
Document number: N3444
Submitter: László Érsek <laszlo.ersek@posteo.net>
Subject: integer promotions and conversion ranks, and alignments, in C17

(1) EXAMPLE 2 in 5.1.2.3p11 states,

the “integer promotions” require that the abstract machine promote the value of each
variable to int size and then add the two ints

Especially the phrase “two ints” seems restrictive. For example, on an implementation where the
representations of both signed char and int matched that ot int16_t, and where the
representations of all of char, unsigned char, and unsigned int matched that of
uint16_t, the c1 and c2 variables’ values would be promoted to unsigned int.

Suggested change: replace the above-cited language with

the “integer promotions” require that the abstract machine promote the value of each
variable to (signed or unsigned) int and then add the two (signed or
unsigned) ints

(2) Assume an implementation where the following exact-width integer types (7.20.1.1) are
provided:

typedef unsigned long uint64_t;
typedef signed long int64_t;
typedef unsigned int uint32_t;
typedef signed int int32_t;

and where the implementation permits uint64_t for bit-fields (6.7.2.1p5).

In the following code fragment:

struct { uint64_t bf:32; } s = { 0 };
(void)printf("%u\n", s.bf);

can we deduce – and if so, how exactly can we deduce –, from the rules in 6.3.1.1, whether the
expression s.bf is, or is not, promoted to unsigned int?

Namely, the second subclause of 6.3.1.1p2 does not apply (s.bf does not have type _Bool, int,
signed int, or unsigned int). In turn, the first subclause of 6.3.1.1p2 depends on whether
s.bf’s integer conversion rank is less than or equal to that of int and unsigned int.

1

For determining that, I fail to construct a rigorous chain of arguments from the rules in 6.3.1.1p1:
1. Per rule#4, the rank of uint64_t:32 equals that of int64_t:32.
2. The precision of int64_t:32 is 31 (value) bits (6.2.6.2p6).
3. Therefore, per rule#2, the rank of int64_t:32 is strictly less than that of signed long

(whose precision is 63 bits).
4. However, rule#2 does not say anything about ranks when the precisions of two signed

integer types are identical (such as those of int64_t:32 and int – both have 31 value
bits).

5. Rule#1 appears to prohibit int64_t:32 and int from having identical ranks, in spite of
their identical representations; therefore, one of those types must have a strictly lesser rank
than the other. The actual ranking order seems undecidable from the rules, and with that, it
seems undecidable whether s.bf is promoted to unsigned int.

(3) Rules #1 and #4 from 6.3.1.1p1:

– No two signed integer types shall have the same rank, even if they have the same
representation.

– The rank of any unsigned integer type shall equal the rank of the corresponding signed
integer type, if any.

appear to render the part of 6.3.1.1p2 that is underlined below redundant:

An object or expression with an integer type (other than int or unsigned int) whose
integer conversion rank is less than or equal to the rank of int and unsigned int.

An integer type that differs from both int and unsigned int cannot have the same rank as
int or unsigned int per rules #1 and #4 in 6.3.1.1p1, therefore “equal to” is constant false,
and “P or false” is just P.

The words “or equal to” seem to originate from the resolution of Defect Report #230, and therefore
they seem justified.

The conflict / redundancy should be eliminated by reworking rule #1 of 6.3.1.1p1. Namely,
6.2.5p17 specifies,

[…] and the enumerated types are collectively called integer types. [...]

and 6.3.1.1p1 rule #8 states,

The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

Therefore 6.3.1.1p1 rule#1 states falsehood.

2

https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_230.htm

Rule#1 further conflicts with rule#6:

The rank of char shall equal the rank of signed char and unsigned char.

Suggested change: eliminate 6.3.1.1p1 rule#1 altogether.

(4) The concept of “alignment of pointers” is used in two senses over the standard, and therefore
6.2.5p28 is ambiguous.

• Meaning #1: consider 6.2.5p26:

Any type so far mentioned is an unqualified type. […] The qualified or unqualified
versions of a type are distinct types that belong to the same type category and have
the same representation and alignment requirements.48) […]

In this context, “alignment requirements” clearly refers to the “requirement that [pointer
objects themselves] be located on storage boundaries with addresses that are particular
multiples of a byte address” (see 3.2). See also (informative) footnote 48:

The same representation and alignment requirements are meant to imply
interchangeability as arguments to functions, return values from functions, and
members of unions.

• Meaning #2: consider 6.3.2.3p5:

An integer may be converted to any pointer type. Except as previously specified, the
result is implementation-defined, might not be correctly aligned, might not point to
an entity of the referenced type, and might be a trap representation.

In this context, “correctly aligned” clearly refers to the “requirement that [objects referenced
by a particular pointer type] be located on storage boundaries with addresses that are
particular multiples of a byte address” (see 3.2 and 6.2.5p20).

Both meanings distinctly differ, but each example context above makes clear which sense is
intended. Contrast that with 6.2.5p28:

A pointer to void shall have the same representation and alignment requirements as a
pointer to a character type.48) Similarly, pointers to qualified or unqualified versions of
compatible types shall have the same representation and alignment requirements. All
pointers to structure types shall have the same representation and alignment requirements as
each other. All pointers to union types shall have the same representation and alignment
requirements as each other. Pointers to other types need not have the same representation or
alignment requirements.

(Same footnote 48 referenced as above.)

In this context, it is ambiguous whether the “same alignment requirements” between the noted
pointer types refer to the pointer objects themselves, or to the objects referenced by the pointer
objects – or even both. The request is for the Committee to please clarify this.

3

(5) (Conceptual) division of an object’s address by the required alignment should always yield a
zero remainder, and this is not immediately clear from 6.2.8p1:

An alignment is an implementation-defined integer value representing the number of bytes
between successive addresses at which a given object can be allocated.

This language does not preclude (numeric) addresses of the form k*2n+r, where k is a nonnegative
integer, 2n is the alignment (with n being a positive integer), and r is a positive integer less than 2n.

In comparison, 3.2 is clear that r must be zero:

requirement that objects of a particular type be located on storage boundaries with addresses
that are particular multiples of a byte address

Suggested change: replace the cited sentence in 6.2.8p1 with

An alignment is an implementation-defined integer value representing the byte address at
the whole multiples of which a given object can be allocated.

(6) _Alignof(char) should be explicitly defined as (size_t)1.

This already follows from e.g. 6.3.2.3p7:

[…] When a pointer to an object is converted to a pointer to a character type, the result
points to the lowest addressed byte of the object. Successive increments of the result, up to
the size of the object, yield pointers to the remaining bytes of the object.

6.2.8p6 is not explicit enough per se; it only says

[…] The types char, signed char, and unsigned char shall have the weakest
alignment requirement.

6.5.3.4p4 states:

When sizeof is applied to an operand that has type char, unsigned char, or
signed char, (or a qualified version thereof) the result is 1. […]

A similar statement should be added about the _Alignof operator.

Suggested change: insert, as a new paragraph, between 6.5.3.4p4 and 6.5.3.4p5:

When _Alignof is applied to an operand that has type char, unsigned char, or
signed char, (or a qualified version thereof) the result is 1.

4

