Document number: | N3365=12-0055 |
Date: | 2012-02-27 |
Project: | Programming Language C++, Library Working Group |
Reply-to: | Beman Dawes <bdawes at acm dot org> |
This paper proposes a filesystem library component suitable for a C++ Standard Library Technical Report or for the C++ Standard Library. The proposed library is based on Version 3 of the Boost Filesystem Library (see www.boost.org/libs/filesystem). Preliminary wording is provided. A TODO list identifies remaining work to be done.
N3365=12-0055, Filesystem Library Proposal (Revision 2). Changes include:
std::tbd::filesystem
per
issue
1 discussion in Kona.N3335=12-0025, Filesystem Library for C++11/TR2 (Revision 1). Changes include:
files
as an experiment. Made this
issue number 1 so the LWG can pass judgment.N3239 = 11-0009, Filesystem Library Update for TR2 (Preliminary), reflected changes made to the Boost library version 3 since the previously accepted committee paper:
path
handles all aspects of
internationalization, replacing the previous template and its path
and wpath
instantiations. Character types char
,
wchar_t
, char16_t
, and char32_t
are
supported. This is a major simplification of the path abstraction,
particularly for functions that take path arguments. This change was based
on a suggestion by Peter Dimov.error_code
is now uniform
throughout the operations functions.N1975 = 06-0045, Filesystem Library Proposal for TR2 (Revision 3), was adopted by the committee in April, 2006, at the Berlin meeting. Shortly afterward the Library Working Group set aside work on TR2 to concentrate on C++0x.
The motivation and scope for a filesystem library were described in N1975, and are not repeated here. A minor scope reduction is that an addition to the current C++ runtime library is no longer needed.
Boost Filesystem Version 3 introduced a single path type that interoperates well with both
basic_string
and user defined string types. Thus the following Design
alternatives paragraph is no long applicable:
Single path type which can at runtime accept narrow or wide character pathnames. Although certainly interesting, and possibly superior, such a design would not interoperate well with the current Standard Library's compile-time typedbasic_string
. A new runtime polymorphic string class would be the best place to experiment with this concept, not a path class.
char16_t
and char32_t
support to verify the
specification for these is correct.Source
is not specified as actually
implemented. Expose path_traits
?copy
and copy_directory
need to be reviewed, revised, tested, peer reviewed.time_t
to chrono system_clock::time_point
,
per LWG discussion in Kona. Gray-shaded italic text is commentary on the proposal. It is not to be added to the TR.
Add the following to the Technical Report's front matter:
The following standard contains provisions which, through reference in this text, constitute provisions of this Technical Report. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this Technical Report are encouraged to investigate the possibility of applying the most recent editions of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.
[Note: ISO/IEC 9945:2003 is also IEEE Std 1003.1-2001, and The Open Group Base Specifications, Issue 6, and is also known as The Single Unix2 Specification, Version 3. It is available from each of those organizations, and may be read online or downloaded from www.unix.org/single_unix_specification/ -- end note]
ISO/IEC 9945:2003, with the indicated corrections, is hereinafter called POSIX.
Footnote 1: POSIX® is a registered trademark of The IEEE.
Footnote 2: UNIX® is a registered trademark of The Open Group.
Add the following to the Technical Report as a new Clause:
This Clause describes components that perform operations on file systems and their components, such as paths, regular files, and directories.
Operating systems such as Linux, MAC OS, UNIX, and Windows are mentioned in this Clause for purposes of illustration or to give guidance to implementers. No slight to other operating systems is implied or intended.
Footnote: Linux® is a registered trademark of Linus Torvalds.
Footnote: MAC OS® is a registered trademark of Apple Inc.
Footnote: UNIX® is a registered trademark of The Open Group.
Footnote: Windows® is a registered trademark of Microsoft Corporation.
Behavior is sometimes specified by reference to ISO/IEC 9945:2003, POSIX. How such behavior is actually implemented is unspecified.
[Note: This constitutes an "as if" rule for implementation of operating system dependent behavior. Presumably implementations will usually call native operating system API's. --end note]
Implementations are encouraged, but not required, to support such behavior as it is defined by POSIX. Implementations shall document any behavior that differs from the POSIX defined behavior. Implementations that do not support exact POSIX behavior are encouraged to provide behavior as close to POSIX behavior as is reasonable given the limitations of actual operating systems and file systems. If an implementation cannot provide any reasonable behavior, the implementation shall report an error in an implementation-defined manner.
[Note: Such errors might be reported by an #error directive, a
static_assert
, afilesystem_error
exception, a special return value, or some other manner. --end note]
Implementations are not required to provide behavior that is not supported by a particular file system.
[Example: The FAT file system used by some memory cards, camera memory, and floppy discs does not support hard links, symlinks, and many other features of more capable file systems. Implementations are only required to support the FAT features supported by the host operating system. -- end example]
Specific operating systems such as OpenVMS, UNIX, and Windows are mentioned only for purposes of illustration or to give guidance to users and implementers. No slight to other operating systems is implied or intended. When unlikely to cause confusion, the term POSIX is sometimes used to refer to "POSIX-compliant operating systems".
The behavior of functions described in this reference may differ from their specification in the presence of file system races. No diagnostic is required.
If the possibility of a file system race would make it unreliable for a program to test for a precondition before calling a function described in this Clause, Requires is not specified for the condition. Instead, the condition is specified as a Throws condition.
[Note: As a design practice, preconditions are not specified when it is unreasonable for a program to detect them prior to calling the function. -- end note]
The following definitions shall apply throughout this reference documentation:
File: An object that can be written to, or read from, or both. A file has certain attributes, including type. File types include regular files and directories. Other types of files, such as symbolic links, may be supported by the implementation.
File system: A collection of files and certain of their attributes.
Filename: The name of a file. Slash and
0x00
characters are not permitted. Implementations may define additional
characters or specific names that are not permitted. Filenames .
and ..
have special meaning. Implementations may define
additional filenames that have special meaning.
[Note: Most operating systems prohibit the ASCII control characters (0x00-0x1F) in filenames.
Windows prohibits the characters 0x00-0x1F,
"
,*
,:
,<
,>
,?
,\
,/
, and|
--end note]
Path: A sequence of elements that identify the location of a file within a filesystem. The elements are the root-nameopt, root-directoryopt, and an optional sequence of filenames. [Note: A pathname is the concrete representation of a path. --end note]
Absolute path: A path that unambiguously identifies the location of a file within a file system without reference to an additional starting location. The format is implementation defined.
[Note: For POSIX-like implementations, including Unix variants, Linux, and Mac OS X, only paths that begin with a slash are absolute paths.
For Windows-like implementations, including Cygwin and MinGW, only paths that begin with a drive specifier followed by a slash, or begin with two slashes, are absolute paths. --end note]
Relative path: A path that only unambiguously identifies the location of a file within a filesystem when resolved relative to a starting location. The format is implementation defined. [Note: Paths "." and ".." are considered to be relative paths. --end note]
Canonical path: An absolute path that has no elements which are symbolic links, and no dot or dot dot elements.
Pathname: A character string that represents a path. Pathnames are formatted according to the generic pathname format or an implementation defined native pathname format.
pathname:
root-nameopt root-directoryopt relative-pathoptroot-name:
implementation-defined[Note: Most POSIX and Windows based operating systems define a name beginning with two slashes (or backslashes, for Windows) as a root-name identifying network locations. Windows defines a single letter followed by a
":"
as a root-name identifying a disc drive. --end note]root-directory:
directory-separatorrelative-path:
filename
relative-path directory-separator
relative-path directory-separator filenamefilename:
name
"."
".."
directory-separator:
"/"
directory-separator
"/"Multiple successive directory-separator characters are considered to be the same as one directory-separator character. The filename
"."
is considered to be a reference to the current directory. The filename".."
is considered to be a reference to the current directory. Specific filenames may have special meaning for a particular operating system.
Native pathname format: An implementation defined format. [Note: For POSIX-like operating systems, the native format is the same as the generic format. For Windows, the native format is similar to the generic format, but the directory-separator characters can be either slashes or backslashes. --end note]
Link: A directory entry object that associates a filename with a file. On some file systems, several directory entries can associate names with the same file.
Hard link: A link to an existing file. Some file systems support multiple hard links to a file. If the last hard link to a file is removed, the file itself is removed.
[Note: A hard link can be thought of as a shared-ownership smart pointer to a file. -- end note]
Symbolic link: A type of file with the property that when the file is encountered during pathname resolution, a string stored by the file is used to modify the pathname resolution.
[Note: A symbolic link can be thought of as a raw pointer to a file. If the file pointed to does not exist, the symbolic link is said to be a "dangling" symbolic link. -- end note]
File system race: The condition that occurs when multiple threads, processes, or computers interleave access and modification of the same object within a file system.
Dot, Dot Dot: Synonyms for the filenames "."
and ".."
, respectively. The dot filename names the current
directory. The dot dot filename names the parent directory.
<filesystem>
synopsisnamespace std { namespace tbd { namespace filesystem {
class path;
void swap(path& lhs, path& rhs);
bool lexicographical_compare(path::iterator first1, path::iterator last1,
path::iterator first2, path::iterator last2);
std::size_t hash_value(const path& p);
bool operator==(const path& lhs, const path& rhs);
bool operator!=(const path& lhs, const path& rhs);
bool operator< (const path& lhs, const path& rhs);
bool operator<=(const path& lhs, const path& rhs);
bool operator> (const path& lhs, const path& rhs);
bool operator>=(const path& lhs, const path& rhs);
path operator/ (const path& lhs, const path& rhs);
std::ostream& operator<<( std::ostream& os, const path& p );
std::wostream& operator<<( std::wostream& os, const path& p );
std::istream& operator>>( std::istream& is, path& p );
std::wistream& operator>>( std::wistream& is, path& p )
class filesystem_error;
class directory_entry;
class directory_iterator;
class recursive_directory_iterator;
enum file_type
{
status_error, file_not_found, regular_file, directory_file,
symlink_file, block_file, character_file, fifo_file, socket_file,
type_unknown
};
enum perms
{
no_perms,
owner_read, owner_write, owner_exe, owner_all,
group_read, group_write, group_exe, group_all,
others_read, others_write, others_exe, others_all, all_all,
set_uid_on_exe, set_gid_on_exe, sticky_bit,
perms_mask, perms_not_known,
add_perms, remove_perms, symlink_perms
};
class file_status;
struct space_info // returned by space function
{
uintmax_t capacity;
uintmax_t free;
uintmax_t available; // free space available to a non-privileged process
};
enum class copy_option
{
none
fail_if_exists = none,
overwrite_if_exists
};
enum class symlink_option
{
none
no_recurse = none,
recurse
};
// operational functions
path absolute(const path& p, const path& base=current_path());
path canonical(const path& p, const path& base = current_path());
path canonical(const path& p, system::error_code& ec);
path canonical(const path& p, const path& base, system::error_code& ec);
void copy(const path& from, const path& to);
void copy(const path& from, const path& to, system::error_code& ec);
void copy_directory(const path& from, const path& to);
void copy_directory(const path& from, const path& to, system::error_code& ec);
void copy_file(const path& from, const path& to);
void copy_file(const path& from, const path& to, system::error_code& ec);
void copy_file(const path& from, const path& to, copy_option option);
void copy_file(const path& from, const path& to, copy_option option,
system::error_code& ec);
void copy_symlink(const path& existing_symlink, const path& new_symlink);
void copy_symlink(const path& existing_symlink, const path& new_symlink, system::error_code& ec);
bool create_directories(const path& p);
bool create_directories(const path& p, system::error_code& ec);
bool create_directory(const path& p);
bool create_directory(const path& p, system::error_code& ec);
void create_directory_symlink(const path& to, const path& new_symlink);
void create_directory_symlink(const path& to, const path& new_symlink, system::error_code& ec);
void create_hard_link(const path& to, const path& new_hard_link);
void create_hard_link(const path& to, const path& new_hard_link, system::error_code& ec);
void create_symlink(const path& to, const path& new_symlink);
void create_symlink(const path& to, const path& new_symlink, system::error_code& ec);
path current_path();
path current_path(system::error_code& ec);
void current_path(const path& p);
void current_path(const path& p, system::error_code& ec);
bool exists(file_status s) noexcept;
bool exists(const path& p);
bool exists(const path& p, system::error_code& ec) noexcept;
bool equivalent(const path& p1, const path& p2);
bool equivalent(const path& p1, const path& p2, system::error_code& ec);
uintmax_t file_size(const path& p);
uintmax_t file_size(const path& p, system::error_code& ec);
uintmax_t hard_link_count(const path& p);
uintmax_t hard_link_count(const path& p, system::error_code& ec);
const path& initial_path();
const path& initial_path(system::error_code& ec
);
bool is_directory(file_status s) noexcept;
bool is_directory(const path& p);
bool is_directory(const path& p, system::error_code& ec) noexcept;
bool is_empty(const path& p);
bool is_empty(const path& p, system::error_code& ec);
bool is_other(file_status s) noexcept;
bool is_other(const path& p,);
bool is_other(const path& p, system::error_code& ec) noexcept;
bool is_regular_file(file_status s) noexcept;
bool is_regular_file(const path& p);
bool is_regular_file(const path& p, system::error_code& ec) noexcept;
bool is_symlink(file_status s noexcept);
bool is_symlink(const path& p);
bool is_symlink(const path& p, system::error_code& ec) noexcept;
std::time_t last_write_time(const path& p);
std::time_t last_write_time(const path& p, system::error_code& ec);
void last_write_time(const path& p, const std::time_t new_time);
void last_write_time(const path& p, const std::time_t new_time, system::error_code& ec);
path read_symlink(const path& p);
path read_symlink(const path& p, system::error_code& ec);
bool remove(const path& p);
bool remove(const path& p, system::error_code& ec);
uintmax_t remove_all(const path& p);
uintmax_t remove_all(const path& p, system::error_code& ec);
void rename(const path& from, const path& to);
void rename(const path& from, const path& to, system::error_code& ec);
void resize_file(const path& p, uintmax_t size);
void resize_file(const path& p, uintmax_t size, system::error_code& ec);
space_info space(const path& p);
space_info space(const path& p, system::error_code& ec);
file_status status(const path& p);
file_status status(const path& p, system::error_code& ec) noexcept;
bool status_known(file_status s) noexcept;
file_status symlink_status(const path& p);
file_status symlink_status(const path& p, system::error_code& ec) noexcept;
path system_complete(const path& p);
path system_complete(const path& p, system::error_code& ec);
path temp_directory_path();
path temp_directory_path(system::error_code& ec);
path unique_path(const path& model="%%%%-%%%%-%%%%-%%%%");
path unique_path(const path& model, system::error_code& ec);
} } } // namespaces std::tbd::filesystem
Filesystem library functions often provide two overloads, one that
throws an exception to report file system errors, and another that sets an
error_code
.
[Note: This supports two common use cases:
- Uses where file system errors are truly exceptional and indicate a serious failure. Throwing an exception is the most appropriate response. This is the preferred default for most everyday programming.
- Uses where file system system errors are routine and do not necessarily represent failure. Returning an error code is the most appropriate response. This allows application specific error handling, including simply ignoring the error.
--end note]
Functions not having an argument of type
system::error_code&
report errors as follows, unless otherwise specified:
filesystem_error
is thrown.Functions having an argument of type
system::error_code&
report errors as follows, unless otherwise
specified:
system::error_code&
argument is set as
appropriate appropriate for the specific error. Otherwise, clear()
is called on the
system::error_code&
argument.path
An object of class path
represents a path,
and contains a pathname Such an object is concerned only with the lexical and syntactic aspects
of a path. The path does not necessarily exist in external storage, and the
pathname is not necessarily valid for the current operating
system or for a particular file system.
[Example: A long path name on Windows is an example of an innocuous appearing path that is not actually valid. -- end example]
namespace std { namespace tbd { namespace filesystem { class path { public: typedef see below value_type; // char for POSIX, wchar_t for Windows typedef std::basic_string<value_type> string_type; typedef std::codecvt<wchar_t, char, std::mbstate_t> codecvt_type; // constructors and destructor path(); path(const path& p); path(path&& p) noexcept; template <class Source> path(Source const& source, const codecvt_type& cvt=codecvt()); template <class InputIterator> path(InputIterator begin, InputIterator end, const codecvt_type& cvt=codecvt()); ~path(); // assignments path& operator=(const path& p); path& operator=(path&& p) noexcept; template <class Source> path& operator=(Source const& source); template <class Source> path& assign(Source const& source, const codecvt_type& cvt) template <class InputIterator> path& assign(InputIterator begin, InputIterator end, const codecvt_type& cvt=codecvt()); // appends path& operator/=(const path& p); template <class Source> path& operator/=(Source const& source); template <class Source> path& append(Source const& source, const codecvt_type& cvt); template <class InputIterator> path& append(InputIterator begin, InputIterator end, const codecvt_type& cvt=codecvt()); // modifiers void clear(); path& make_absolute(const path& base); path& make_preferred(); // POSIX: no effect. Windows: convert slashes to backslashes path& remove_filename(); path& replace_extension(const path& new_extension = path()); void swap(path& rhs); // native format observers const string_type& native() const noexcept; // native format, encoding const value_type* c_str() const noexcept; // native().c_str() template <class String> String string(const codecvt_type& cvt=codecvt()) const; // native format const string string(const codecvt_type& cvt=codecvt()) const; // native format const wstring wstring(const codecvt_type& cvt=codecvt()) const; // ditto const u16string u16string() const; // ditto const u32string u32string() const; // ditto // generic format observers template <class String> String generic_string() const; const string generic_string(const codecvt_type& cvt=codecvt()) const; // generic format const wstring generic_wstring(const codecvt_type& cvt=codecvt()) const; // ditto const u16string generic_u16string() const; // ditto const u32string generic_u32string() const; // ditto // decomposition path root_name() const; path root_directory() const; path root_path() const; path relative_path() const; path parent_path() const; path filename() const; path stem() const; path extension() const; // query bool empty() const; bool has_root_name() const; bool has_root_directory() const; bool has_root_path() const; bool has_relative_path() const; bool has_parent_path() const; bool has_filename() const; bool has_stem() const; bool has_extension() const; bool is_absolute() const; bool is_relative() const; // iterators class iterator; typedef iterator const_iterator; iterator begin() const; iterator end() const; // encoding conversion static std::locale imbue( const std::locale& loc ); static const codecvt_type & codecvt(); private: string_type pathname; // exposition only }; } } } // namespaces std::tbd::filesystem
value_type
is an implementation-defined
typedef
for the
character type used by the operating system to represent pathnames.
Member functions described as returning const string
,
const wstring
, const u16string
, or const u32string
are permitted to return const string&
, const
wstring&
, const u16string&
, or const u32string&
,
respectively.
[Note: This allows implementations to avoid unnecessary copies when no conversion is required. Return-by-value is specified as
const
to ensure programs won't break if moved to a return-by-reference implementation. -- end note]
path
Conversionspath
Conversions to
native formatMember function arguments that take character sequences representing paths may use the generic pathname format or the native pathname format. If such an argument uses the generic format, an implementation defined conversion to native format is performed during the processing of the argument.
[Note: No conversion occurs on POSIX and Windows since they have native formats that conform to the generic format. --end note]
[Rationale: There is no unambiguous way for an implementation to always be able distinguish between native format and generic format arguments. This is by design as it simplifies use. Should an implementation encounter an operating system where disambiguation is required, an implementation defined native format prefix can be introduced to identify the native format. -- end rationale]
Class path does not currently map invalid characters in
filenames to valid characters. In the future we might add something like
this:
|
If the native format requires paths for regular files to be formatted differently from paths for directories, the path shall be treated as a directory path if last element is a separator, otherwise it shall be treated as a regular file path.
[Note: The above paragraph does not apply to POSIX and Windows since they use the same format for both regular file and directory pathnames. --end note]
[Example: On OpenVMS, a path constructed from
"/cats/jane"
would considered a regular file path, and have a native format of"[CATS]JANE"
, while a path constructed from"/cats/jane/"
would be considered a directory path, and have a native format of"[CATS.JANE]"
. --end example]
path
Conversions
to generic formatGeneric format observer functions return strings formatted according to the generic pathname format. The conversion from generic to native formats is implementation defined.
[Note: For POSIX, no conversion is performed. For Windows, backslashes are converted to forward slashes. -- end note]
path
Encoding conversionsIf the value type of member function arguments that are character sequences
representing paths is not value_type
,
and no cvt
argument is supplied, conversion to value_type
occurs using an imbued locale. This imbued locale is initialized with a
codecvt
facet appropriate for the operating system.
For Apple OS X implementations,
path::value_type
ischar
. The default imbued locale provides a UTF-8codecvt
facet. [Rationale: "All BSD system functions expect their string parameters to be in UTF-8 encoding and nothing else." See Apple docs. -- end rationale]For Windows-like implementations, including MinGW,
path::value_type
iswchar_t
. The default imbued locale provides acodecvt
facet that invokes WindowsMultiByteToWideChar
orWideCharToMultiByte
API with a codepage ofCP_THREAD_ACP
if WindowsAreFileApisANSI()
is true, otherwise codepageCP_OEMCP
. [Rationale: this is the current behavior of C and C++ programs that perform file operations using narrow character string to identify paths. Changing this in the Filesystem library would be too surprising, particularly where user input is involved. -- end rationale]For all other implementations, including Linux,
path::value_type
ischar
. The default imbued locale isstd::locale("")
. [Rationale: ISO C specifies this as "the locale-specific native environment", while POSIX says it "Specifies an implementation-defined native environment." -- end rationale]
path
RequirementsTemplate parameters named InputIterator
are required meet the
requirements for a C++ standard library RandomIterator
compliant iterator. The iterator's value type is required to be char
,
wchar_t
, char16_t
, or char32_t
.
Template parameters named Source
are required to be one of:
char
,
wchar_t
, char16_t
, or char32_t
.char
, wchar_t
, char16_t
, or
char32_t
.char
,
wchar_t
, char16_t
, or char32_t
.std::filesystem::directory_entry
.
path
constructorspath();
Postcondition:
empty()
.
template <class Source> path(Source const& source, const codecvt_type& cvt=codecvt());
template <class InputIterator> path(InputIterator begin, InputIterator end, const codecvt_type& cvt=codecvt());
Effects: Stores the contents [
begin
,end
) orsource
inpathname
. If the contents are in the generic format and the generic format is unacceptable to the operating system's API, they are converted to the native format. [Note: For POSIX and Windows implementations, the generic format is already acceptable as a native format, so no generic to native conversion is performed. --end note]Remarks: If the value type of [
begin
,end
) orsource
is notvalue_type
, conversion is performed bycvt
.
path
assignmentstemplate <class Source> path& operator=(Source const& source);
template <class Source> path& assign(Source const& source, const codecvt_type& cvt);
template <class InputIterator> path& assign(InputIterator begin, InputIterator end, const codecvt_type& cvt=codecvt());
Effects: Stores the contents [
begin
,end
) orsource
inpathname
. If the contents are in the generic format, they are converted to the native format. [Note: For POSIX and Windows based implementations, the generic format is already acceptable as a native format, so no generic to native conversion is performed. --end note]Returns:
*this
Remarks: If the value type of [
begin
,end
) orsource
is notvalue_type
, conversion is performed bycvt
.
path
appendsThe append operations use operator/=
to denote their semantic
effect of appending the platform's preferred directory separator when needed. The
preferred
directory separator is implementation-defined.
[Note: For POSIX-like implementations, including Unix variants, Linux, and Mac OS X, the preferred directory separator is a single forward slash.
For Windows-like implementations, including Cygwin and MinGW, the preferred directory separator is a single backslash.--end note]
path& operator/=(const path& p);
Effects:
Appends the preferred directory separator to the contained pathname, unless:
- an added separator would be redundant, or
- would change an relative path to an absolute path, or
p.empty()
, or*p.native().cbegin()
is a directory separator.Appends
p.native()
topathname
.Returns:
*this
template <class Source> path& operator/=(Source const & source);
template <class Source> path& append(Source const & source, const codecvt_type& cvt);
template <class InputIterator> path& append(InputIterator begin, InputIterator end, const codecvt_type& cvt=codecvt());
Effects:
Appends a native directory separator to the contained pathname, unless:
- an added separator would be redundant, or
- would change an relative path to an absoute path, or
p.empty()
, or*p.native().cbegin()
is a separator.Appends the contents [
begin
,end
) orsource
topathname
. If the contents are in the generic format, they are converted to the native format. [Note: For POSIX and Windows based implementations, the generic format is already acceptable as a native format, so no generic to native conversion is performed. --end note]Remarks: If the value type of [
begin
,end
) orsource
is notvalue_type
, conversion is performed bycvt
.Returns:
*this
path
modifiersvoid clear();
Postcondition:
this->empty()
is true.
path& make_preferred();
Effects: The contained pathname is converted to the preferred native format. [Note: On Windows, the effect is to replace slashes with backslashes. On POSIX, there is no effect. -- end note]
Returns:
*this
path& remove_filename();
Returns: As if,
*this = parent_path();
[Note: This function is needed to efficiently implement
directory_iterator
. It is exposed to allow additional uses. The actual implementation may be much more efficient than*this = parent_path()
-- end note]
path& replace_extension(const path& new_extension = path());
Postcondition:
extension() == replacement
, wherereplacement
isnew_extension
ifnew_extension.empty() || new_extension[0] ==
the dot character, otherwisereplacement
is the dot character followed bynew_extension
.Returns:
*this
void swap(path& rhs) noexcept;
Effects: Swaps the contents of the two paths.
Complexity: constant time.
path
native format observersThe string returned by all native format observers is in the native pathname format.
const string_type& native() const noexcept;
Returns:
pathname
.
const value_type* c_str() const noexcept;
Returns:
pathname.c_str()
.
template <class String> String string(const codecvt_type& cvt=codecvt()) const;
Returns:
pathname
.Remarks: If
string_type
is a different type thanString
, conversion is performed bycvt
.
const string string(const codecvt_type& cvt=codecvt()) const; const wstring wstring(const codecvt_type& cvt=codecvt()) const; const u16string u16string() const; const u32wstring u32wstring() const;
Returns:
pathname
.Remarks: If
string_type
is a different type than function's return type, conversion is performed bycvt
.If
string_type
is the same type as the function's return type, the function is permitted to return byconst&
rather thanconst
value. [Note: For POSIX, this occurs forstring()
, for Windows,wstring()
. --end note]
path
generic format observersThe string returned by all generic format observers is in the generic pathname format.
[Note: For POSIX, no conversion occurs, since the native format and generic format are the same. For Windows, backslashes are converted to slashes --end note]
template <class String> String generic_string(const codecvt_type& cvt=codecvt()) const;
Returns:
pathname
.Remarks: If
string_type
is a different type thanString
, conversion is performed bycvt
.
const string generic_string(const codecvt_type& cvt=codecvt()) const; const wstring generic_wstring(const codecvt_type& cvt=codecvt()) const; const u16string generic_u16string() const; const u32wstring generic_u32wstring() const;
Returns:
pathname
.Remarks: If
string_type
is a different type than function's return type, conversion is performed bycvt
.If
string_type
is of the same type as the function's return type, and the generic format is the same as the native format, the function is permitted to return byconst&
rather thanconst
value. [Note: For POSIX, this occurs forstring()
. It never occurs for Windows, because backslashes must be converted to slashes. --end note]
path
decompositionSee the Path decomposition table for examples for values returned by decomposition functions. The Tutorial may also be helpful.
path root_name() const;
Returns: root-name, if
pathname
includes root-name, otherwisepath()
.
path root_directory() const;
Returns: root-directory, if
pathname
includes root-directory, otherwisepath()
.If root-directory is composed of slash name, slash is excluded from the returned string.
path root_path() const;
Returns:
root_name() / root_directory()
path relative_path() const;
Returns: A
path
composed frompathname
, if!empty()
, beginning with the first filename after root-path. Otherwise,path()
.
path parent_path() const;
Returns:
(empty() || begin() == --end()) ? path() : pp
, wherepp
is constructed as if by starting with an emptypath
and successively applyingoperator/=
for each element in the rangebegin()
,--end()
.
path filename() const;
Returns:
empty() ? path() : *--end()
[Example:
std::cout << path("/foo/bar.txt").filename();
// outputs "bar.txt
"--end example]
path stem(const path& p) const;
Returns: if
p.filename()
contains a dot but does not consist solely of one or to two dots, returns the substring ofp.filename()
starting at its beginning and ending at the last dot (the dot is not included). Otherwise, returnsp.filename()
.[Example:
std::cout << path("/foo/bar.txt").stem();
// outputs "bar
" path p = "foo.bar.baz.tar"; for (; !p.extension().empty(); p = p.stem()) std::cout << p.extension() << '\n'; // outputs: .tar // .baz // .bar--end example]
path extension(const path& p) const;
Returns: if
p.filename()
contains a dot but does not consist solely of one or to two dots, returns the substring ofp.filename()
starting at the rightmost dot and ending at the path's end. Otherwise, returns an emptypath
object.Remarks: Implementations are permitted but not required to define additional behavior for file systems which append additional elements to extensions, such as alternate data streams or partitioned dataset names.
[Example:
std::cout << path("/foo/bar.txt").extension(); //
outputs ".txt
"--end example]
[Note: The dot is included in the return value so that it is possible to distinguish between no extension and an empty extension. See http://permalink.gmane.org/gmane.comp.lib.boost.devel/199744 for more extensive rationale. -- end note]
path
querybool empty() const;
Returns:
m_pathname.empty()
.
bool has_root_path() const;
Returns:
!root_path().empty()
bool has_root_name() const;
Returns:
!root_name().empty()
bool has_root_directory() const;
Returns:
!root_directory().empty()
bool has_relative_path() const;
Returns:
!relative_path().empty()
bool has_parent_path() const;
Returns:
!parent_path().empty()
bool has_filename() const;
Returns:
!filename().empty()
bool has_stem() const;
Returns:
!stem().empty()
bool has_extension() const;
Returns:
!extension().empty()
bool is_absolute() const;
Returns:
true
if the elements ofroot_path()
uniquely identify a directory, elsefalse
.[Note: On POSIX,
path("/foo").is_absolute()
returnstrue
. On Windows,path("/foo").is_absolute()
returnsfalse
. --end note]
bool is_relative() const;
Returns:
!is_absolute()
.
path
iterators A path::iterator
is a constant iterator satisfying all
the requirements of a bidirectional iterator (C++ Std, 24.1.4 Bidirectional
iterators [lib.bidirectional.iterators]). Its value_type
is
path
.
Calling any non-const member function of a path
object
invalidates all iterators referring to elements of that object.
The forward traversal order is as follows:
The backward traversal order is the reverse of forward traversal.
iterator begin() const;
Returns: An iterator for the first present element in the traversal list above. If no elements are present, the end iterator.
iterator end() const;
Returns: The end iterator.
path
encoding conversionstatic std::locale imbue(const std::locale& loc);
Effects: Stores
loc
as the default locale for all objects of typepath
.Returns: The previous default locale for all objects of type
path
.
static const codecvt_type& codecvt();
Returns: The
codecvt
facet for the default locale for all objects of typepath
.
path
non-member functionsvoid swap( path& lhs, path& rhs )
Effects:
lhs.swap(rhs)
.
bool lexicographical_compare(path::iterator first1, path::iterator last1, path::iterator first2, path::iterator last2)
Returns:
true
if the sequence ofnative()
strings for the elements defined by the range[first1,last1)
is lexicographically less than the sequence ofnative()
strings for the elements defined by the range[first2,last2)
. Returnsfalse
otherwise.Remarks: If two sequences have the same number of elements and their corresponding elements are equivalent, then neither sequence is lexicographically less than the other. If one sequence is a prefix of the other, then the shorter sequence is lexicographically less than the longer sequence. Otherwise, the lexicographical comparison of the sequences yields the same result as the comparison of the first corresponding pair of elements that are not equivalent.
for ( ; first1 != last1 && first2 != last2 ; ++first1, ++first2) { if (first1->native() < first2->native()) return true; if (first2->native() < first1->native()) return false; } return first1 == last1 && first2 != last2;[Note: A
path
awarelexicographical_compare
is provided to avoid infinite recursion instd::lexicographical_compare
due to thepath
iterator's value type itself beingpath
. --end note]
std::size_t hash_value (const path& p);
Returns: A hash value for the path
p
. If for two paths,p1 == p2
thenhash_value(p1) == hash_value(p2)
.This allows paths to be used with Boost.Hash.
bool operator< (const path& lhs, const path& rhs);
Returns:
return lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end())
.
bool operator<=(const path& lhs, const path& rhs);
Returns:
!(rhs < lhs)
.
bool operator> (const path& lhs, const path& rhs);
Returns:
rhs < lhs
.
bool operator>=(const path& lhs, const path& rhs);
Returns:
!(lhs < rhs)
.
bool operator==(const path& lhs, const path& rhs);
Returns:
!(lhs < rhs) && !(rhs < lhs)
.[Note: Actual implementations may use an equivalent, but more efficient, algorithm. --end note]
[Note: Path equality and path equivalence have different semantics.
Equality is determined by the
path
non-memberoperator==
, which considers the two path's lexical representations only. Thuspath("foo") == "bar"
is nevertrue
.Equivalence is determined by the
equivalent()
non-member function, which determines if two paths resolve to the same file system entity. Thusequivalent("foo", "bar")
will betrue
when both paths resolve to the same file.Programmers wishing to determine if two paths are "the same" must decide if "the same" means "the same representation" or "resolve to the same actual file", and choose the appropriate function accordingly. -- end note]
bool operator!=(const path& lhs, const path& rhs);
Returns:
!(lhs == rhs)
.
path operator/ (const path& lhs, const path& rhs);
Returns:
path(lhs) /= rhs
.
path
inserter
and extractor The inserter and extractor delimit the string with double-quotes ("
)
to ensure that paths with embedded spaces will round trip correctly. Ampersand (&
)
is used as an escape character, so the path can itself contain double quotes.
template <class Char, class Traits> std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, const path& p)
Effects:
os << boost::io::quoted(p.string<std::basic_string<Char>>(), static_cast<Char>('&'));
Returns:
os
template <class Char, class Traits> inline std::basic_istream<Char, Traits>& operator>>(std::basic_istream<Char, Traits>& is, path& p)
Effects:
std::basic_string<Char> str;
is >> boost::io::quoted(str, static_cast<Char>('&'));
p = str;Returns:
is
filesystem_error
namespace std { namespace tbd { namespace filesystem { class filesystem_error : public system_error { public: filesystem_error(); filesystem_error(const filesystem_error&); filesystem_error(const std::string& what_arg, system::error_code ec); filesystem_error(const std::string& what_arg, const path& p1, system::error_code ec); filesystem_error(const std::string& what_arg, const path& p1, const path& p2, system::error_code ec); filesystem_error& filesystem_error(const filesystem_error&); ~filesystem_error(); filesystem_error& operator=(const filesystem_error&); const path& path1() const; const path& path2() const; const char * what() const; }; } } } // namespaces std::tbd::filesystem
The class template filesystem_error
defines the type of
objects thrown as exceptions to report file system errors from functions described in this
Clause.
filesystem_error
membersfilesystem_error(const std::string& what_arg, error_code ec);
Postcondition:
Expression Value runtime_error::what()
what_arg.c_str()
code()
ec
path1().empty()
true
path2().empty()
true
filesystem_error(const std::string& what_arg, const path_type& p1, error_code ec);
Postcondition:
Expression Value runtime_error::what()
what_arg.c_str()
code()
ec
path1()
Reference to stored copy of p1
path2().empty()
true
filesystem_error(const std::string& what_arg, const path_type& p1, const path_type& p2, error_code ec);
Postcondition:
Expression Value runtime_error::what()
w
hat_arg.c_str()
code()
ec
path1()
Reference to stored copy of p1
path2()
Reference to stored copy of p2
const path& path1() const;
Returns: Reference to copy of
p1
stored by the constructor, or, if none, an empty path.
const path& path2() const;
Returns: Reference to copy of
p2
stored by the constructor, or, if none, an empty path.
const char* what() const;
Returns: A string containing
runtime_error::what()
. The exact format is unspecified. Implementations are encouraged but not required to includepath1.native_string()
if not empty,path2.native_string()
if not empty, andsystem_error::what()
strings in the returned string.
This enum specifies constants uses to identify file types.
Constant Name | Meaning |
status_error |
An error occurred while trying to obtain the status of the file. The file simply not being found is not considered a status error. |
file_not_found |
The file could not be found |
regular_file |
Regular file |
directory_file |
Directory file |
symlink_file |
Symbolic link file |
block_file |
Block special file |
character_file |
Character special file |
fifo_file |
FIFO or pipe file |
socket_file |
Socket file |
type_unknown |
The file exists, but it is of a system specific type not covered by any of the above cases. |
This enum specifies bitmask constants uses to identify file permissions. The POSIX standard specifies actual values, and those values have been adopted here because they are very familiar and ingrained for many POSIX users.
Caution: Operating systems do not always support permissions as described in the table.
There is much variation in the meaning of
sticky_bit
; do not use it unless you understand what it means for your operating system.There is much variation in how operating systems treat symlinks. See
symlink_perms
.Windows: All permissions except write are currently ignored. There is only a single write permission; setting write permission for owner, group, or others sets write permission for all, and removing write permission for owner, group, or others removes write permission for all.
Name | Value (octal) |
POSIX macro |
Definition or notes |
| 0 | There are no permissions set for the file. Note: file_not_found is
no_perms rather than perms_not_known |
|
owner_read | 0400 | S_IRUSR |
Read permission, owner |
owner_write | 0200 | S_IWUSR |
Write permission, owner |
owner_exe | 0100 | S_IXUSR |
Execute/search permission, owner |
owner_all | 0700 | S_IRWXU |
Read, write, execute/search by owner; owner_read | owner_write | owner_exe |
group_read | 040 | S_IRGRP |
Read permission, group |
group_write | 020 | S_IWGRP |
Write permission, group |
group_exe | 010 | S_IXGRP |
Execute/search permission, group |
group_all | 070 | S_IRWXG |
Read, write, execute/search by group; group_read | group_write |
group_exe |
others_read | 04 | S_IROTH |
Read permission, others |
others_write | 02 | S_IWOTH |
Write permission, others |
others_exe | 01 | S_IXOTH |
Execute/search permission, others |
others_all | 07 | S_IRWXO |
Read, write, execute/search by others; others_read | others_write | others_exe |
all_all | 0777 | owner_all | group_all | others_all |
|
set_uid_on_exe | 04000 | S_ISUID |
Set-user-ID on execution |
set_gid_on_exe | 02000 | S_ISGID |
Set-group-ID on execution |
sticky_bit | 01000 | S_ISVTX |
Meaning varies; see http:en.wikipedia.org/wiki/Sticky_bit |
perms_mask | 07777 | all_all | set_uid_on_exe | set_gid_on_exe | sticky_bit |
|
perms_not_known | 0xFFFF |
The permissions are not known, such as when a file_status object
is created without specifying the permissions |
|
| 0x1000 |
|
|
remove_perms | 0x2000 |
permissions() removes the argument permission bits from the
file's current bits |
|
symlink_perms | 0x4000 |
On POSIX permissions() resolves symlinks unless symlink_perms
is specified.
Meaningless on Windows as permissions() never resolves symlinks.
Meaningless on Mac OS X and some other BSD systems as permissions()
always resolves symlinks. Get over it. |
namespace std { namespace tbd { namespace filesystem { class file_status { public: // constructors file_status() noexcept; explicit file_status(file_type ft, perms prms = perms_not_known) noexcept; // compiler generated file_status(const file_status&) noexcept; file_status& operator=(const file_status&) noexcept; ~file_status() noexcept; // observers file_type type() const noexcept; perms permissions() const noexcept; // modifiers void type(file_type ft) noexcept; void permissions(perms prms) noexcept; }; } } } // namespaces std::tbd::filesystem
An object of type file_status
stores information about the type
and permissions of a file.
file_status
constructorsexplicit file_status() noexcept;
Postconditions:
type() == status_error
,permissions() == perms_not_known
.
explicit file_status(file_type ft, perms prms = perms_not_known) noexcept;
Postconditions:
type() == ft
,permissions() == prms
.
file_status
observersfile_type type() const noexcept;
Returns: The value of
type()
specified by the postconditions of the most recent call to a constructor, operator=, ortype(file_type)
function.
perms permissions() const noexcept;
Returns: The value of
permissions()
specified by the postconditions of the most recent call to a constructor, operator=, orpermissions(perms)
function.
file_status
modifiersvoid type(file_type ft) noexcept;
Postconditions:
type() == ft
.
void permissions(perms prms) noexcept;
Postconditions:
permissions() == prms
.
directory_entry
namespace std { namespace tbd { namespace filesystem { class directory_entry { public: // constructors and destructor directory_entry(); directory_entry(const directory_entry&); explicit directory_entry(const path_type& p, file_status st=file_status(), file_status symlink_st=file_status()); ~directory_entry(); // modifiers directory_entry& operator=(const directory_entry&); void assign(const path_type& p, file_status st=file_status(), file_status symlink_st=file_status()); void replace_filename(const path& p, file_status st=file_status(), file_status symlink_st=file_status()); // observers const path& path() const; file_status status() const; file_status status(system::error_code& ec) const; file_status symlink_status() const; file_status symlink_status(system::error_code& ec) const; bool operator< (const directory_entry& rhs); bool operator==(const directory_entry& rhs); bool operator!=(const directory_entry& rhs); bool operator< (const directory_entry& rhs); bool operator<=(const directory_entry& rhs); bool operator> (const directory_entry& rhs); bool operator>=(const directory_entry& rhs); private: path_type m_path; // for exposition only mutable file_status m_status; // for exposition only; stat()-like mutable file_status m_symlink_status; // for exposition only; lstat()-like }; } } } // namespaces std::tbd::filesystem
A directory_entry
object stores a path object
,
a file_status
object for non-symbolic link status, and a
file_status
object for symbolic link status. The file_status
objects act as value caches.
[Note: Because
status()
on a pathname may be a very expensive operation, some operating systems provide status information as a byproduct of directory iteration. Caching such status information can result is significant time savings. Cached and non-cached results may differ in the presence of file system races. -- end note]Actual cold-boot timing of iteration over a directory with 15,047 entries was six seconds for non-cached status queries versus one second for cached status queries. Windows XP, 3.0 GHz processor, with a moderately fast hard-drive. Similar speedups are expected on Linux and BSD-derived systems that provide status as a by-product of directory iteration.
directory_entry
constructorsdirectory_entry();
Postcondition:
Expression Value path().empty()
true
status()
file_status()
symlink_status()
file_status()
explicit directory_entry(const path_type& p, file_status st=file_status(), file_status symlink_st=file_status());
Postcondition:
Expression Value path()
p
status()
st
symlink_status()
symlink_st
directory_entry
modifiersvoid assign(const path_type& p, file_status st=file_status(), file_status symlink_st=file_status());
Postcondition:
Expression Value path()
p
status()
st
symlink_status()
symlink_st
void replace_filename(const path& p, file_status st=file_status(), file_status symlink_st=file_status());
Postcondition:
Expression Value path()
path().branch() / s
status()
st
symlink_status()
symlink_st
directory_entry
observersconst path& path() const;
Returns:
m_path
file_status status() const; file_status status(system::error_code& ec) const;
Effects: As if,
if ( !status_known( m_status ) ) { if ( status_known(m_symlink_status) && !is_symlink(m_symlink_status) ) { m_status = m_symlink_status; } else { m_status = status(m_path[, ec]); } }Returns:
m_status
Throws: As specified in Error reporting.
file_status symlink_status() const; file_status symlink_status(system::error_code& ec) const;
Effects: As if,
if ( !status_known( m_symlink_status ) ) { m_symlink_status = symlink_status(m_path[, ec]); }Returns:
m_symlink_status
Throws: As specified in Error reporting.
bool operator==(const directory_entry& rhs);
Returns:
m_path == rhs.m_path
.
bool operator!=(const directory_entry& rhs);
Returns:
m_path != rhs.m_path
.
bool operator< (const directory_entry& rhs);
Returns:
m_path < rhs.m_path
.
bool operator<=(const directory_entry& rhs);
Returns:
m_path <= rhs.m_path
.
bool operator> (const directory_entry& rhs);
Returns:
m_path > rhs.m_path
.
bool operator>=(const directory_entry& rhs);
Returns:
m_path >= rhs.m_path
.
directory_iterator
Objects of type directory_iterator
provide standard library
compliant iteration over the contents of a directory. Also see class
recursive_directory_iterator
.
namespace std { namespace tbd { namespace filesystem { class directory_iterator { public: // member functions directory_iterator() noexcept; // creates the "end" iterator directory_iterator(const directory_iterator&); explicit directory_iterator(const path& p); directory_iterator(const path& p, system::error_code& ec); ~directory_iterator(); directory_iterator& operator=(const directory_iterator&); directory_iterator& operator++(); directory_iterator& increment(system::error_code& ec); // other members as required by // C++ Std, 24.1.1 Input iterators [input.iterators] }; } } } // namespaces std::tbd::filesystem
directory_iterator
satisfies the requirements of an
input iterator (C++ Std, 24.2.1, Input iterators [input.iterators]).
A directory_iterator
reads successive elements from the directory for
which it was constructed, as if by calling POSIX
readdir_r()
. After a directory_iterator
is constructed, and every time
operator++
is called,
it reads a directory element and stores information about it in a object of type
directory_entry
.
operator++
is not equality preserving; that is, i == j
does not imply that
++i == ++j
.
[Note: The practical consequence of not preserving equality is that directory iterators can only be used for single-pass algorithms. --end note]
If the end of the directory elements is reached, the iterator becomes equal to
the end iterator value. The constructor directory_iterator()
with no arguments always constructs an end iterator object, which is the only
legitimate iterator to be used for the end condition. The result of
operator*
on an end iterator is not defined. For any other iterator value
a const directory_entry&
is returned. The result of
operator->
on an end iterator is not defined. For any other iterator value a const directory_entry*
is
returned.
Two end iterators are always equal. An end iterator is not equal to a non-end iterator.
The above wording is based on the Standard Library's istream_iterator wording.
The result of calling the path()
member of the
directory_entry
object obtained by dereferencing a
directory_iterator
is a reference to a path
object composed of the directory argument from which the iterator was
constructed with filename of the directory entry appended as if by
operator/=
.
Directory iteration shall not yield directory entries for the current (dot) and parent (dot dot) directories.
The order of directory entries obtained by dereferencing successive
increments of a directory_iterator
is unspecified.
[Note: Programs performing directory iteration may wish to test if the path obtained by dereferencing a directory iterator actually exists. It could be a symbolic link to a non-existent file. Programs recursively walking directory trees for purposes of removing and renaming entries may wish to avoid following symbolic links.
If a file is removed from or added to a directory after the construction of a
directory_iterator
for the directory, it is unspecified whether or not subsequent incrementing of the iterator will ever result in an iterator whose value is the removed or added directory entry. See POSIXreaddir_r()
. --end note]
directory_iterator
membersdirectory_iterator()
noexcept;
Effects: Constructs the end iterator.
explicit directory_iterator(
const path& p); directory_iterator(
const path& p, system::error_code& ec);
Effects: Constructs a iterator representing the first entry in the directory
p
resolves to, if any; otherwise, the end iterator.Throws: As specified in Error reporting.
[Note: To iterate over the current directory, use
directory_iterator(".")
rather thandirectory_iterator("")
. -- end note]
directory_iterator& operator++(); directory_iterator& increment(system::error_code& ec);
Effects: As specified by the C++ Standard, 24.1.1 Input iterators [input.iterators]
Returns:
*this
.Throws: As specified in Error reporting.
recursive_directory_iterator
Objects of type recursive_directory_iterator
provide standard library
compliant iteration over the contents of a directory, including recursion into
its sub-directories.
namespace std { namespace tbd { namespace filesystem { class recursive_directory_iterator : public iterator<input_iterator_tag, directory_entry> { public: // constructors and destructor recursive_directory_iterator() noexcept; recursive_directory_iterator(const recursive_directory_iterator&); explicit recursive_directory_iterator(const path& p, symlink_option opt = symlink_option::none); recursive_directory_iterator(const path& p, symlink_option opt, system::error_code& ec); recursive_directory_iterator(const path& p, system::error_code& ec); ~recursive_directory_iterator(); // observers int level() const noexcept; bool no_push_pending
() const noexcept; // modifiers recursive_directory_iterator& operator=(const recursive_directory_iterator&); recursive_directory_iterator& operator++(); recursive_directory_iterator& increment(system::error_code& ec); void pop(); void no_push(bool value=true); // other members as required by // C++ Std, Input iterators [input.iterators] private: // actual data members will probably be stored in a shared object, // or some similar mechanism, to achieve the required input iterator // copy semantics int m_level; // for exposition only bool m_no_push
; // for exposition only symlink_option m_options; // for exposition only }; } } } // namespaces std::tbd::filesystem
The behavior of a recursive_directory_iterator
is the same
as a directory_iterator
unless otherwise specified.
recursive_directory_iterator
pointing to a
directory causes that directory itself to be iterated ovee, as specified by
the operator++
and increment
functions.recursive_directory_iterator
reaches the end of the directory currently being iterated
over, or when pop()
is called, m_level
is
decremented, and iteration of the parent directory continues.recursive_directory_iterator() noexcept;
Effects: Constructs the end iterator.
explicit recursive_directory_iterator(const path& p, symlink_option opt = symlink_option::none); recursive_directory_iterator(const path& p, symlink_option opt, system::error_code& ec); recursive_directory_iterator(
const path& p, system::error_code& ec);
Effects: Constructs a iterator representing the first entry in the directory
p
resolves to, if any; otherwise, the end iterator.Postcondition: Unless the end iterator was constructed,
level() == 0 && no_push_pending() == false && m_options == opt
. For the signature without asymlink_option
argument,opt
is assumed to besymlink_option::none
.Throws: As specified in Error reporting.
[Note: To iterate over the current directory, use
recursive_directory_iterator(".")
rather thanrecursive_directory_iterator("")
. -- end note][Note: By default,
recursive_directory_iterator
does not follow directory symlinks. To follow directory symlinks, specifyopt
assymlink_option::recurse
-- end note]
int level() const noexcept;
Requires:
*this != recursive_directory_iterator()
.Returns:
m_level
.
bool no_push_pending
() const noexcept;
Requires:
*this != recursive_directory_iterator()
.Returns:
m_no_push
.
recursive_directory_iterator
& operator++();
recursive_directory_iterator& increment(system::error_code& ec);
Effects: As specified by the C++ Standard, 24.1.1 Input iterators [input.iterators], except:
if
!no_push_pending() && is_directory(this->status()) && (!is_symlink(this->symlink_status()) || (m_options & symlink_option::recurse) != 0)
thenm_level
is incremented and directory(*this)->path()
is recursively iterated into.
- if there are no more directory entries at this level then
m_level
is decremented and iteration of the parent directory resumes.Postcondition:
no_push_pending() == false
.Returns:
*this
.Throws: As specified in Error reporting.
void pop();
Requires:
*this != recursive_directory_iterator()
.Effects: If
level() == 0
, set*this
torecursive_directory_iterator()
. Otherwise,--m_level
, cease iteration of the directory currently being iterated over, and continue iteration over the parent directory.
void no_push(bool value=true);
Requires:
*this != recursive_directory_iterator()
.Postcondition:
no_push_pending() == value
.[Note:
no_push()
is used to prevent unwanted recursion into a directory. --end note]
Operational functions query or modify files, including directories, in external storage.
Operational functions access a file by resolving an
object of class path
to a particular file in a file hierarchy. The
path is resolved as if by the POSIX
Pathname Resolution mechanism.
[Note: Because hardware failures, network failures, file system races, and many other kinds of errors occur frequently in file system operations, users should be aware that any filesystem operational function, no matter how apparently innocuous, may encounter an error. See Error reporting. -- end note]
path absolute(const path& p, const path& base=current_path());
Returns: A absolute path composed according to the following table
p.has_root_directory()
!p.has_root_directory()
p.has_root_name()
return p
return p.root_name() / absolute(base).root_directory()
/ absolute(base).relative_path() / p.relative_path()!p.has_root_name()
return absolute(base).root_name()
/ preturn absolute(base) / p
[Note: For the returned path,
rp,
rp.is_absolute()
is true. -- end note]Throws: If
base.is_absolute()
is true, throws only if memory allocation fails.
path canonical(const path& p, const path& base = current_path()); path canonical(const path& p, system::error_code& ec); path canonical(const path& p, const path& base, system::error_code& ec);
Overview: Converts
p
, which must exist, to an absolute path that has no symbolic link, dot, or dot-dot elements.Returns: A canonical path that refers to the same file system object as
absolute(p,base)
. For the overload without abase
argument,base
iscurrent_path()
.Throws: As specified in Error reporting.
Remarks:
!exists(p)
is an error.[Note: Canonical pathnames allow security checking of a path (eg. does this path live in /home/goodguy or /home/badguy?) -- end note]
void copy(const path& from, const path& to); void copy(const path& from, const path& to, system::error_code& ec);
Effects: As if
file_status s(symlink_status(from[, ec
])); if(is_symlink(s)) copy_symlink(from, to[, ec
]); else if(is_directory(s)) copy_directory(from, to[, ec
]); else if(is_regular_file(s)) copy_file(from, to, copy_option::fail_if_exists[, ec
]); else Report error as specified in Error reporting.Throws: As specified in Error reporting.
void copy_directory(const path& from, const path& to); void copy_directory(const path& from, const path& to, system::error_code& ec);
Effects:
Throws: As specified in Error reporting.
void copy_file(const path& from, const path& to); void copy_file(const path& from, const path& to, system::error_code& ec);
Effects:
copy_file(from, to, copy_option::fail_if_exists
[, ec
])
.Throws: As specified in Error reporting.
void copy_file(const path& from, const path& to, copy_option option); void copy_file(const path& from, const path& to, copy_option option, system::error_code& ec);
Effects: If
option == copy_option::
fail_if_exists && exists(to)
, an error is reported. Otherwise, the contents and attributes of the filefrom
resolves to are copied to the fileto
resolves to.Throws: As specified in Error reporting.
void copy_symlink(const path& existing_symlink, const path& new_symlink); void copy_symlink(const path& existing_symlink, const path& new_symlink, system::error_code& ec);
Effects:
create_symlink(read_symlink(existing_symlink
[, ec
]), new_symlink
[, ec
])
.Throws: As specified in Error reporting.
bool create_directories(const path& p); bool create_directories(const path& p, system::error_code& ec);
Requires:
p.empty() ||
forall px: px == p || is_parent(px, p): is_directory(px) || !exists( px )Postcondition:
is_directory(p)
Returns: The value of
!exists(p)
prior to the establishment of the postcondition.Throws: As specified in Error reporting.
bool create_directory(const path& p); bool create_directory(const path& p, system::error_code& ec);
Effects: Attempts to create the directory
p
resolves to, as if by POSIXmkdir()
with a second argument of S_IRWXU|S_IRWXG|S_IRWXO.Postcondition:
is_directory(p)
Returns:
true
if a new directory was created, otherwisefalse
.Throws: As specified in Error reporting.
void create_directory_symlink(const path& to, const path& new_symlink); void create_directory_symlink(const path& to, const path& new_symlink, system::error_code& ec);
Effects: Establishes the postcondition, as if by POSIX
symlink()
.Postcondition:
new_symlink
resolves to a symbolic link file that contains an unspecified representation ofto
.Throws: As specified in Error reporting.
[Note: Some operating systems, such as Windows, require symlink creation to identify that the link is to a directory. Portable code should use
create_directory_symlink()
to create directory symlinks rather thancreate_symlink()
-- end note][Note: Some operating systems do not support symbolic links at all or support them only for regular files. Some file systems do not support symbolic links regardless of the operating system - the FAT file system used on memory cards and flash drives, for example. -- end note]
void create_hard_link(const path& to, const path& new_hard_link); void create_hard_link(const path& to, const path& new_hard_link, system::error_code& ec);
Effects: Establishes the postcondition, as if by POSIX
link()
.Postcondition:
exists(to) && exists(
new_hard_link
) && equivalent(to,
new_hard_link
)
- The contents of the file or directory
to
resolves to are unchanged.Throws: As specified in Error reporting.
[Note: Some operating systems do not support hard links at all or support them only for regular files. Some file systems do not support hard links regardless of the operating system - the FAT file system used on memory cards and flash drives, for example. Some file systems limit the number of links per file. -- end note]
void create_symlink(const path& to, const path& new_symlink); void create_symlink(const path& to, const path& new_symlink, system::error_code& ec);
Effects: Establishes the postcondition, as if by POSIX
symlink()
.Postcondition:
new_symlink
resolves to a symbolic link file that contains an unspecified representation ofto
.Throws: As specified in Error reporting.
[Note: Some operating systems do not support symbolic links at all or support them only for regular files. Some file systems do not support symbolic links regardless of the operating system - the FAT system used on memory cards and flash drives, for example. -- end note]
path current_path(); path current_path(system::error_code& ec);
Returns: The current working directory path, as if by POSIX
getcwd()
.is_absolute()
is true for the returned path.Throws: As specified in Error reporting.
[Note: The
current_path()
name was chosen to emphasize that the return is a path, not just a single directory name.The current path as returned by many operating systems is a dangerous global variable. It may be changed unexpectedly by a third-party or system library functions, or by another thread. -- end note]
void current_path(const path& p); void current_path(const path& p, system::error_code& ec);
Effects: Establishes the postcondition, as if by POSIX
chdir()
.Postcondition:
equivalent(p, current_path())
.Throws: As specified in Error reporting.
[Note: The current path for many operating systems is a dangerous global state. It may be changed unexpectedly by a third-party or system library functions, or by another thread. -- end note]
bool exists(file_status s) noexcept;
Returns:
status_known(s) && s.type() != file_not_found
bool exists(const path& p); bool exists(const path& p, system::error_code& ec) noexcept;
Returns:
exists(status(p))
orexists(status(p, ec))
, respectively.Throws:
filesystem_error
; overload witherror_code&
throws nothing.
bool equivalent(const path& p1, const path& p2);
bool equivalent(const path& p1, const path& p2, system::error_code& ec);
Effects: Determines
file_status s1
ands2
, as if bystatus(p1)
andstatus(p2)
, respectively.Returns:
true
, ifsf1 == sf2
andp1
andp2
resolve to the same file system entity, elsefalse
.Two paths are considered to resolve to the same file system entity if two candidate entities reside on the same device at the same location. This is determined as if by the values of the POSIX
stat
structure,
obtained as if bystat()
for the two paths, having equalst_dev
values and equalst_ino
values.[Note: POSIX requires that "st_dev must be unique within a Local Area Network". Conservative POSIX implementations may also wish to check for equal
st_size
andst_mtime
values. Windows implementations may useGetFileInformationByHandle()
as a surrogate forstat()
, and consider "same" to be equal values fordwVolumeSerialNumber
,nFileIndexHigh
,nFileIndexLow
,nFileSizeHigh
,nFileSizeLow
,ftLastWriteTime.dwLowDateTime
, andftLastWriteTime.dwHighDateTime
. -- end note]Throws:
filesystem_error
if(!exists(s1) && !exists(s2)) || (is_other(s1) && is_other(s2))
, otherwise as specified in Error reporting.
Returns: If
exists(p) && is_regular_file(p)
, the size in bytes of the filep
resolves to, determined as if by the value of the POSIXstat
structure memberst_size
obtained as if by POSIXstat()
. Otherwise,static_cast<uintmax_t>(-1)
.Throws: As specified in Error reporting.
uintmax_t hard_link_count(const path& p); uintmax_t hard_link_count(const path& p, system::error_code& ec);
Returns: The number of hard links for
p
.Throws: As specified in Error reporting.
const path& initial_path();
const path& initial_path(system::error_code& ec
);
Returns:
current_path()
as of the first call toinitial_path()
.[Note:
initial_path()
is not thread safe, and may return an undesirable result if called subsequent to a change to the current directory. These problems can be avoided by callinginitial_path()
immediately on entry to main(). --end note]Throws: For the first call, as specified in Error reporting. Subsequent calls throw nothing.
bool is_directory
(file_status s) noexcept;
Returns:
s.type() == directory_file
bool is_directory(const path& p);
bool is_directory(const path& p, system::error_code& ec) noexcept;
Returns:
is_directory(status(p))
oris_directory(status(p, ec))
, respectively.Throws:
filesystem_error
; overload witherror_code&
throws nothing.
bool is_empty(const path& p);
bool is_empty(const path& p, system::error_code& ec);
Effects: Determines
file_status s
, as if bystatus(p, ec)
.Returns:
is_directory(s)
? directory_iterator(p) == directory_iterator()
: file_size(p) == 0;
bool is_regular_file
(file_status s) noexcept;
Returns:
s.type() == regular_file
bool is_regular_file(const path& p);
Returns:
is_regular_file(status(p))
.Throws:
filesystem_error
ifstatus(p)
would throwfilesystem_error.
bool is_regular_file(const path& p, system::error_code& ec) noexcept;
Effects: Sets
ec
as if bystatus(p, ec)
. [Note:status_error
,file_not_found
andtype_unknown
cases setec
to error values. To distinguish between cases, call thestatus
function directly. -- end note]Returns:
is_regular_file(status(p, ec))
.
bool is_other(file_status s) noexcept;
Returns:
return exists(s) && !is_regular_file(s) && !is_directory(s) && !is_symlink(s)
bool is_other(const path& p);
bool is_other(const path& p, system::error_code& ec) noexcept;
Returns:
is_other(status(p))
oris_other(status(p, ec))
, respectively.Throws:
filesystem_error
; overload witherror_code&
throws nothing.
bool is_symlink(file_status s) noexcept;
Returns:
s.type() == symlink_file
bool is_symlink(const path& p);
bool is_symlink(const path& p, system::error_code& ec) noexcept;
Returns:
is_symlink(symlink_status(p))
oris_symlink(symlink_status(p, ec))
, respectively.Throws:
filesystem_error
; overload witherror_code&
throws nothing.
std::time_t last_write_time(const path& p);
std::time_t last_write_time(const path& p, system::error_code& ec
);
Returns: The time of last data modification of
p
, determined as if by the value of the POSIXstat
structure memberst_mtime
obtained as if by POSIXstat()
.Throws: As specified in Error reporting.
void last_write_time(const path& p, const std::time_t new_time);
void last_write_time(const path& p, const std::time_t new_time, system::error_code& ec
);
Effects: Sets the time of last data modification of the file resolved to by
p
tonew_time
, as if by POSIXstat()
followed by POSIXutime()
.Throws: As specified in Error reporting.
[Note: A postcondition of
last_write_time(p) == new_time
is not specified since it might not hold for file systems with coarse time granularity. -- end note]
void permissions(const path& p, perms prms); void permissions(const path& p, perms prms, system::error_code& ec);
Requires:
!((prms & add_perms) && (prms & remove_perms))
.Effects: Applies the effective permissions bits from
prms
to the filep
resolves to, as if by POSIXfchmodat()
. The effective permission bits are determined as specified by the following table.
bits present in prms
Effective bits applied Neither add_perms
norremove_perms
prms & perms_mask
add_perms
status(p).permissions() | (prms & perms_mask)
remove_perms
status(p)
.permissions() & ~(prms & perms_mask)
[Note: Conceptually permissions are viewed as bits, but the actual implementation may use some other mechanism. -- end note]
Throws: As specified in Error reporting.
path read_symlink(const path& p); path read_symlink(const path& p, system::error_code& ec);
Returns: If
p
resolves to a symbolic link, apath
object containing the contents of that symbolic link. Otherwise an emptypath
object.Throws: As specified in Error reporting. [Note: It is an error if
p
does not resolve to a symbolic link. -- end note]
bool remove(const path& p); bool remove(const path& p, system::error_code& ec);
Effects: If
exists(symlink_status(p,ec))
, it is removed as if by POSIXremove()
.[Note: A symbolic link is itself removed, rather than the file it resolves to being removed. -- end note]
Postcondition:
!exists(symlink_status(p))
.Returns:
false
if p did not exist in the first place, otherwisetrue
.Throws: As specified in Error reporting.
uintmax_t remove_all(const path& p); uintmax_t remove_all(const path& p, system::error_code& ec);
Effects: Recursively deletes the contents of p if it exists, then deletes file
p
itself, as if by POSIXremove()
.[Note: A symbolic link is itself removed, rather than the file it resolves to being removed. -- end note]
Postcondition:
!exists(p)
Returns: The number of files removed.
Throws: As specified in Error reporting.
void rename(const path& old_p, const path& new_p); void rename(const path& old_p, const path& new_p, system::error_code& ec);
Effects: Renames
old_p
tonew_p
, as if by POSIXrename()
.[Note: If
old_p
andnew_p
resolve to the same existing file, no action is taken. Otherwise, ifnew_p
resolves to an existing non-directory file, it is removed, while ifnew_p
resolves to an existing directory, it is removed if empty on POSIX but is an error on Windows. A symbolic link is itself renamed, rather than the file it resolves to being renamed. -- end note]Throws: As specified in Error reporting.
void resize_file(const path& p, uintmax_t new_size); void resize_file(const path& p, uintmax_t new_size, system::error_code& ec);
Postcondition:
file_size() == new_size
.Throws: As specified in Error reporting.
Remarks: Achieves its postconditions as if by POSIX
truncate()
.
space_info space(const path& p); space_info space(const path& p, system::error_code& ec);
Returns: An object of type
space_info
. The value of thespace_info
object is determined as if by using POSIXstatvfs()
to obtain a POSIX structstatvfs
, and then multiplying itsf_blocks
,f_bfree
, andf_bavail
members by itsf_frsize
member, and assigning the results to thecapacity
,free
, andavailable
members respectively. Any members for which the value cannot be determined shall be set to -1.Throws: As specified in Error reporting.
file_status status(const path& p);
Effects: As if:
system::error_code ec; file_status result = status(p, ec); if (result == status_error) throw filesystem_error(implementation-supplied-message, p, ec); return result;Returns: See above.
Throws:
filesystem_error
. [Note:result
values offile_status(file_not_found)
andfile_status(type_unknown)
are not considered failures and do not cause an exception to be thrown. -- end note]
file_status status(const path& p, system::error_code& ec) noexcept;
Effects:
If possible, determines the attributes of the file
If, during attribute determination, the underlying file system API reports an error, setsp
resolves to, as if by POSIXstat()
.ec
to indicate the specific error reported. Otherwise,ec.clear()
.[Note: This allows users to inspect the specifics of underlying API errors even when the value returned by
status()
is notfile_status(status_error)
. --end note]Returns:
If
ec != error_code()
:
- If the specific error indicates that
p
cannot be resolved because some element of the path does not exist, returnfile_status(file_not_found)
. [Note: POSIX errors that indicate this are ENOENT or ENOTDIR. Windows equivalents include ERROR_FILE_NOT_FOUND, ERROR_PATH_NOT_FOUND, ERROR_INVALID_NAME, ERROR_INVALID_PARAMETER, ERROR_BAD_PATHNAME, and ERROR_BAD_NETPATH. -- end note]
- Otherwise, if the specific error indicates that
p
can be resolved but the attributes cannot be determined, returnfile_status(type_unknown)
. [Note: For example, Windows ERROR_SHARING_VIOLATION errors. For POSIX, the case never arises. -- end note]
- Otherwise, return
file_status(status_error)
.[Note: These semantics distinguish between
p
being known not to exist,p
existing but not being able to determine its attributes, and there being an error that prevents even knowing ifp
exists. These distinctions are important to some use cases. --end note]Otherwise,
- If the attributes indicate a regular file, as if by POSIX S_ISREG(), return
file_status(regular_file)
. [Note:regular_file
implies appropriate<fstream>
operations would succeed, assuming no hardware, permission, access, or file system race errors. Lack ofregular_file
does not necessarily imply<fstream>
operations would fail on a directory. -- end note]
- Otherwise, if the attributes indicate a directory, as if by POSIX S_ISDIR(), return
file_status(directory_file)
. [Note:directory_file
impliesdirectory_iterator(p)
would succeed. -- end note]
- Otherwise, if the attributes indicate a block special file, as if by POSIX S_ISBLK(), return
file_status(block_file)
.
- Otherwise, if the attributes indicate a character special file, as if by POSIX S_ISCHR(), return
file_status(character_file)
.
- Otherwise, if the attributes indicate a fifo or pipe file, as if by POSIX S_ISFIFO(), return
file_status(fifo_file)
.
- Otherwise, if the attributes indicate a socket, as if by POSIX S_ISSOCK(), return
file_status(socket_file)
.
- Otherwise, return
file_status(type_unknown)
.Remarks: If a symbolic link is encountered during pathname resolution, pathname resolution continues using the contents of the symbolic link.
bool status_known(file_status s) noexcept;
Returns:
s.type() != status_error
file_status symlink_status(const path& p); file_status symlink_status(const path& p, system::error_code& ec) noexcept;
Effects: Same as status(), above, except that the attributes of
p
are determined as if by POSIXlstat()
.
Returns: Same as status(), above, except that if the attributes indicate a symbolic link, as if by POSIX S_ISLNK(), return
file_status(symlink_file)
.Remarks: Pathname resolution terminates if
p
names a symbolic link.Throws:
filesystem_error
; overload witherror_code&
throws nothing.
path system_complete(const path& p); path system_complete(const path& p, system::error_code& ec);
Effects: Composes an absolute path from
p
, using the same rules used by the operating system to resolve a path passed as the filename argument to standard library open functions.Returns: The composed path.
Postcondition: For the returned path,
rp,
rp.is_absolute()
is true.Throws: As specified in Error reporting.
[Note: For POSIX,
system_complete(p)
has the same semantics ascomplete(p, current_path())
.For Windows,
system_complete(p)
has the same semantics ascomplete(ph, current_path())
ifp.is_absolute() || !p.has_root_name()
orp
andbase
have the sameroot_name()
. Otherwise it acts likecomplete(p, kinky)
, wherekinky
is the current directory for thep.root_name()
drive. This will be the current directory of that drive the last time it was set, and thus may be residue left over from a prior program run by the command processor! Although these semantics are often useful, they are also very error-prone.See complete() note for usage suggestions. -- end note]
path temp_directory_path(); path temp_directory_path(system::error_code& ec);
Returns: A directory path suitable for temporary files under the conventions of the operating system. The specifics of how this path is determined are implementation defined. An error shall be reported if
!exists(p) || !is_directory(p)
, wherep
is the path to be returned.POSIX: The path supplied by the first environment variable found in the list TMPDIR, TMP, TEMP, TEMPDIR. If none of these are found,
"/tmp"
.Windows: The path reported by the Windows
GetTempPath
API function.Throws: As specified in Error reporting.
[Note: The
temp_directory_path()
name was chosen to emphasize that the return is a path, not just a single directory name. -- end note]
path unique_path(const path& model="%%%%-%%%%-%%%%-%%%%"); path unique_path(const path& model, system::error_code& ec);
The
unique_path
function generates a path name suitable for creating temporary files, including directories. The name is based on a model that uses the percent sign character to specify replacement by a random hexadecimal digit. [Note: The more bits of randomness in the generated path name, the less likelihood of prior existence or being guessed. Each replacement hexadecimal digit in the model adds four bits of randomness. The default model thus provides 64 bits of randomness. This is sufficient for most applications. --end note]Returns: A path identical to
model
, except that each occurrence of a percent sign character is replaced by a random hexadecimal digit character in the range 0-9, a-f.Throws: As specified in Error reporting.
Remarks: Implementations are encouraged to obtain the required randomness via a cryptographically secure pseudo-random number generator, such as one provided by the operating system. [Note: Such generators may block until sufficient entropy develops. --end note]
End of new Clause.
Modify File streams [fstreams] as follows:
To class basic_filebuf public members add:
basic_filebuf<charT,traits>* open(const path& p, std::ios_base::openmode mode);
To class basic_ifstream public members add:
explicit basic_ifstream(const path& p, std::ios_base::openmode mode=std::ios_base::in)void open(const path& p, std::ios_base::openmode mode=std::ios_base::in);
To class basic_ofstream public members add:
explicit basic_ofstream(const path& p, std::ios_base::openmode mode=std::ios_base::out);void open(const path& p, std::ios_base::openmode mode=std::ios_base::out);
To class basic_fstream public members add:
explicit basic_fstream(const path& p, std::ios_base::openmode mode=std::ios_base::in | std::ios_base::out);void open(const path& p, std::ios_base::openmode mode=std::ios_base::in | std::ios_base::out);
End of proposed wording.
The N3335 proposal places the library in namespace std::tr2::files
.
Rationale for a sub-namespace is that the library uses several names that don't
seem appropriate for namespace tr2
since full standardization would
then put the names into std
. The function names remove
and rename
are of particular concern because these functions differ
in behavior from current standard library functions with those names. It also
doesn't seem desirable to preempt names like equivalent
and
status
.
Kona: Strong support for filesystem
as the library's
namespace. Strong support for a technical report namespace that alerts uses that
contents are likely to change if and when they later get moved into the
standard.
No decision yet on a TR namespace; experimental
being used as
a placeholder. Thus the full namespace is changed to
std::experimental::filesystem.
const codecvt_type&
arguments
Status: OpenUsers sometimes need to do path conversions that use something other than the
imbued codecvt facet. The need is particularly acute in multi-threaded
applications where changing the imbued facet would introduce a data race. That
said, providing an optional const codecvt_type&
argument for every
function where the need might possibly arise is excessive because its use is so
rare and it adds considerable interface clutter.
Kona:
Remove all existing class path const codecvt_type&
arguments.
Beman to pursue separate encoding conversion functionality, per Thursday N3336 "Adapting standard library strings and IO to a Unicode World" discussion. See Kona wiki.
If a separate encoding conversion facility isn't possible, then some form of minimal class path encoding conversion facility will be needed. But..., the LWG would like to see use cases and clearer explanation of motivation before deciding on specifics, and be very sure that there is no way to achieve with existing std library functionality, albeit with some loss of efficiency.
In Bloomington there was discussion of "implicit cast to implicit cast to native OS type to inter operate with existing iostream library and native functions instead of modifying fstream".
Kona: The Dinkumware/Microsoft implementation has added an implicit conversion to the string type, eliminating any need to modify fstream. (Discussion: might be safer to make the implicit conversion protected, then make fstream classes friends).
Action: Beman to investigate, test, as avoiding modification of existing header and classes is much desired.
The issue title pretty much says it all.
Kona: Return plain strings. Remove the permission for implementations to return const refs, since uses are not in performace critical code and subtle portability bugs may occur.
Action: Beman to apply to proposed wording.
Question raised by Pablo in Bloomington.
Beman suggests NAD, Future. I've done some work on this, including looking at systems like OpenVMS that have an escape mechanism to handle otherwise unrepresentable characters. There was a comment to that effect in N3239. I believe it should be deferred to some future release since (1) it is complex enough that I'd like to see actual implementation and use experience (presumably via Boost), and (2) I can't recall a user ever requesting such a feature.
Kona: No consensus for change, since there doesn't appear to be any compelling use case.
Question raised by a committee member in private email.
Kona: Much discussion.
Action: Alisdair to write paper, based on a real implementation, so that it is possible to assess the impact on interface, performance, etc.
Post-Kona: Alisdair will defer paper until after TR.
Class path
currently is specified to used the Boost detail
quoted
stream manipulator. A path object is inserted delimited by quotes,
and extracted accordingly, ensuring that paths containing spaces are
round-tripped correctly. Quotes in the path itself are escaped, and io
state is saved and restored.
See http://www.boost.org/doc/libs/1_48_0/libs/io/doc/quoted_manip.html
Since the standard can't specify behavior in terms of something in Boost, we
have to change the specification. Since the quoted
stream
manipulator is a handy little component, the issue is raised as to whether it
should go in TR2.
Kona: Specify the path inserter and extractor to have the desired behavior without reference to how it is achieved. (If someone wants to propose a quoted manipulator, that's a separate proposal for a different TR.)
Action: Beman to apply to proposed wording.
The table is generated by a program compiled with the Boost implementation.
Shaded entries indicate cases where POSIX and Windows
implementations yield different results. The top value is the
POSIX result and the bottom value is the Windows result.
Constructor argument |
Iteration over Elements |
string() |
generic_ |
root_ |
root_ |
root_ |
relative_ |
parent_ |
filename() |
empty | empty | empty | empty | empty | empty | empty | empty | empty | empty |
. |
. |
. |
. |
empty | empty | empty | . |
empty | . |
.. |
.. |
.. |
.. |
empty | empty | empty | .. |
empty | .. |
foo |
foo |
foo |
foo |
empty | empty | empty | foo |
empty | foo |
/ |
/ |
/ |
/ |
/ |
empty | / |
empty | empty | / |
/foo |
/,foo |
/foo |
/foo |
/ |
empty | / |
foo |
/ |
foo |
foo/ |
foo,. |
foo/ |
foo/ |
empty | empty | empty | foo/ |
foo |
. |
/foo/ |
/,foo,. |
/foo/ |
/foo/ |
/ |
empty | / |
foo/ |
/foo |
. |
foo/bar |
foo,bar |
foo/bar |
foo/bar |
empty | empty | empty | foo/bar |
foo |
bar |
/foo/bar |
/,foo,bar |
/foo/bar |
/foo/bar |
/ |
empty | / |
foo/bar |
/foo |
bar |
//net |
//net |
//net |
//net |
//net |
//net |
empty | empty | empty | //net |
//net/foo |
//net,/,foo |
//net/foo |
//net/foo |
//net/ |
//net |
/ |
foo |
//net/ |
foo |
///foo/// |
/,foo,. |
///foo/// |
///foo/// |
/ |
empty | / |
foo/// |
///foo |
. |
///foo///bar |
/,foo,bar |
///foo///bar |
///foo///bar |
/ |
empty | / |
foo///bar |
///foo |
bar |
/. |
/,. |
/. |
/. |
/ |
empty | / |
. |
/ |
. |
./ |
.,. |
./ |
./ |
empty | empty | empty | ./ |
. |
. |
/.. |
/,.. |
/.. |
/.. |
/ |
empty | / |
.. |
/ |
.. |
../ |
..,. |
../ |
../ |
empty | empty | empty | ../ |
.. |
. |
foo/. |
foo,. |
foo/. |
foo/. |
empty | empty | empty | foo/. |
foo |
. |
foo/.. |
foo,.. |
foo/.. |
foo/.. |
empty | empty | empty | foo/.. |
foo |
.. |
foo/./ |
foo,.,. |
foo/./ |
foo/./ |
empty | empty | empty | foo/./ |
foo/. |
. |
foo/./bar |
foo,.,bar |
foo/./bar |
foo/./bar |
empty | empty | empty | foo/./bar |
foo/. |
bar |
foo/.. |
foo,.. |
foo/.. |
foo/.. |
empty | empty | empty | foo/.. |
foo |
.. |
foo/../ |
foo,..,. |
foo/../ |
foo/../ |
empty | empty | empty | foo/../ |
foo/.. |
. |
foo/../bar |
foo,..,bar |
foo/../bar |
foo/../bar |
empty | empty | empty | foo/../bar |
foo/.. |
bar |
c: |
c: |
c: |
c: |
emptyc: |
emptyc: |
empty | c: empty |
empty | c: |
c:/ |
c:,. c:,/ |
c:/ |
c:/ |
emptyc:/ |
emptyc: |
empty/ |
c:/ empty |
c: |
. / |
c:foo |
c:foo c:,foo |
c:foo |
c:foo |
emptyc: |
emptyc: |
empty | c:foo foo |
emptyc: |
c:foo foo |
c:/foo |
c:,foo c:,/,foo |
c:/foo |
c:/foo |
emptyc:/ |
emptyc: |
empty/ |
c:/foo foo |
c: c:/ |
foo |
c:foo/ |
c:foo,. c:,foo,. |
c:foo/ |
c:foo/ |
emptyc: |
emptyc: |
empty | c:foo/ foo/ |
c:foo |
. |
c:/foo/ |
c:,foo,. c:,/,foo,. |
c:/foo/ |
c:/foo/ |
emptyc:/ |
emptyc: |
empty/ |
c:/foo/ foo/ |
c:/foo |
. |
c:/foo/bar |
c:,foo,bar c:,/,foo,bar |
c:/foo/bar |
c:/foo/bar |
emptyc:/ |
emptyc: |
empty/ |
c:/foo/bar foo/bar |
c:/foo |
bar |
prn: |
prn: |
prn: |
prn: |
emptyprn: |
emptyprn: |
empty | prn: empty |
empty | prn: |
c:\ |
c:\ c:,/ |
c:\ |
c:\ c:/ |
emptyc:\ |
emptyc: |
empty\ |
c:\ empty |
emptyc: |
c:\ \ |
c:foo |
c:foo c:,foo |
c:foo |
c:foo |
emptyc: |
emptyc: |
empty | c:foo foo |
emptyc: |
c:foo foo |
c:\foo |
c:\foo c:,/,foo |
c:\foo |
c:\foo c:/foo |
emptyc:\ |
emptyc: |
empty\ |
c:\foo foo |
emptyc:\ |
c:\foo foo |
c:foo\ |
c:foo\ c:,foo,. |
c:foo\ |
c:foo\ c:foo/ |
emptyc: |
emptyc: |
empty | c:foo\ foo\ |
emptyc:foo |
c:foo\ . |
c:\foo\ |
c:\foo\ c:,/,foo,. |
c:\foo\ |
c:\foo\ c:/foo/ |
emptyc:\ |
emptyc: |
empty\ |
c:\foo\ foo\ |
emptyc:\foo |
c:\foo\ . |
c:\foo/ |
c:\foo,. c:,/,foo,. |
c:\foo/ |
c:\foo/ c:/foo/ |
emptyc:\ |
emptyc: |
empty\ |
c:\foo/ foo/ |
c:\foo |
. |
c:/foo\bar |
c:,foo\bar c:,/,foo,bar |
c:/foo\bar |
c:/foo\bar c:/foo/bar |
emptyc:/ |
emptyc: |
empty/ |
c:/foo\bar foo\bar |
c: c:/foo |
foo\bar bar |
The Microsoft Windows "Maximum Path Length Limitation" specifies:
In the Windows API (with some exceptions ...), the maximum length for a path is MAX_PATH, which is defined as 260 characters.
The Windows API has many functions that also have Unicode versions to permit an extended-length path for a maximum total path length of 32,767 characters. ... To specify an extended-length path, use the "\\?\" prefix. For example, "\\?\D:\very long path". [C++ string literals require backslashes be doubled, of course.]
Because most Boost.Filesystem operational functions just pass the contents of a class path object to the Windows API, they do work with the extended-length prefixes. But some won't work, because to the limitations imposed by Windows. Read the following cautions carefully!
create_directory("a")
will fail if the
absolute path of the resulting directory would exceed 260 characters.This Filesystem Library is dedicated to my wife, Sonda, who provided the support necessary to see both a trial implementation and the proposal itself through to completion. She gave me the strength to continue after a difficult year of cancer treatment in the middle of it all.
Many people contributed technical comments, ideas, and suggestions to the Boost Filesystem Library. See http://www.boost.org/libs/filesystem/doc/index.htm#Acknowledgements.
Dietmar Kuehl contributed the original Boost Filesystem Library directory_iterator design. Peter Dimov, Walter Landry, Rob Stewart, and Thomas Witt were particularly helpful in refining the library.
The create_directories, extension, basename, and replace_extension functions were developed by Vladimir Prus. The temp_directory_path function was contributed by Jeff Flinn. David Svoboda suggested the canonical function and provided psuedo-code.
Howard Hinnant and John Maddock reviewed a draft of the version 2 proposal, and identified a number of mistakes or weaknesses, resulting in a more polished final document.
Peter Dimov suggested a single class path, with member templates to adapt to multiple string types. His idea became the basis for the version 3 path design.
[ISO-POSIX] | ISO/IEC 9945:2003, IEEE Std 1003.1-2001, and The Open Group Base Specifications, Issue 6. Also known as The Single Unix® Specification, Version 3. Available from each of the organizations involved in its creation. For example, read online or download from www.unix.org/single_unix_specification/. The ISO JTC1/SC22/WG15 - POSIX homepage is www.open-std.org/jtc1/sc22/WG15/ |
[Abrahams] | Dave Abrahams, Error and Exception Handling, www.boost.org/more/error_handling.html |