-statement
attribute-specifier-seqop: Selection-statement
attribute-specifier-seqop: iteration-statement
attribute-specifier-seqop: jump-statement
declaration-statement
attribute-specifier-seqop: try-block

init-statement:

expression-statement
stmple-declaration

condition:
exrpression
attribute-specifier-seqop: decl-specifier-seq declarator brace-or-equal-initializer

The optional attribute-specifier-seq appertains to the respective statement.

The rules for conditions apply both to selection-statements and to the for and while statements (9.5).
The declarator shall not specify a function or an array. The decl-specifier-seq shall not define a class or
enumeration. If the auto type-specifier appears in the decl-specifier-seq, the type of the identifier being
declared is deduced from the initializer as described in 10.1.7.4.

A name introduced by a declaration in a condition (either introduced by the decl-specifier-seq or the declarator
of the condition) is in scope from its point of declaration until the end of the substatements controlled by the
condition. If the name is redeclared in the outermost block of a substatement controlled by the condition,
the declaration that redeclares the name is ill-formed. [ Ezample:

if (int x = £Q) {

int x; // ill-formed, redeclaration of x
}
else {

int x; // ill-formed, redeclaration of x
}

— end example]

The value of a condition that is an initialized declaration in a statement other than a switch statement is the
value of the declared variable contextually converted to bool (Clause 7). If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is the
value of the declared variable if it has integral or enumeration type, or of that variable implicitly converted
to integral or enumeration type otherwise. The value of a condition that is an expression is the value of the
expression, contextually converted to bool for statements other than switch; if that conversion is ill-formed,
the program is ill-formed. The value of the condition will be referred to as simply “the condition” where the
usage is unambiguous.

If a condition can be syntactically resolved as either an expression or the declaration of a block-scope name,
it is interpreted as a declaration.

In the decl-specifier-seq of a condition, each decl-specifier shall be either a type-specifier or constexpr.

9.1 Labeled statement [stmt.label]
A statement can be labeled.

labeled-statement:
attribute-specifier-seqop: identifier : statement
attribute-specifier-seqop: case constant-expression : statement
attribute-specifier-seqop: default : statement
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The optional attribute-specifier-seq appertains to the label. An identifier label declares the identifier. The
only use of an identifier label is as the target of a goto. The scope of a label is the function in which it
appears. Labels shall not be redeclared within a function. A label can be used in a goto statement before its
declaration. Labels have their own name space and do not interfere with other identifiers. [ Note: A label
may have the same name as another declaration in the same scope or a template-parameter from an enclosing
scope. Unqualified name lookup (6.4.1) ignores labels. — end note ]

Case labels and default labels shall occur only in switch statements.

9.2 Expression statement [stmt.expr]
Expression statements have the form

expression-statement:
expressionopt ;

The expression is a discarded-value expression (Clause 8). All side effects from an expression statement are
completed before the next statement is executed. An expression statement with the expression missing is
called a null statement. [ Note: Most statements are expression statements — usually assignments or function
calls. A null statement is useful to carry a label just before the } of a compound statement and to supply a
null body to an iteration statement such as a while statement (9.5.1). — end note]

9.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equivalently,
called “block”) is provided.

compound-statement:
{ statement-seqopt *

statement-seq:
statement
statement-seq statement

A compound statement defines a block scope (6.3). [ Note: A declaration is a statement (9.7). — end note]

9.4 Selection statements [stmt.select]
Selection statements choose one of several flows of control.

selection-statement:
if constexpro,: ( init-statementoy: condition ) statement
if constexpro,: ( init-statemento,: condition ) statement else statement
switch ( init-statementoy; condition ) statement

See 11.3 for the optional attribute-specifier-seq in a condition. [ Note: An init-statement ends with a semicolon.
—end note] In Clause 9, the term substatement refers to the contained statement or statements that appear
in the syntax notation. The substatement in a selection-statement (each substatement, in the else form
of the if statement) implicitly defines a block scope (6.3). If the substatement in a selection-statement is
a single statement and not a compound-statement, it is as if it was rewritten to be a compound-statement
containing the original substatement. | Ezample:
if (x)
int i;
can be equivalently rewritten as
if (x) {
int i;
}

Thus after the if statement, i is no longer in scope. — end ezample ]

9.4.1 The if statement [stmt.if]

If the condition (9.4) yields true the first substatement is executed. If the else part of the selection statement
is present and the condition yields false, the second substatement is executed. If the first substatement
is reached via a label, the condition is not evaluated and the second substatement is not executed. In the
second form of if statement (the one including else), if the first substatement is also an if statement then
that inner if statement shall contain an else part.”’

90) In other words, the else is associated with the nearest un-elsed if.
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2 If the if statement is of the form if constexpr, the value of the condition shall be a contextually converted
constant expression of type bool (8.20); this form is called a constexpr if statement. If the value of
the converted condition is false, the first substatement is a discarded statement, otherwise the second
substatement, if present, is a discarded statement. During the instantiation of an enclosing templated
entity (Clause 17), if the condition is not value-dependent after its instantiation, the discarded substatement
(if any) is not instantiated. [ Note: Odr-uses (6.2) in a discarded statement do not require an entity to be
defined. — end note] A case or default label appearing within such an if statement shall be associated
with a switch statement (9.4.2) within the same if statement. A label (9.1) declared in a substatement
of a constexpr if statement shall only be referred to by a statement (9.6.4) in the same substatement.
[ Example:

template<typename T, typename ... Rest> void g(T&& p, Rest&& ...rs) {
// ... handle p

if constexpr (sizeof...(rs) > 0)
g(rs...); // never instantiated with an empty argument list

}
extern int x; // no definition of x required

int £(O) {
if constexpr (true)
return O;
else if (x)
return x;
else
return -x;

}
— end example]
3 An if statement of the form
if constexpr,y,: ( init-statement condition ) statement

is equivalent to
{

init-statement
if constexpro,: ( condition ) statement

}
and an if statement of the form

if constexpro,: ( init-statement condition ) statement else statement
is equivalent to

{

init-statement
if constexpr,,: ( condition ) statement else statement

}

except that names declared in the init-statement are in the same declarative region as those declared in the
condition.

9.4.2 The switch statement [stmt.switch]

1 The switch statement causes control to be transferred to one of several statements depending on the value
of a condition.

2 The condition shall be of integral type, enumeration type, or class type. If of class type, the condition is
contextually implicitly converted (Clause 7) to an integral or enumeration type. If the (possibly converted)
type is subject to integral promotions (7.6), the condition is converted to the promoted type. Any statement
within the switch statement can be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be a converted constant expression (8.20) of the adjusted type of the
switch condition. No two of the case constants in the same switch shall have the same value after conversion.
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There shall be at most one label of the form
default :
within a switch statement.
Switch statements can be nested; a case or default label is associated with the smallest switch enclosing it.

When the switch statement is executed, its condition is evaluated and compared with each case constant. If
one of the case constants is equal to the value of the condition, control is passed to the statement following
the matched case label. If no case constant matches the condition, and if there is a default label, control
passes to the statement labeled by the default label. If no case matches and if there is no default then none
of the statements in the switch is executed.

case and default labels in themselves do not alter the flow of control, which continues unimpeded across
such labels. To exit from a switch, see break, 9.6.1. [ Note: Usually, the substatement that is the subject of
a switch is compound and case and default labels appear on the top-level statements contained within the
(compound) substatement, but this is not required. Declarations can appear in the substatement of a switch
statement. — end note|

A switch statement of the form

switch ( init-statement condition ) statement
is equivalent to

{

init-statement
switch ( condition ) statement

}

except that names declared in the init-statement are in the same declarative region as those declared in the
condition.

9.5 Iteration statements [stmt.iter]
Iteration statements specify looping.

iteration-statement:
while ( condition ) statement
do statement while ( expression ) ;
for ( init-statement condition.p: ; expression.p: ) statement
for ( for-range-declaration : for-range-initializer ) statement
for-range-declaration:
attribute-specifier-seqop: decl-specifier-seq declarator
attribute-specifier-seqop: decl-specifier-seq ref-qualifieroy: [ identifier-list ]
for-range-initializer:
expr-or-braced-init-list
See 11.3 for the optional attribute-specifier-seq in a for-range-declaration. [ Note: An init-statement ends
with a semicolon. — end note ]

The substatement in an iteration-statement implicitly defines a block scope (6.3) which is entered and exited
each time through the loop.

If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if
it was rewritten to be a compound-statement containing the original statement. [ Example:

while (--x >= 0)
int i;
can be equivalently rewritten as

while (--x >= 0) {
int i;
}
Thus after the while statement, i is no longer in scope. — end example|

If a name introduced in an init-statement or for-range-declaration is redeclared in the outermost block of the
substatement, the program is ill-formed. [ Ezample:
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void £() {
for (int i = 0; i < 10; ++i)
int i = 0; // error: redeclaration
for (int i : {1, 2, 3 })
int i = 1; // error: redeclaration
}

— end example]

9.5.1 The while statement [stmt.while]

In the while statement the substatement is executed repeatedly until the value of the condition (9.4) becomes
false. The test takes place before each execution of the substatement.

When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (6.3.2) to the end of the while statement. A while statement of the form

while (T t = x) statement
is equivalent to

label:
{ // start of condition scope
Tt = x;
if (&) {
statement
goto label;
}
} // end of condition scope

The variable created in a condition is destroyed and created with each iteration of the loop. [ Ezample:

struct A {
int val;
A(int i) : val(i) { }
~A0 {32
operator bool() { return val != 0; }
};
int i = 1;
while (A a = i) {

//

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails. — end example ]

9.5.2 The do statement [stmt.do]

The expression is contextually converted to bool (Clause 7); if that conversion is ill-formed, the program is
ill-formed.

In the do statement the substatement is executed repeatedly until the value of the expression becomes false.
The test takes place after each execution of the statement.

9.5.3 The for statement [stmt.for]
The for statement
for ( init-statement conditionop: ; erpressionop: ) statement

is equivalent to

{
init-statement
while ( condition ) {
statement
expression ;
}
}
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except that names declared in the init-statement are in the same declarative region as those declared in
the condition, and except that a continue in statement (not enclosed in another iteration statement) will
execute expression before re-evaluating condition. | Note: Thus the first statement specifies initialization for
the loop; the condition (9.4) specifies a test, sequenced before each iteration, such that the loop is exited
when the condition becomes false; the expression often specifies incrementing that is sequenced after each
iteration. — end note

2 Either or both of the condition and the expression can be omitted. A missing condition makes the implied
while clause equivalent to while (true).

3 If the dnit-statement is a declaration, the scope of the name(s) declared extends to the end of the for
statement. | Example:

int i = 42;
int a[10];

for (int i = 0; i < 10; i++)
ali] = 1i;
int j = i; /)3 =42

— end example]

9.5.4 The range-based for statement [stmt.ranged]
1 The range-based for statement
for ( for-range-declaration : for-range-initializer ) statement

is equivalent to

{
auto &&__range = for-range-initializer ;
auto __begin = begin-ezpr ;
auto __end = end-expr ;
for ( ; __begin != __end; ++__begin ) {
for-range-declaration = *__begin;
statement
}
}
where
(1.1) — if the for-range-initializer is an expression, it is regarded as if it were surrounded by parentheses (so
that a comma operator cannot be reinterpreted as delimiting two init-declarators);
(1.2) — __range, __begin, and __end are variables defined for exposition only; and
(1.3) — begin-expr and end-expr are determined as follows:
(1.3.1) — if the for-range-initializer is an expression of array type R, begin-expr and end-ezpr are __range

and __range + __bound, respectively, where __bound is the array bound. If R is an array of
unknown bound or an array of incomplete type, the program is ill-formed;

(1.3.2) — if the for-range-initializer is an expression of class type C, the unqualified-ids begin and end are
looked up in the scope of C as if by class member access lookup (6.4.5), and if either (or both)
finds at least one declaration, begin-expr and end-expr are __range.begin() and __range.end(),
respectively;

(1.3.3) — otherwise, begin-expr and end-expr are begin(__range) and end(__range), respectively, where
begin and end are looked up in the associated namespaces (6.4.2). [ Note: Ordinary unqualified
lookup (6.4.1) is not performed. — end note]

[ Example:

int array[5] = {1, 2, 3, 4, 5 };
for (int& x : array)
X *= 2;

— end example ]

2 In the decl-specifier-seq of a for-range-declaration, each decl-specifier shall be either a type-specifier or
constexpr. The decl-specifier-seq shall not define a class or enumeration.
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9.6 Jump statements [stmt.jump]
Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expr-or-braced-init-list,p; ;
goto identifier ;

On exit from a scope (however accomplished), objects with automatic storage duration (6.7.3) that have been
constructed in that scope are destroyed in the reverse order of their construction. [ Note: For temporaries,
see 15.2. —end note] Transfer out of a loop, out of a block, or back past an initialized variable with
automatic storage duration involves the destruction of objects with automatic storage duration that are in
scope at the point transferred from but not at the point transferred to. (See 9.7 for transfers into blocks).
[ Note: However, the program can be terminated (by calling std::exit() or std::abort() (21.5), for
example) without destroying class objects with automatic storage duration. — end note]

9.6.1 The break statement [stmt.break]

The break statement shall occur only in an iteration-statement or a switch statement and causes termination
of the smallest enclosing iteration-statement or switch statement; control passes to the statement following
the terminated statement, if any.

9.6.2 The continue statement [stmt.cont]

The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More
precisely, in each of the statements

while (foo) { do { for (;;) {
{ { {
// .. // .. // ..
} } }
contin: ; contin: ; contin: ;
} } while (foo); T

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

9.6.3 The return statement [stmt.return]
A function returns to its caller by the return statement.

The expr-or-braced-init-list of a return statement is called its operand. A return statement with no operand
shall be used only in a function whose return type is cv void, a constructor (15.1), or a destructor (15.4). A
return statement with an operand of type void shall be used only in a function whose return type is cv void.
A return statement with any other operand shall be used only in a function whose return type is not cv void;
the return statement initializes the glvalue result or prvalue result object of the (explicit or implicit) function
call by copy-initialization (11.6) from the operand. [ Note: A return statement can involve an invocation of a
constructor to perform a copy or move of the operand if it is not a prvalue or if its type differs from the return
type of the function. A copy operation associated with a return statement may be elided or converted to a
move operation if an automatic storage duration variable is returned (15.8). —end note| [Ezample:
std::pair<std::string,int> f(const char* p, int x) {
return {p,x};

}

— end example] Flowing off the end of a constructor, a destructor, or a function with a cv void return type is
equivalent to a return with no operand. Otherwise, flowing off the end of a function other than main (6.6.1)
results in undefined behavior.

The copy-initialization of the result of the call is sequenced before the destruction of temporaries at the end
of the full-expression established by the operand of the return statement, which, in turn, is sequenced before
the destruction of local variables (9.6) of the block enclosing the return statement.

9.6.4 The goto statement [stmt.goto]

The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier
shall be a label (9.1) located in the current function.
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9.7 Declaration statement [stmt.dcl]
A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration is
hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (6.7.3) are initialized each time their declaration-statement is

executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (9.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A
program that jumps®' from a point where a variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has scalar type, class type with a trivial default
constructor and a trivial destructor, a cv-qualified version of one of these types, or an array of one of the
preceding types and is declared without an initializer (11.6). [ Example:

void £() {
goto 1x; // ill-formed: jump into scope of a
ly:
X a-=1;
1x:
goto ly; // OK, jump implies destructor call for a followed by
// construction again immediately following label 1y

¥
— end example]

Dynamic initialization of a block-scope variable with static storage duration (6.7.1) or thread storage
duration (6.7.2) is performed the first time control passes through its declaration; such a variable is considered
initialized upon the completion of its initialization. If the initialization exits by throwing an exception, the
initialization is not complete, so it will be tried again the next time control enters the declaration. If control
enters the declaration concurrently while the variable is being initialized, the concurrent execution shall wait
for completion of the initialization.”? If control re-enters the declaration recursively while the variable is
being initialized, the behavior is undefined. [ Example:
int foo(int i) {
static int s = foo(2%i); // recursive call - undefined

return i+1;

}
— end example ]

The destructor for a block-scope object with static or thread storage duration will be executed if and only
if it was constructed. [ Note: 6.6.4 describes the order in which block-scope objects with static and thread
storage duration are destroyed. — end note|

9.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (8.2.3) as its leftmost subexpression can be indis-
tinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration.

[ Note: If the statement cannot syntactically be a declaration, there is no ambiguity, so this rule does not
apply. The whole statement might need to be examined to determine whether this is the case. This resolves
the meaning of many examples. [ Ezample: Assuming T is a simple-type-specifier (10.1.7),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

91) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.
92) The implementation must not introduce any deadlock around execution of the initializer. Deadlocks might still be caused
by the program logic; the implementation need only avoid deadlocks due to its own synchronization operations.
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T(*d) (int) ; // declaration

T(e) [5]; // declaration

T(E) ={1, 2 }; // declaration

T(xg) (double(3)); // declaration
In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-formed
for semantic reasons, but that does not affect the syntactic analysis. — end example]

The remaining cases are declarations. [ Example:

class T {
public:

TO;

T(int);

T(int, int);
I
T(a); // declaration
T(xb) ) ; // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g) (h,2); // declaration

— end example] — end note|

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation. Class
templates are instantiated as necessary to determine if a qualified name is a type-name. Disambiguation
precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If, during
parsing, a name in a template parameter is bound differently than it would be bound during a trial parse,
the program is ill-formed. No diagnostic is required. [ Note: This can occur only when the name is declared
earlier in the declaration. — end note] [ Ezample:

struct T1 {
T1 operator() (int x) { return T1(x); }
int operator=(int x) { return x; }
Ti(int) { }

};

struct T2 { T2(int){ } };

int a, (x(*b)(T2))(int), c, d;

void £() {
// disambiguation requires this to be parsed as a declaration:
Ti(a) = 3,
T2(4), // T2 will be declared as a variable of type T1, but this will not
(*x(*b) (T2(c))) (int(d)); // allow the last part of the declaration to parse properly,
// since it depends on T2 being a type-name
}

— end example]

§9.8 136



©ISO/IEC N4700

10 Declarations [dcl.dcl]

1 Declarations generally specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
deduction-guide
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration

block-declaration:
stmple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static__assert-declaration
alias-declaration
opaque-enum-declaration

nodeclspec-function-declaration:
attribute-specifier-seqop: declarator ;

alias-declaration:

using identifier attribute-specifier-seqops = defining-type-id ;
stmple-declaration:

decl-specifier-seq init-declarator-listop: ;

attribute-specifier-seq decl-specifier-seq init-declarator-list ;

attribute-specifier-seqopt decl-specifier-seq ref-qualifieroy: [ identifier-list 1 initializer ;
static__assert-declaration:

static_assert ( constant-expression ) ;

static_assert ( constant-expression , string-literal ) ;

empty-declaration:
attribute-declaration:
attribute-specifier-seq ;
[ Note: asm-definitions are described in 10.4, and linkage-specifications are described in 10.5. Function-
definitions are described in 11.4 and template-declarations and deduction-guides are described in Clause 17.
Namespace-definitions are described in 10.3.1, using-declarations are described in 10.3.3 and using-directives
are described in 10.3.4. — end note]

2 A simple-declaration or nodeclspec-function-declaration of the form
attribute-specifier-seqop: decl-specifier-seqop: init-declarator-listop: ;

is divided into three parts. Attributes are described in 10.6. decl-specifiers, the principal components of a
decl-specifier-seq, are described in 10.1. declarators, the components of an init-declarator-list, are described
in Clause 11. The attribute-specifier-seq appertains to each of the entities declared by the declarators of the
init-declarator-list. [ Note: In the declaration for an entity, attributes appertaining to that entity may appear
at the start of the declaration and after the declarator-id for that declaration. — end note] [Ezample:
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[[noreturn]] void £ [[noreturn]] (); // OK
— end example ]
Except where otherwise specified, the meaning of an attribute-declaration is implementation-defined.

A declaration occurs in a scope (6.3); the scope rules are summarized in 6.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in Clause 10 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that are not nested within scopes nested within the declaration.

In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (Clause
12) or enumeration (10.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-
type-specifier with a class-key (12.1), or an enum-specifier. In these cases and whenever a class-specifier or
enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names being
declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax). In
such cases, the decl-specifier-seq shall introduce one or more names into the program, or shall redeclare a
name introduced by a previous declaration. [ Example:

enum { }; // ill-formed

typedef class { }; // ill-formed

— end example ]

In a static__assert-declaration, the constant-expression shall be a contextually converted constant expression
of type bool (8.20). If the value of the expression when so converted is true, the declaration has no effect.
Otherwise, the program is ill-formed, and the resulting diagnostic message (4.1) shall include the text of the
string-literal, if one is supplied, except that characters not in the basic source character set (5.3) are not
required to appear in the diagnostic message. [ Example:

static_assert(char(-1) < 0, "this library requires plain ’char’ to be signed");
— end example ]
An empty-declaration has no effect.

A simple-declaration with an identifier-list is called a structured binding declaration (11.5). The decl-specifier-
seq shall contain only the type-specifier auto (10.1.7.4) and cv-qualifiers. The initializer shall be of the form
“= assignment-expression”, of the form “{ assignment-expression }”, or of the form “( assignment-expression
)7, where the assignment-expression is of array or non-union class type.

Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name declared
by that init-declarator and hence one of the names declared by the declaration. The defining-type-specifiers
(10.1.7) in the decl-specifier-seq and the recursive declarator structure of the init-declarator describe a
type (11.3), which is then associated with the name being declared by the init-declarator.

If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and the
name of each init-declarator is declared to be a typedef-name, synonymous with its associated type (10.1.3).
If the decl-specifier-seq contains no typedef specifier, the declaration is called a function declaration if the
type associated with the name is a function type (11.3.5) and an object declaration otherwise.

Syntactic components beyond those found in the general form of declaration are added to a function declaration
to make a function-definition. An object declaration, however, is also a definition unless it contains the
extern specifier and has no initializer (6.1). A definition causes the appropriate amount of storage to be
reserved and any appropriate initialization (11.6) to be done.

A nodeclspec-function-declaration shall declare a constructor, destructor, or conversion function.”® [ Note: A
nodeclspec-function-declaration can only be used in a template-declaration (Clause 17), explicit-instantiation
(17.8.2), or explicit-specialization (17.8.3). — end note]

10.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are

93) The “implicit int” rule of C is no longer supported.
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decl-specifier:
storage-class-specifier
defining-type-specifier
function-specifier
friend
typedef
constexpr
inline

decl-specifier-seq:
decl-specifier attribute-specifier-seqopt
decl-specifier decl-specifier-seq

The optional attribute-specifier-seq in a decl-specifier-seq appertains to the type determined by the preceding

decl-specifiers (11.3). The attribute-specifier-seq affects the type only for the declaration it appears in, not
other declarations involving the same type.

Each decl-specifier shall appear at most once in a complete decl-specifier-seq, except that long may appear
twice.

If a type-name is encountered while parsing a decl-specifier-seq, it is interpreted as part of the decl-specifier-seq
if and only if there is no previous defining-type-specifier other than a cv-qualifier in the decl-specifier-seq.
The sequence shall be self-consistent as described below. [ Ezample:

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc.
To get a variable called Pc, a type-specifier (other than const or volatile) has to be present to indicate
that the typedef-name Pc is the name being (re)declared, rather than being part of the decl-specifier sequence.
For another example,

void f(comnst Pc); // void f(char* const) (not const charx*)
void g(const int Pc); // void g(const int)

— end example ]

[ Note: Since signed, unsigned, long, and short by default imply int, a type-name appearing after one of
those specifiers is treated as the name being (re)declared. [ Ezample:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)
— end example] — end note]
10.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are
storage-class-specifier:
static
thread_local
extern
mutable

At most one storage-class-specifier shall appear in a given decl-specifier-seq, except that thread_local may
appear with static or extern. If thread_local appears in any declaration of a variable it shall be present
in all declarations of that entity. If a storage-class-specifier appears in a decl-specifier-seq, there can be
no typedef specifier in the same decl-specifier-seq and the init-declarator-list or member-declarator-list of
the declaration shall not be empty (except for an anonymous union declared in a named namespace or
in the global namespace, which shall be declared static (12.3.1)). The storage-class-specifier applies to
the name declared by each init-declarator in the list and not to any names declared by other specifiers. A
storage-class-specifier other than thread_local shall not be specified in an explicit specialization (17.8.3) or
an explicit instantiation (17.8.2) directive.

[ Note: A variable declared without a storage-class-specifier at block scope or declared as a function parameter
has automatic storage duration by default (6.7.3). — end note]

The thread_local specifier indicates that the named entity has thread storage duration (6.7.2). It shall be
applied only to the names of variables of namespace or block scope and to the names of static data members.
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When thread_local is applied to a variable of block scope the storage-class-specifier static is implied if no
other storage-class-specifier appears in the decl-specifier-seq.

4 The static specifier can be applied only to names of variables and functions and to anonymous unions (12.3.1).
There can be no static function declarations within a block, nor any static function parameters. A static
specifier used in the declaration of a variable declares the variable to have static storage duration (6.7.1),
unless accompanied by the thread_local specifier, which declares the variable to have thread storage
duration (6.7.2). A static specifier can be used in declarations of class members; 12.2.3 describes its effect.
For the linkage of a name declared with a static specifier, see 6.5.

5 The extern specifier can be applied only to the names of variables and functions. The extern specifier
cannot be used in the declaration of class members or function parameters. For the linkage of a name declared
with an extern specifier, see 6.5. [ Note: The extern keyword can also be used in explicit-instantiations and
linkage-specifications, but it is not a storage-class-specifier in such contexts. — end note|

6 The linkages implied by successive declarations for a given entity shall agree. That is, within a given scope,
each declaration declaring the same variable name or the same overloading of a function name shall imply
the same linkage. Each function in a given set of overloaded functions can have a different linkage, however.
[ Ezample:

static char* £(Q); // £QO) has internal linkage

char* £() // £Q still has internal linkage
{/x ... %/}

char* g(); // g0 has external linkage

static char* g() // error: inconsistent linkage
{7/ ... %/}

void h();

inline void h(); // external linkage

inline void 1Q);
void 10); // external linkage

inline void m();
extern void m(); // external linkage

static void nQ);

inline void n(); // internal linkage

static int a; // a has internal linkage

int a; // error: two definitions
static int b; // b has internal linkage
extern int b; // b still has internal linkage
int c; // ¢ has external linkage
static int c; // error: inconsistent linkage
extern int d; // d has external linkage
static int d; // error: inconsistent linkage

— end example]

7 The name of a declared but undefined class can be used in an extern declaration. Such a declaration can
only be used in ways that do not require a complete class type. [ Ezample:

struct S;

extern S a;
extern S £();
extern void g(S);

void h() {
ga); // error: S is incomplete
£O; // error: S is incomplete
}
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— end example]

The mutable specifier shall appear only in the declaration of a non-static data member (12.2) whose type is
neither const-qualified nor a reference type. [ Ezample:

class X {
mutable const int* p; // OK
mutable int* const q; // ill-formed
};

— end example ]

The mutable specifier on a class data member nullifies a const specifier applied to the containing class object
and permits modification of the mutable class member even though the rest of the object is const (10.1.7.1).

10.1.2 Function specifiers [dcl.fct.spec]
Function-specifiers can be used only in function declarations.
function-specifier:
virtual
explicit
The virtual specifier shall be used only in the initial declaration of a non-static class member function;
see 13.3.

The explicit specifier shall be used only in the declaration of a constructor or conversion function within
its class definition; see 15.3.1 and 15.3.2.

10.1.3 The typedef specifier [dcl.typedef]

Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming
fundamental (6.9.1) or compound (6.9.2) types. The typedef specifier shall not be combined in a decl-
specifier-seq with any other kind of specifier except a defining-type-specifier, and it shall not be used in the
decl-specifier-seq of a parameter-declaration (11.3.5) nor in the decl-specifier-seq of a function-definition (11.4).
If a typedef specifier appears in a declaration without a declarator, the program is ill-formed.

typedef-name:
identifier

A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration, a
typedef-name is syntactically equivalent to a keyword and names the type associated with the identifier in the
way described in Clause 11. A typedef-name is thus a synonym for another type. A typedef-name does not
introduce a new type the way a class declaration (12.1) or enum declaration does. [ Example: After

typedef int MILES, *KLICKSP;
the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int and that of metricp is “pointer to int”. —end
example]

A typedef-name can also be introduced by an alias-declaration. The identifier following the using keyword
becomes a typedef-name and the optional attribute-specifier-seq following the identifier appertains to that
typedef-name. Such a typedef-name has the same semantics as if it were introduced by the typedef specifier.
In particular, it does not define a new type. [ Ezample:

using handler_t = void (*)(int);

extern handler_t ignore;

extern void (*ignore) (int); // redeclare ignore

using cell = pair<void*, cell*>; // ill-formed

— end example] The defining-type-specifier-seq of the defining-type-id shall not define a class or enumeration
if the alias-declaration is the declaration of a template-declaration.

In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in that
scope to refer to the type to which it already refers. [ Ezample:

typedef struct s { /* ... %/ } s;
typedef int I;
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typedef int I;
typedef I I;

— end example]
4 In a given class scope, a typedef specifier can be used to redefine any class-name declared in that scope that

is not also a typedef-name to refer to the type to which it already refers. [ Example:

struct S {
typedef struct A { } A; // OK
typedef struct B B; // OK
typedef A A; // error

}’
— end example ]
5 If a typedef specifier is used to redefine in a given scope an entity that can be referenced using an elaborated-
type-specifier, the entity can continue to be referenced by an elaborated-type-specifier or as an enumeration or

class name in an enumeration or class definition respectively. [ Example:

struct S;
typedef struct S S;
int main() {

struct S* p; // OK
}
struct S { }; // OK

— end example]
6 In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that

scope to refer to a different type. [ Ezample:
.ox/ 3

class complex { /* ..

typedef int complex; // error: redefinition

— end example ]
7 Similarly, in a given scope, a class or enumeration shall not be declared with the same name as a typedef-name
that is declared in that scope and refers to a type other than the class or enumeration itself. [ Ezample:

typedef int complex;
class complex { /* ... */ }; // error: redefinition

— end example]
[ Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (12.1). If

8
a typedef-name is used to identify the subject of an elaborated-type-specifier (10.1.7.3), a class definition (Clause
12), a constructor declaration (15.1), or a destructor declaration (15.4), the program is ill-formed. — end
note| [ Example:
struct S {
SO;
~S0;
};
typedef struct S T;
Sa=TO; // OK
// error

struct T * p;

— end example ]
9 If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the
declaration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage

purposes only (6.5). [ Ezample:
typedef struct { } *ps, S; // 8 is the class name for linkage purposes
[dcl.friend]

— end example]

10.1.4 The friend specifier
1 The friend specifier is used to specify access to class members; see 14.3.
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10.1.5 The constexpr specifier
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[dcl.constexpr]

The constexpr specifier shall be applied only to the definition of a variable or variable template or the
declaration of a function or function template. A function or static data member declared with the constexpr
specifier is implicitly an inline function or variable (10.1.6). If any declaration of a function or function
template has a constexpr specifier, then all its declarations shall contain the constexpr specifier. [ Note:
An explicit specialization can differ from the template declaration with respect to the constexpr specifier.

—end note] [ Note: Function parameters cannot be declared constexpr. —end note| [ Ezample:

constexpr void square(int &x); // OK: declaration

constexpr int bufsz = 1024; // OK: definition
constexpr struct pixel { // error: pixel is a type
int x;
int y;
constexpr pixel(int); // OK: declaration
};
constexpr pixel::pixel(int a)
s x(a), yx) // OK: definition
{ square(x); }
constexpr pixel small(2); // error: square not defined, so small(2)

// not constant (8.20) so constexpr not satisfied

constexpr void square(int &x) { // OK: definition

X *= X;
}
constexpr pixel large(4); // OK: square defined
int next(constexpr int x) { // error: not for parameters
return x + 1;
}
extern constexpr int memsz; // error: not a definition

— end example ]

A constexpr specifier used in the declaration of a function that is not a constructor declares that function
to be a constexpr function. Similarly, a constexpr specifier used in a constructor declaration declares that

constructor to be a constexpr constructor.

The definition of a constexpr function shall satisfy the following requirements:
— it shall not be virtual (13.3);
— its return type shall be a literal type;

— each of its parameter types shall be a literal type;

— its function-body shall be = delete, = default, or a compound-statement that does not contain

— an asm-definition,
— a goto statement,
— an identifier label (9.1),

— a try-block, or

— a definition of a variable of non-literal type or of static or thread storage duration or for which no

initialization is performed.
[ Ezample:

constexpr int square(int x)

{ return x * x; } // OK
constexpr long long_max()

{ return 2147483647; } // OK
constexpr int abs(int x) {

if (x < 0)

X = -x;

return x; // OK
}
constexpr int first(int n) {

static int value = n; // error: variable has static storage duration
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return value;

}
constexpr int uninit() {
int a; // error: variable is uninitialized
return a;
}
constexpr int prev(int x)
{ return --x; } // OK
constexpr int g(int x, int n) { // OK
int r = 1;

while (--n > 0) r *= x;
return r;

}
— end example]
The definition of a constexpr constructor shall satisfy the following requirements:
— the class shall not have any virtual base classes;
— each of the parameter types shall be a literal type;
— its function-body shall not be a function-try-block.
In addition, either its function-body shall be = delete, or it shall satisfy the following requirements:

— either its function-body shall be = default, or the compound-statement of its function-body shall satisfy
the requirements for a function-body of a constexpr function;

— every non-variant non-static data member and base class subobject shall be initialized (15.6.2);
— if the class is a union having variant members (12.3), exactly one of them shall be initialized;

— if the class is a union-like class, but is not a union, for each of its anonymous union members having
variant members, exactly one of them shall be initialized;

— for a non-delegating constructor, every constructor selected to initialize non-static data members and
base class subobjects shall be a constexpr constructor;

— for a delegating constructor, the target constructor shall be a constexpr constructor.
[ Ezample:

struct Length {

constexpr explicit Length(int i = 0) : val(i) { }
private:

int val;
I

— end example]

For a constexpr function or constexpr constructor that is neither defaulted nor a template, if no argument
values exist such that an invocation of the function or constructor could be an evaluated subexpression of
a core constant expression (8.20), or, for a constructor, a constant initializer for some object (6.6.2), the
program is ill-formed, no diagnostic required. [ Ezample:

constexpr int f(bool b)
{ return b ? throw 0 : 0; } // OK
constexpr int £() { return f(true); } //ill-formed, no diagnostic required

struct B {
constexpr B(int x) : i(0) { } // % is unused
int i;

}
int global;

struct D : B {
constexpr D() : B(global) { } // ill-formed, no diagnostic required
// lalue-to-rvalue conversion on non-constant global

};

— end example]
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If the instantiated template specialization of a constexpr function template or member function of a class
template would fail to satisfy the requirements for a constexpr function or constexpr constructor, that
specialization is still a constexpr function or constexpr constructor, even though a call to such a function
cannot appear in a constant expression. If no specialization of the template would satisfy the requirements
for a constexpr function or constexpr constructor when considered as a non-template function or constructor,
the template is ill-formed, no diagnostic required.

A call to a constexpr function produces the same result as a call to an equivalent non-constexpr function in
all respects except that

— a call to a constexpr function can appear in a constant expression (8.20) and
— copy elision is mandatory in a constant expression (15.8).

The constexpr specifier has no effect on the type of a constexpr function or a constexpr constructor.
[ Example:

constexpr int bar(int x, int y) // OK
{ return x + y + x*xy; }
int bar(int x, int y) // error: redefinition of bar

{ return x * 2 + 3 * y; }
— end example ]

A constexpr specifier used in an object declaration declares the object as const. Such an object shall
have literal type and shall be initialized. In any constexpr variable declaration, the full-expression of the
initialization shall be a constant expression (8.20). [ Ezample:

struct pixel {

int x, y;
};
constexpr pixel ur = { 1294, 1024 }; // OK
constexpr pixel origin; // error: initializer missing

— end example]

10.1.6 The inline specifier [dcl.inline]
The inline specifier can be applied only to the declaration or definition of a variable or function.

A function declaration (11.3.5, 12.2.1, 14.3) with an inline specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call is
to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules for
inline functions specified in this section shall still be respected.

A variable declaration with an inline specifier declares an inline variable.
A function defined within a class definition is an inline function.

The inline specifier shall not appear on a block scope declaration.”* If the inline specifier is used in a
friend function declaration, that declaration shall be a definition or the function shall have previously been
declared inline.

An inline function or variable shall be defined in every translation unit in which it is odr-used and shall
have exactly the same definition in every case (6.2). [ Note: A call to the inline function or a use of the
inline variable may be encountered before its definition appears in the translation unit. — end note] If the
definition of a function or variable appears in a translation unit before its first declaration as inline, the
program is ill-formed. If a function or variable with external linkage is declared inline in one translation
unit, it shall be declared inline in all translation units in which it appears; no diagnostic is required. An
inline function or variable with external linkage shall have the same address in all translation units. [ Note:
A static local variable in an inline function with external linkage always refers to the same object. A type
defined within the body of an inline function with external linkage is the same type in every translation unit.
— end note ]

94) The inline keyword has no effect on the linkage of a function.

§10.1.6 145



1

(2.5)

©ISO/IEC N4700

10.1.7 Type specifiers [dcl.type]
The type-specifiers are
type-specifier:
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier
type-specifier-seq:
type-specifier attribute-specifier-seqopt
type-specifier type-specifier-seq
defining-type-specifier:
type-specifier
class-specifier
enum-specifier
defining-type-specifier-seq:
defining-type-specifier attribute-specifier-seqopt
defining-type-specifier defining-type-specifier-seq
The optional attribute-specifier-seq in a type-specifier-seq or a defining-type-specifier-seq appertains to the
type denoted by the preceding type-specifiers or defining-type-specifiers (11.3). The attribute-specifier-seq
affects the type only for the declaration it appears in, not other declarations involving the same type.

As a general rule, at most one defining-type-specifier is allowed in the complete decl-specifier-seq of a
declaration or in a defining-type-specifier-seq, and at most one type-specifier is allowed in a type-specifier-seq.
The only exceptions to this rule are the following:

— const can be combined with any type specifier except itself.

— volatile can be combined with any type specifier except itself.

— signed or unsigned can be combined with char, long, short, or int.
— short or long can be combined with int.

— long can be combined with double.

— long can be combined with long.

Except in a declaration of a constructor, destructor, or conversion function, at least one defining-type-specifier
that is not a cv-qualifier shall appear in a complete type-specifier-seq or a complete decl-specifier-seq.”®

[ Note: enum-specifiers, class-specifiers, and typename-specifiers are discussed in 10.2, Clause 12, and 17.7,
respectively. The remaining type-specifiers are discussed in the rest of this section. — end note|

10.1.7.1 The cv-qualifiers [dcl.type.cv]

There are two cv-qualifiers, const and volatile. Each cv-qualifier shall appear at most once in a cv-
qualifier-seq. If a cv-qualifier appears in a decl-specifier-seq, the init-declarator-list or member-declarator-list
of the declaration shall not be empty. [ Note: 6.9.3 and 11.3.5 describe how cv-qualifiers affect object and
function types. — end note] Redundant cv-qualifications are ignored. [ Note: For example, these could be
introduced by typedefs. — end note]

[ Note: Declaring a variable const can affect its linkage (10.1.1) and its usability in constant expressions (8.20).
As described in 11.6, the definition of an object or subobject of const-qualified type must specify an initializer
or be subject to default-initialization. — end note]

A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it
is treated as if it does; a const-qualified access path cannot be used to modify an object even if the object
referenced is a non-const object and can be modified through some other access path. [ Note: Cv-qualifiers
are supported by the type system so that they cannot be subverted without casting (8.2.11). — end note]

Except that any class member declared mutable (10.1.1) can be modified, any attempt to modify a const
object during its lifetime (6.8) results in undefined behavior. [ Ezample:

const int ci = 3; // cv-qualified (initialized as required)

ci = 4; // ill-formed: attempt to modify const

95) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies
cv-qualifiers. The “implicit int” rule of C is no longer supported.
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int i = 2;
const int* cip;
cip = &i;
*cip = 4;

int* ip;
ip = const_cast<int*>(cip);
*ip = 4;

const int* ciq = new const int (3);

int* iq = const_cast<int*>(ciq);
*xiq = 4;

For another example,

struct X {
mutable int i;
int j;
};
struct Y {
X x;
YO ;
};
const Y y;
y.X.i++;
y.X.j++;
Y* p = const_cast<Y*>(&y);
p—>x.1 = 99;
p—>x.j = 99;

— end example ]

// mot cv-qualified
// pointer to const int

// OK: cv-qualified access path to unqualified
// ill-formed: attempt to modify through ptr to const

// cast needed to convert const int* to intx*
// defined: *ip points to i, a non-const object

// initialized as required
// cast required
// undefined: modifies a const object

// well-formed: mutable member can be modified
// ill-formed: const-qualified member modified

// cast away const-ness of y

// well-formed: mutable member can be modified
// undefined: modifies a const member

N4700

5 The semantics of an access through a volatile glvalue are implementation-defined. If an attempt is made to

access an object defined with a volatile-qualified type through the use of a non-volatile glvalue, the behavior

is undefined.

[ Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object because
the value of the object might be changed by means undetectable by an implementation. Furthermore, for
some implementations, volatile might indicate that special hardware instructions are required to access the
object. See 4.6 for detailed semantics. In general, the semantics of volatile are intended to be the same in

C++ as they are in C. — end note]

10.1.7.2 Simple type specifiers

1 The simple type specifiers are

simple-type